
Few-Shot Hash Learning for Image Retrieval

Yu-Xiong Wang Liangke Gui Martial Hebert

School of Computer Science, Carnegie Mellon University

{yuxiongw,liangkeg,hebert}@cs.cmu.edu

Abstract

Current approaches to hash based semantic image re-

trieval assume a set of pre-defined categories and rely on

supervised learning from a large number of annotated sam-

ples. The need for labeled samples limits their applicability

in scenarios in which a user provides at query time a small

set of training images defining a customized novel category.

This paper addresses the problem of few-shot hash learning,

in the spirit of one-shot learning in image recognition and

classification and early work on locality sensitive hashing.

More precisely, our approach is based on the insight that

universal hash functions can be learned off-line from unla-

beled data because of the information implicit in the density

structure of a discriminative feature space. We can then se-

lect a task-specific combination of hash codes for a novel

category from a few labeled samples. The resulting unsu-

pervised generic hashing (UGH) significantly outperforms

current supervised and unsupervised hashing approaches

on image retrieval tasks with small training samples.

1. Motivation

With the rapidly increasing amount of visual data on the

web, binary hashing, due to its computational and storage

efficiency, has attracted considerable attention for represen-

tation and retrieval in large-scale image databases [51, 25,

60, 77, 76, 19, 20, 53]. To encode high-dimensional image

data into compact and semantic similarity preserving binary

codes in a Hamming space, current hashing approaches fo-

cus on scenarios that assume a set of pre-defined categories

and rely on large annotated data. In practical applications,

however, a user might define customized query categories

on-the-fly by supplying only a small set of specific exam-

ples, and requires the entire learning and retrieval procedure

to be manageable in real time [13, 22, 40, 65, 12, 11, 27].

Such few-shot hash learning scenarios pose a significant

challenge for the existing techniques, since they are usually

category/dataset specific and cannot generalize well from

few examples or generalize to novel categories. In this pa-

per, we attempt to design a system to facilitate the hash

Concat-

enating

Code

Selection

Unsupervised	Hyper-

Training	Phase

0

1

Binary

Projection

0

1

0

1

1

0

1

0

0

1

1

0

Training	Phase Testing Phase

 

Database

Query	Image of

Novel Category

Figure 1: Few-shot hash learning for the retrieval of novel

categories from few examples. During the unsupervised

hyper-training phase, a large library of hash functions infor-

mative across categories is generated. For a new target task

or category with limited samples, task-specific hash func-

tions are selected from this library to form its compact bi-

nary representation during the training phase. Finally, the

image retrieval of novel object categories is accomplished

by nearest neighbor search in the Hamming space.

learning for novel object categories from few examples.

While one/few-shot learning [21], as a fundamental prob-

lem, has been extensively discussed in the context of image

recognition and classification [71, 66], very little work has

addressed this issue for hash learning and image retrieval.

Specifically, the state-of-the-art hashing approaches are

data-dependent and directly learn hash functions from the

target dataset in either an unsupervised or supervised man-

ner. The unsupervised hashing [72, 32, 25] aims to propa-

gate neighborhood relation of samples from a certain metric

space into the Hamming space. However, distance metrics

(e.g., Euclidean distance or angular distance) typically can-

not measure well the semantic similarity that is essential for

image retrieval. By leveraging supervisory information in

form of class labels, supervised hashing [67, 51, 58, 60]

preserves semantic structure of the data. Unfortunately,

with limited data, these approaches are prone to over-fitting,

leading to degenerated performance.

11228



Interestingly, the early research on data-independent

hashing has learned generic binary codes that are indepen-

dent of the data and categories. The flagship represen-

tatives, the locality sensitive hashing (LSH) and its vari-

ants [23, 10, 31, 33, 55], use simple random projections to

construct hash functions without exploring the data distri-

bution. However, LSH usually requires long binary codes

to achieve satisfactory retrieval accuracies, leading to large

storage space and low recall performance [51]. Due to its

pure data-independence, LSH still lacks the ability to pre-

serve the desired semantic similarity.

In the spirit of learning classifier-based representations,

some approaches, including Classemes [64], PiCoDes [6],

Meta-Class [4], and predictable discriminative binary code

(DBC) [58], leverage an auxiliary labeled dataset and gen-

erate codes either from pre-defined categories or learned

super-classes of these categories. Unfortunately, to iden-

tify properties shared by many categories, these approaches

rely on a large corpus of annotated auxiliary data samples

and expensive training iterations. The generalization abil-

ity is still tied to this particular set of categories due to its

supervised nature. In particular, the code length is usually

constrained by the dimension of the original feature descrip-

tors or number of categories [5].

To address these limitations, we propose a basic frame-

work for generating unsupervised generic hashing (UGH),

which frees the hash learning from ties to a specific set of

categories and which can be transferable to those categories

unknown in advance and with few samples. Distinguished

from previous work, we design a three-phase procedure in

this approach, as illustrated in Fig. 1. First, given a large

corpus of unlabeled data samples, we produce a large li-

brary of “expressive” hash functions, each of which con-

verts original features to a one-bit binary code. This off-line

phase is called “hyper-training” by analogy with training

hyper-parameters as in [68, 26]. Now, given a new target

task with few samples, task/category-specific codes are se-

lected from the large pool to form a compact representation

of the novel category. Finally, the retrieval is accomplished

by nearest neighbor search in the Hamming space.

Intuitively, to make our library of unsupervised hash

codes generalizable across categories, a discriminative fea-

ture space is required in the first place. We use the activa-

tions of convolutional neural networks (pre-trained CNNs

on the labeled ImageNet dataset) [38] as the feature space.

Because they are learned from visual data, the CNN fea-

tures carry information about the semantic structure of the

feature space. More importantly, in the spirit of LSH, a

single code should be informative by itself while the entire

library of codes should have a good coverage of the feature

space [23, 33, 55]. Our key observation here is that such ex-

pressive codes could be generated without supervision be-

cause of the information implicit in the density structure

of the feature space. To this end, our unsupervised hyper-

training uses a large corpus of unlabeled images as a much

less biased sampling in the feature space. We then introduce

a series of simple sampling procedures, and iteratively esti-

mate diverse, salient pseudo-categories that are surrogates

for plausible categories and produce hash functions that tra-

verse across the corresponding low-density regions in the

unlabeled data.

After producing a large library of codes during hyper-

training, later in the training phase, we infer what is shared

and discriminative between categories by selecting the most

informative bits for novel categories and tasks. Separating

unsupervised code generation and task-specific code selec-

tion also makes the code length adaptive for different cate-

gories/tasks and makes the use of long codes feasible, which

facilitates the practical usage of the hash codes [75].

Our contributions are three-fold. (1) We show how

such a three-phase setup can be operationalized for learn-

ing hash functions across datasets and categories. To the

best of our knowledge, it is the first time to explore the

few-shot hash learning problem for image retrieval. (2) We

show how a universal library of hash codes (UGH), based

on combining pre-trained CNN features and unsupervised

hash learning, is generated without bias to a particular set

of categories. (3) We show how informative codes are se-

lected on novel categories with few examples and how im-

age retrieval tasks can be achieved efficiently. In particular,

our UGH outperforms state-of-the-art hashing baselines by

significant margins for small samples when they are learned

in the same CNN feature space.

2. Related Work

The existing hashing approaches can be divided into

two categories: data-independent and data-dependent. The

data-independent hashing approaches, such as a family of

methods known as locality sensitive hashing (LSH) [23,

10, 31, 18, 57] and Min-Hash [8, 15], randomly generate

a set of hash functions without any training and use these

scattered codes to achieve asymptotically guaranteed per-

formance. The data-dependent (or learning-based) hashing

approaches learn similarity-preserving hash functions with

compact codes in an unsupervised or (semi-)supervised

manner. The unsupervised methods, such as spectral hash-

ing (SH) [72], anchor graph hashing (AGH) [52], spherical

hashing (SPH) [30], K-means hashing (KMH) [29], itera-

tive quantization (ITQ) [25], locally linear hash (LLH) [32],

discrete graph hashing (DGH) [50], and binary autoencoder

(BA) [9], learn hash functions using unlabeled data to pre-

serve some metric distance neighbors.

The semi-supervised and supervised hashing methods,

such as binary reconstructive embedding (BRE) [39], min-

imal loss hashing (MLH) [54], semi-supervised hashing

(SSH) [67], supervised hashing with kernels (KSH) [51],

1229



LDAHash [62], DBC [58], CGHash [44], ITQ with canon-

ical correlation analysis (CCA-ITQ) [25], FastHash [46],

supervised discrete hashing (SDH) [60], and kernel-based

SDH (KSDH) [61], leverage supervised information in

forms of category labels or pairwise similarity to preserve

semantic structure in the Hamming space. Despite their

promise, these approaches directly learn on the target task

with large amounts of training data, and cannot generalize

well from few examples or to novel categories. There has

been little work on few-shot hash learning as ours, which is

crucial for on-the-fly image retrieval in practice.

Instead of using hand-crafted features, most recent

work [35, 73, 77, 41, 48, 75, 49, 76, 19] focuses on

jointly learning image representations and hash codes with

deep CNN models to preserve complex semantic similarity.

Again, such supervised hashing with deep models relies on

a large corpus of annotated data and cannot address our few-

shot learning problem. Our approach benefits from a pre-

trained, semantic CNN feature space, but learns a library of

universal hash functions in an unsupervised manner. Our

approach also scales to large code size. In principle, we

could generate in parallel as many codes as desired, and

then select the most informative ones for a novel category.

Another relevant line of work is learning intermedi-

ate representation as the (binarized) outputs of classifiers

trained for related tasks. This line of work, including Ob-

ject Bank [43], Classemes [64], PiCoDes [6], and Meta-

Class [4], assumes that pre-trained classifiers on a large

number of annotated basis classes would suffice to capture

generic categorical properties, and could be re-purposed for

novel categories/tasks encountered at test time. On the con-

trary, we demonstrate here that a universal library of hash

codes could be discovered by directly leveraging the regu-

larities of general visual data in an unsupervised manner.

In a broad sense, our few-shot hash learning problem is

related to one/few-shot learning[21, 36, 68, 42, 59, 69, 71,

45, 7, 70, 66, 28] and transfer learning [1, 69] for image

recognition and classification. Our approach is inspired by

those in few-shot learning and multi-task learning but tai-

lored to hash learning, such as generating off-line models

that are recommended for object detection [68] or trans-

ferred for domain adaptation [1, 69].

3. Unsupervised Generic Hashing

Given a large collection of N unlabeled images in cer-

tain feature space, denoted as G = {x1, . . . , xN}, where

xi ∈ R
d, we produce a large library of hash functions, each

of which maps a d-dimensional input to a binary code, i.e.,

h (x) : Rd → {0, 1}. Our goal is to generate the hash func-

tions that are semantically generalizable across categories

and tasks. That is, similar images should be encoded to

similar binary codes in the corresponding Hamming space,

and vice versa. Our key insight is that the information im-

Max-Min

Sampling

 
Max-Min

Sampling

Subsampling Pseudo-

CategoryUGH

Figure 2: Illustration of generating unsupervised generic

hashing (UGH) by obtaining pseudo-categories that are sur-

rogate for plausible, latent categories and learning hash

functions that traverse across the low-density regions.

plicit in the density structure of a pre-trained, discriminative

feature space is informative enough to enable us to generate

such codes without supervision.

To this end, we use CNN features, which affords us two

advantages. First, CNN features have been shown in recent

work to produce better results in recognition and classifica-

tion tasks and so would presumably be more effective than

hand-crafted features in our case as well. But, more im-

portantly, because they are themselves learned from visual

data, the CNN features carry information about the seman-

tic structure of the feature space so that simple linear hash

functions can be used to generate useful codes.

During the hyper-training phase, this large pool of un-

labeled images G serve as a much less biased sampling

in the feature space, with high-density regions correspond-

ing to potential latent categories. The scale of the image

set matters more than its sources: they could be existing

large-scale image databases, e.g., Yahoo/Flickr 100-million

dataset [63], or random Internet images. In this section we

first describe how to generate a diverse and expressive hash

library in this unsupervised scenario by iteratively obtain-

ing pseudo-labeled data and learning unsupervised generic

hash (UGH) functions that traverse across the low-density

regions, as shown in Fig. 2. We then explain how to select

and use the codes for novel tasks with few examples.

3.1. Hash Learning during Unsupervised Hyper­
Training

To obtain the hash functions that traverse across the

low-density regions, predictable discriminative binary code

(DBC) [58] is a good candidate, which seeks hyperplanes

that separate categories with large margins. However, DBC

relies on label information. Inspired by recent work on en-

semble projection [16] and unlabeled data selection by at-

tributes [14], we introduce a series of sampling procedures

to obtain pseudo-categories and modify DBC to be esti-

mated in an unsupervised manner, leading to our UGH.

1230



3.1.1 Estimating Diversified Pseudo-Labeled Data

Since we have no supervised annotations, we first need to

generate pseudo-labels that are surrogate for plausible, la-

tent categories. More precisely, we want to satisfy both the

within-pseudo-category constraint (i.e., samples with the

same pseudo-labels should be similar in the feature space)

and the between-pseudo-category constraint (i.e., samples

with different pseudo-labels should be very dissimilar). To

this end, from the image pool G we first draw an M -subset

US by random subsampling. Within US , we create pseudo-

labeled prototype sets VPL by a two-step sampling proce-

dure, Max-Min sampling [16], to satisfy the constraints.

At the Max-step, an initial skeleton of the prototype set is

created by selecting data samples that are spread out. This

is achieved by first randomly sampling m subsets, each of

which consists of C random seed points. Each seed point

can be viewed as the seed of a pseudo-category. The sub-

set having the largest mutual distance between its member

points is then chosen. At the Min-step, each seed point

is augmented to a pseudo-category with T pseudo-labeled

samples by adding its T − 1 nearest neighbors. We have

then generated VPL = {(xi, yi)}, where i = 1, . . . , TC,

and yi ∈ {1, . . . , C} indicates the pseudo-category labels.

3.1.2 Learning UGH

VPL now becomes the pseudo-labeled part for each subset

US , and the remaining ones are still unlabeled, denoted as

WUL. We use a coarse-to-fine procedure that learns K hash

functions of DBC in three steps: initialization, expansion,

and calibration, which is inspired by the approach to learn-

ing unsupervised sources for transfer learning in [69] but

with different expansion and additional calibration steps.

Initialization. In this first step, we generate a set of K ini-

tial hash functions, represented by K weight vectors wk by

using the max-margin formulation introduced in DBC [58].

wk is generated by the label lk while enforcing the codes

similar in-class and dissimilar out-of-class in the pseudo-

categories. Importantly, we use our pseudo-labeled samples

from our C pseudo-categories instead of the labeled sam-

ples normally used in the original supervised DBC:

min
w,ξ,L,H

1

2

C
∑

c=1

∑

m,n∈c

dist (Hm, Hn) + γ

K
∑

k=1

∥

∥wk
∥

∥

2

+ λ1

K
∑

k=1

TC
∑

i=1

max
{

1− lki

(

wkTxi

)

, 0
}

−
λ2

2

C
∑

c′=1

a∈c′

C
∑

c′′=1

b∈c′′,c′ 6=c′′

dist (Ha, Hb) (1)

where for the kth hash function, wk is the weight vector,

hk
i and lki are the binary hash code and training label of

xi, respectively. hk
i =

(

1 + sign
(

wkTxi

))

/

2 and Hi =

[h1

i , . . . , h
K
i ]. dist is the Hamming distance.

Expansion. Now that we have an initial estimate of hash

codes consistent with the C pseudo-categories, we can

(pseudo-)label more samples to get a richer pseudo-labeled

set, which we can use for refining the hash functions. This

is similar to the semi-supervised learning approach in [14]

for expanding the coverage of small labeled training sets by

adding unlabeled samples to each category based on their

attributes. In our case, we select and add F samples to

each pseudo-category from the unlabeled pool WUL. We

select the samples that are similar in both the original fea-

ture space and the Hamming space (which is viewed as an

attribute space), and the similarity is measured by the re-

sponses of max-margin classifiers generated in both spaces.

This is different from using the actual attributes learned

from auxiliary labeled data as in [14]. We use 90% of the

new samples along with the original pseudo-labeled data

to form an augmented dataset VAUG = {(xi, yi)}, where

i = 1, . . . , (T + 0.9F )C, and yi ∈ {1, . . . , C}. We retrain

a new set of K hash functions on VAUG by using Eqn. 1.

Calibration. Finally, using the 10% held-out samples as the

validation set, we calibrate the hash functions by standard

Platt’s scaling to fit a sigmoid function with parameters α

and β, leading to probabilistic outputs as in [56]

f
(

x|wk, αk, βk
)

=
1

1 + e−αk(wkT x−βk)
. (2)

As noted in other related work, this sigmoid normaliza-

tion is crucial when using the outputs of classifiers as de-

scriptors. This calibration step can be interpreted as locally

non-linear warping of feature space, with a simple rescal-

ing and shifting of the decision boundary. Each bit is then

obtained by thresholding the calibrated outputs at 0.5. To

ensure diversity and coverage of UGH across the feature

space, we repeat the subsampling procedure in Section 3.1.1

D times, and generate KD hash functions in total.

3.2. Code Selection and Usage for Novel Categories

The unsupervised hyper-training phase provides a large

library of hash codes, which can be viewed as an over-

complete representation. Given a new target task, e.g., a

novel category, at query time with a small set of training

images, we could simply use all of these codes as descrip-

tors for image retrieval. Motivated by the power of sparse

representations, an alternative is to select the most infor-

mative bits so as to infer what is shared with this specific

input category. To achieve this, during the training phase

as shown in Fig. 1, using all the codes as features and the

small training samples from the target task, we first learn an

L1-regularized model, e.g., L1-regularized SVM, and pick

the active bits according to the desired code length, which

correspond to the weights of larger absolute value [58]. We

1231



thus obtain category specific codes as a compact representa-

tion. Using these codes, we then perform nearest neighbor

search for retrieval purpose and evaluate the performance.

4. Experimental Evaluation

In this section, we present experimental results evaluat-

ing our UGH on standard image retrieval benchmarks, com-

paring with state-of-the-art supervised and unsupervised

hashing methods for small-sample learning, and validating

across tasks and categories the generality of UGH.

4.1. Implementation Details

We begin by describing the setup used to generate our

unsupervised generic hashing (UGH). Our approach is inde-

pendent of the specific CNN designs. Here we use the Caffe

AlexNet CNN pre-trained on ILSVRC 2012 [38, 34]. All

the CNN weights are frozen to those learned on ILSVRC

without any fine-tuning. For each resized image, we extract

features on the standard 10 crops (4 corners plus one center

and their flips) and average them as the final feature. It is

a d = 4,096-D feature vector fc6 taking from the penulti-

mate hidden layer of the network. All the data samples are

normalized to have unit length.

As mentioned before, there is no restriction on the corpus

of unlabeled data. Here, we randomly select a 2M subset of

the Yahoo/Flickr 100-million Dataset [63], which was col-

lected entirely automatically. Note that the generated UGH

is insensitive to the choice of dataset. Experimentally, the

results reported below are similar if using other unlabeled

large-scale dataset. We then have N = 2M unlabeled im-

ages G. For each iteration, we subsample M = 20,000 data

to form US . For the Max-Min sampling procedure, we use

the same setup and hyper-parameters reported in [16, 17]:

after sampling m = 50 subsets, we obtain VPL consist-

ing of C = 30 pseudo-categories with T = 6 samples per

pseudo-category. Within VPL, we generate K = 10 pro-

totype hash functions. We use the same setup and default

hyper-parameters as in [58] without tuning, where λ1, γ are

set to 1 and λ2 is set to normalize for the size of pseudo-

categories. We then select F = 50 samples [14] per pseudo-

category as expansion, resulting in an augmented dataset

VAUG with (45+6)×30 training samples and 5×30 valida-

tion samples. Within VAUG we retrain and refine a new set

of K = 10 hash functions. Repeating D = 2,000 subsam-

pling, we have hyper-trained 20,000 hash functions in total.

Despite its large number, each set of the hash functions can

be learned independently, allowing for easy parallelization.

Note that we used the same setup and hyper-parameters

reported in [16, 17, 58, 14], and we already significantly

outperformed the baselines. By tuning them, we could

achieve even better performance. For fair comparisons, our

UGH and all the following supervised and unsupervised

baselines learn hash codes over the pre-trained AlexNet fea-

tures. For all the baselines, we ran codes provided by the

authors and used the suggested or optimized parameters in

all experiments.

Here similarity labels are defined by semantic-level la-

bels. Images from the same category are considered se-

mantically similar, and vice verse. Following the standard

evaluation protocols [24, 9, 51, 47], each dataset is split

into a large retrieval database and a small query set. In

the previous work, a large amount of random samples from

the retrieval database are used to train the hashing mod-

els [51, 46, 60, 77]. Since we are interested in the few-shot

learning scenarios, we randomly sample small size training

data to select (for our UGH) or learn (for baselines) hash

codes. The number of training examples per category varies

from 1 to 100 and the length of the hash codes varies from

8 to 32 bits. The retrieval performance on the query set is

evaluated using mean average precision (mAP) and preci-

sion within Hamming radius 2 (Precision@2). To reduce the

influence of random selection, all experiments are repeated

ten times and the average mAP and precision are reported.

4.2. Comparisons with Supervised Hashing

Naturally, the first and most important question to an-

swer is whether our UGH learned by unsupervised hyper-

training indeed facilitates generalization to novel categories

with few samples, compared with the state-of-the-art su-

pervised hashing methods. We answer this question on the

CIFAR10 benchmark [37]. This dataset consists of 60,000
images from 10 object classes, with 6,000 images per class.

Following the standard practice [19], 50,000 images are

used as the retrieval database and 10,000 images are used

as the query set. This dataset is selected specifically for ex-

tensive evaluation and analysis. We include evaluation on

more changeling datasets in the later sections.

Baselines. We compare against the state-of-the-art su-

pervised hashing approaches, including CCA-ITQ [24],

FastHash [46], SDH [60], KSH [51], and DBC [58]. DBC

is the original supervised version of our approach. We also

include the data-independent LSH [2] as reference. These

approaches can be viewed as online binary codes, as the

hash functions are directly learned from the target dataset.

In our preliminary experiments, we also tested the recent su-

pervised deep hashing via training neural networks [77, 76].

These approaches typically require using the entire large-

scale retrieval database for hash learning. With limited

training data in our case, their performance is significantly

inferior to that of other baselines which we reported. We

thus did not include their results here.

4.2.1 Influence of Training Set Size

First we evaluate the performance as a function of the num-

ber of training examples per category. The code length for

1232



1 3 5 10 15 202530 50 100
0

10

20

30

40

Number of Training Examples per Category

m
A

P
 (

%
)

 

 

UGH (Ours)
SDH
LSH
KSH
CCA−ITQ
FastHash
DBC

(a)

1 3 5 10 15 202530 50 100
0

10

20

30

40

50

Number of Training Examples per Category

P
re

c
is

io
n

 (
%

)

 

 

UGH (Ours)
SDH
LSH
KSH
CCA−ITQ
FastHash
DBC

(b)

Figure 3: Performance comparisons between UGH and competing supervised hashing approaches for few-shot hash learning

and image retrieval on the CIFAR10 dataset. X-axis: number of training examples per category. Y-axis: mean average

precision (mAP) (Fig. 3a) and precision@2 (Fig. 3b). With the same code length 16, our UGH significantly outperforms

these baselines for learning with few samples.

8 16 24 32
10

20

30

40

Number of Bits

m
A

P
 (

%
)

 

 

UGH (Ours)
SDH
LSH
KSH
CCA−ITQ
FastHash
DBC

(a)

8 16 24 32
10

20

30

40

Number of Bits
P

re
c
is

io
n

 (
%

)
 

 

UGH (Ours)
SDH
LSH
KSH
CCA−ITQ
FastHash
DBC

(b)

Figure 4: Performance comparisons between UGH and competing supervised hashing approaches for few-shot hash learning

and image retrieval on the CIFAR10 dataset. X-axis: code length. Y-axis: mean average precision (mAP) (Fig. 4a) and

precision@2 (Fig. 4b). With the same 10 training examples per category, our UGH consistently outperforms these baselines

by large margins across different code lengths.

all approaches is fixed as 16: our UGH selects 16 category-

specific codes from the 20,000 hash library and the base-

lines directly learn the codes at length 16. Due to lack of

public protocols for few-shot learning, we randomly sam-

ple 1, 3, 5, 10, 15, 20, 25, 30, 50 and 100 images per cate-

gory from the retrieval database as the training set. Fig. 3

summarizes the average mAP and precision@2.

As shown in Fig. 3, our UGH consistently outperforms

all the other supervised hashing for small-sample learning.

While the vanilla hashing approaches are over-fitting in this

scenario, our universal binary representation, by leveraging

large-scale unlabeled data, is effectively learned and trans-

ferable to novel categories. In addition to the unsupervised

aspect, our code selection phase leads to both compact and

discriminative codes for the target task, making it signifi-

cantly different from LSH which typically requires long bi-

nary codes. To verify this, we tested random selection of the

codes. While it is still better than the baselines, the perfor-

mance drops. e.g., in the one-shot case, the random selec-

tion achieved 18.42% mAP, which is better than 16.96% of

CCA-ITQ (the best performing baseline) and is worse than

20.80% of our UGH with discriminative code selection.

An obvious advantage of UGH over its supervised coun-

terpart DBC is that UGH makes it feasible to generate a

large collection of hash codes based on unlabeled data.

Another promising finding, based on Fig. 3, is that UGH

demonstrates more expressive and universal capability for

novel categories with few samples compared to DBC. This

verifies our assumption that information across categories

is actually intrinsic in the data even without any supervi-

sion. One explanation is that by using another large-scale

dataset (e.g., Flicker-2M) apart from where the CNN fea-

ture is learned (ILSVRC), UGH would potentially prevent

over-fitting and provide more generalization ability. This

is similar to the case in which models are trained on the

training dataset and their parameters are tuned on another

validation dataset. More importantly, we introduce a se-

ries of sampling procedures in producing UGH to generate

a diverse partition of the feature space in contrast to DBC

(and other supervised hashing baselines). This leads to dis-

tributed representations, which is a crucial ingredient for

generalization to new cases [3].

4.2.2 Influence of Code Length

We also investigate the influence of the code length (the

number of selected codes as the final descriptor) on the

CIFAR10 dataset. 10 images per category are randomly se-

1233



135 1015202530 50 100
0

5

10

15

Number of Training Examples per Category

m
A

P
 (

%
)

 

 

UGH (Ours)
SDH
LSH
KSH
CCA−ITQ
FastHash
DBC

(a)

135 1015202530 50 100
0

5

10

15

Number of Training Examples per Category

P
re

c
is

io
n

 (
%

)

 

 

UGH (Ours)
SDH
LSH
KSH
CCA−ITQ
FastHash
DBC

(b)

Figure 5: Performance comparisons between UGH and competing supervised hashing approaches for few-shot hash learning

and image retrieval on the CIFAR100 dataset. X-axis: number of training examples per category. Y-axis: mean average

precision (mAP) (Fig. 5a) and precision@2 (Fig. 5b). With the same code length 16, our UGH significantly outperforms

these baselines for large-scale image retrieval tasks with few training samples.

lected as the training set; the retrieval database and query set

remain as before. Fig. 4 shows the mAP and precisioin@2

achieved by UGH and the supervised hashing baselines.

These baselines directly learn the code at the desired length.

Fig. 4 shows that UGH is more robust than other hashing

competitors by maintaining very stable performance across

increasing code lengths. This indicates the effectiveness of

selecting category specific codes. FastHash tends to have

good mAP performance; its precision@2, however, drops

with longer hash codes 32, which shows its inability to

form compact clusters in the hash code space. Moreover,

these conventional hashing approaches are restrictive in the

sense that, for different code lengths, they need to re-learn

the entire hash codes. On the contrary, the unsupervised,

off-line and parallel aspects of our code generation mecha-

nism makes it orders of magnitude faster and could be re-

purposed for tasks with different desired code length. Even

with additional code selection stage, training is efficient

since the implementation of SVMs with binary codes could

be greatly simplified and sped up by using a logical AND

and a sparse summation for dot-products instead of floating-

point calculations [4]. This favors such an approach to be

used in ultra-large-scale scenarios.

4.3. Large­Scale Comparisons

We now move on to evaluate our UGH on the large-scale

CIFAR100 dataset [37], which contains 100 categories with

600 images per category. Following the standard prac-

tice [53], we randomly select 100 images per category as

the query set and use the remaining images as the retrieval

database. Similar to the experimental setup in Section 4.2.1,

we focus on the influence of the training set size. Fig. 5

summarizes the comparisons with the supervised baselines.

As shown in Fig. 5, our UGH outperforms all the base-

lines by large margins in this large-scale scenario. The low

performance of LSH suggests that CIFAR100 is more chal-

lenging than CIFAR10. In particular, Fig. 5a shows that

there is nearly 50% relative mAP performance boost in the

one-shot learning case. Although SDH achieves compara-

ble precision as our UGH when the number of samples is

100, it has a much lower mAP (3.63% smaller) than ours.

The improvements of UGH are more significant in the small

sample size regime (e.g., 1, 3 and 5), which is consistent

with the observation on CIFAR10. While the state-of-the-

art hash codes are learned separately for different target

tasks, our UGH is inferred once off-line without knowing

any target dataset, and generalizes well to the novel task

without requiring additional, extensive hash training.

4.4. Comparisons with Unsupervised Hashing

Our approach estimates diverse pseudo-categories and

learns hash functions that traverse across the low-density

regions. Rather than simply due to additional unsupervised

data, this hash learning scheme is crucial for its generaliza-

tion across categories. To show this point, we further eval-

uate our UGH and unsupervised hashing on the SUN397
dataset [74]. As a challenging benchmark, SUN397 con-

tains 108,754 images of 397 scene categories. Following

the standard practice [20], we use a subset which includes

42 categories with more than 500 images per category, lead-

ing to 35K images in total. The query set contains 4,200 im-

ages with 100 images per category randomly sampled from

the dataset. The remaining images are used as the retrieval

database. We focus on the influence of the code length.

Baselines. We compare against several state-of-the-art un-

supervised hashing approaches, including PCA-ITQ [24],

binary autoencoder (BA) [9], spectral hashing (SH) [72],

spherical hashing (SPH) [30], and K-means hashing

(KMH) [29], which are learned over the AlexNet features.

Similar to our use case, they are now used in an offline man-

ner, in which the codes are learned on Flickr-2M and then

tested on the target SUN397.

Fig. 6 shows that our UGH consistently achieves the best

performance across different code lengths. This verifies

that our generalization ability to novel tasks and categories

comes not only from the generic CNN features, but also

from the code generation mechanism. In addition to the

initial Max-Min sampling that enforces diversity, our UGH

1234



8 16 24 32
0

5

10

15

20

Number of Bits

m
A

P
 (

%
)

 

 

UGH (Ours)
SPH
KMH
SH
ITQ
BA

(a)

8 16 24 32
0

10

20

30

40

Number of Bits

P
re

c
is

io
n

 (
%

)

 

 

UGH (Ours)
SPH
KMH
SH
ITQ
BA

(b)

Figure 6: Performance comparisons between UGH and competing unsupervised hashing approaches on the SUN397 dataset.

X-axis: code length. Y-axis: mean average precision (mAP) (Fig. 6a) and precision@2 (Fig. 6b). Both UGH and the baselines

learn unsupervised hash codes over the pre-trained AlexNet features. The codes are learned on Flickr-2M and then tested on

SUN397. Our UGH consistently generalizes better than these baselines by large margins across different code lengths.

introduces an additional expansion step to augment pseudo-

categories with more data in a bootstrap manner, yielding

more accurate sampling of the feature space structure. We

further group the pseudo-categories into a set of abstract

classes, leading to more generic hash codes. On the con-

trary, the existing unsupervised hashing approaches are pro-

posed mainly for compression; with semantic information

only coming from the input CNN features, their generaliza-

tion ability is significantly limited.

4.5. Qualitative Visualization

To understand our hash codes, we show qualitative vi-

sualization of representative codes in Fig. 7. These codes

are randomly selected from those that could be visually in-

terpretable for better analysis. The visualization shows that

in the unsupervised scenario our UGH learns semantics that

are informative across categories, which thus explains its

generalization ability to novel categories and tasks.

5. Conclusions

We proposed an approach to few-shot hash learning in

which hash functions learned from unlabeled data are used

for generating binary codes of a new object category from a

few samples. The hash functions are learned in a feature

space constructed from high-dimensional expressive fea-

tures so that computationally efficient linear classifiers can

be used instead of the more expensive kernel-based classi-

fiers. Although generated without supervision, these codes

carry significant information about the structure of the vi-

sual space so that, given a novel category, a subset of the

codes can be selected to form a good representation, even

with very few samples. The crucial observation is that the

codes are not tied to any specific category and therefore

encode the visual space in an unbiased manner. The re-

sulting hash codes are accurate in image retrieval perfor-

mance and efficient in terms of computation, storage, and

size of training data. By analogy with CNN terminology,

our approach uses not only pre-trained features (the CNN

Figure 7: Hash code visualization. Each row of images

illustrates a particular bit in our UGH, which groups the

data based on unknown notions of similarity. For six repre-

sentative bits (top to bottom), we show on two sides of the

black bar 4 positive and negative images, respectively (left

to right). One can find that the corresponding hash func-

tions learn semantics that are informative across categories,

i.e., repeated pattern, fur/feather, head, star-shaped, stripes,

pincer-shape (top to bottom). This behavior shows the gen-

erality of our codes for novel categories and tasks.

features trained on ILSVRC) but also pre-trained classifiers

(on unlabeled data). Future work involves exercising this

approach on other tasks, such as detection, expanding it to

larger scale problems, and more sophisticated code selec-

tion mechanisms.

Acknowledgments: This work was supported in part

by ONR MURI N000141612007 and U.S. Army Research

Laboratory (ARL) under the Collaborative Technology Al-

liance Program, Cooperative Agreement W911NF-10-2-

0016. We also thank NVIDIA for donating GPUs and AWS

Cloud Credits for Research program.

1235



References

[1] R. K. Ando and T. Zhang. A framework for learning pre-

dictive structures from multiple tasks and unlabeled data.

JMLR, 6:1817–1853, 2005.

[2] A. Andoni and P. Indyk. Near-optimal hashing algorithms for

approximate nearest neighbor in high dimensions. In FOCS,

2006.

[3] Y. Bengio. Deep learning: Progress in theory and attention

mechanisms. In Deep Vision CVPR Workshop, 2015.

[4] A. Bergamo and L. Torresani. Meta-class features for large-

scale object categorization on a budget. In CVPR, 2012.

[5] A. Bergamo and L. Torresani. Classemes and other classifier-

based features for efficient object categorization. TPAMI,

36(10):1988–2001, 2014.

[6] A. Bergamo, L. Torresani, and A. W. Fitzgibbon. PiCoDes:

Learning a compact code for novel-category recognition. In

NIPS, 2011.

[7] L. Bertinetto, J. F. Henriques, J. Valmadre, P. Torr, and

A. Vedaldi. Learning feed-forward one-shot learners. In

NIPS, 2016.

[8] A. Z. Broder. On the resemblance and containment of doc-

uments. In Proceedings of Compression and Complexity of

Sequences, 1997.

[9] M. A. Carreira-Perpinán and R. Raziperchikolaei. Hashing

with binary autoencoders. In CVPR, 2015.

[10] M. S. Charikar. Similarity estimation techniques from round-

ing algorithms. In Proceedings of the thiry-fourth annual

ACM symposium on Theory of computing, 2002.

[11] K. Chatfield, R. Arandjelović, O. Parkhi, and A. Zisserman.

On-the-fly learning for visual search of large-scale image and

video datasets. International journal of multimedia informa-

tion retrieval, 4(2):75–93, 2015.

[12] K. Chatfield, K. Simonyan, and A. Zisserman. Efficient

on-the-fly category retrieval using convnets and GPUs. In

ACCV, 2014.

[13] K. Chatfield and A. Zisserman. VISOR: Towards on-the-fly

large-scale object category retrieval. In ACCV, 2012.

[14] J. Choi, M. Rastegari, A. Farhadi, and L. S. Davis. Adding

unlabeled samples to categories by learned attributes. In

CVPR, 2013.

[15] O. Chum and J. Matas. Large-scale discovery of spatially

related images. TPAMI, 32(2):371–377, 2010.

[16] D. Dai and L. V. Gool. Ensemble projection for semi-

supervised image classification. In ICCV, 2013.

[17] D. Dai and L. Van Gool. Ensemble projection with CNN

features for semi-supervised image classification and image

clustering. Technical report, ETH Zurich, May 2015.

[18] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.

Locality-sensitive hashing scheme based on p-stable distri-

butions. In Proceedings of the twentieth annual symposium

on Computational geometry, 2004.

[19] T.-T. Do, A.-D. Doan, and N.-M. Cheung. Learning to hash

with binary deep neural network. In ECCV, 2016.

[20] T.-T. Do, A.-D. Doan, D.-T. Nguyen, and N.-M. Cheung.

Binary hashing with semidefinite relaxation and augmented

Lagrangian. In ECCV, 2016.

[21] L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of

object categories. TPAMI, 28(4):594–611, 2006.

[22] B. Fernando and T. Tuytelaars. Mining multiple queries

for image retrieval: On-the-fly learning of an object-specific

mid-level representation. In ICCV, 2013.

[23] A. Gionis, P. Indyk, and R. Motwani. Similarity search in

high dimensions via hashing. In VLDB, 1999.

[24] Y. Gong and S. Lazebnik. Iterative quantization: A pro-

crustean approach to learning binary codes. In CVPR, 2011.

[25] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Itera-

tive quantization: A procrustean approach to learning binary

codes for large-scale image retrieval. TPAMI, 35(12):2916–

2929, 2013.

[26] D. Ha, A. Dai, and Q. V. Le. Hypernetworks. In ICLR, 2017.

[27] X. Han, B. Singh, V. I. Morariu, and L. S. Davis. VRFP:

On-the-fly video retrieval using web images and fast fisher

vector products. TMM, 2017.

[28] B. Hariharan and R. Girshick. Low-shot visual recognition

by shrinking and hallucinating features. In ICCV, 2017.

[29] K. He, F. Wen, and J. Sun. K-means hashing: An affinity-

preserving quantization method for learning binary compact

codes. In CVPR, 2013.

[30] J.-P. Heo, Y. Lee, J. He, S.-F. Chang, and S.-E. Yoon. Spher-

ical hashing. In CVPR, 2012.

[31] P. Indyk and R. Motwani. Approximate nearest neighbors:

towards removing the curse of dimensionality. In Proceed-

ings of the thirtieth annual ACM symposium on Theory of

computing, 1998.

[32] G. Irie, Z. Li, X.-M. Wu, and S.-F. Chang. Locally linear

hashing for extracting non-linear manifolds. In CVPR, 2014.

[33] H. Jégou, L. Amsaleg, C. Schmid, and P. Gros. Query adap-

tative locality sensitive hashing. In ICASSP, 2008.

[34] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional

architecture for fast feature embedding. In ACM MM, 2014.

[35] Y. Kang, S. Kim, and S. Choi. Deep learning to hash with

multiple representations. In ICDM, 2012.

[36] G. Koch, R. Zemel, and R. Salakhutdinov. Siamese neural

networks for one-shot image recognition. In ICML Work-

shops, 2015.

[37] A. Krizhevsky and G. Hinton. Learning multiple layers of

features from tiny images. 2009.

[38] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet

classification with deep convolutional neural networks. In

NIPS, 2012.

[39] B. Kulis and T. Darrell. Learning to hash with binary recon-

structive embeddings. In NIPS, 2009.

[40] P. Kulkarni, G. Sharma, J. Zepeda, and L. Chevallier. Trans-

fer learning via attributes for improved on-the-fly classifica-

tion. In WACV, 2014.

[41] H. Lai, Y. Pan, Y. Liu, and S. Yan. Simultaneous feature

learning and hash coding with deep neural networks. In

CVPR, 2015.

[42] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-

level concept learning through probabilistic program induc-

tion. Science, 350(6266):1332–1338, 2015.

1236



[43] L.-J. Li, H. Su, E. P. Xing, and F.-F. Li. Object bank: A high-

level image representation for scene classification & seman-

tic feature sparsification. In NIPS, 2010.

[44] X. Li, G. Lin, C. Shen, A. Van Den Hengel, and A. R. Dick.

Learning hash functions using column generation. In ICML,

2013.

[45] Z. Li and D. Hoiem. Learning without forgetting. In ECCV,

2016.

[46] G. Lin, C. Shen, Q. Shi, A. van den Hengel, and D. Suter.

Fast supervised hashing with decision trees for high-

dimensional data. In CVPR, 2014.

[47] G. Lin, C. Shen, D. Suter, and A. van den Hengel. A general

two-step approach to learning-based hashing. In ICCV, 2013.

[48] K. Lin, H.-F. Yang, J.-H. Hsiao, and C.-S. Chen. Deep learn-

ing of binary hash codes for fast image retrieval. In CVPRW.

[49] H. Liu, R. Wang, S. Shan, and X. Chen. Deep supervised

hashing for fast image retrieval.

[50] W. Liu, C. Mu, S. Kumar, and S.-F. Chang. Discrete graph

hashing. In NIPS, 2014.

[51] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang. Super-

vised hashing with kernel. In CVPR, 2012.

[52] W. Liu, J. Wang, S. Kumar, and S.-F. Chang. Hashing with

graphs. In ICML, 2011.

[53] L. Mukherjee, J. Peng, T. Sigmund, and V. Singh. Network

flow formulations for learning binary hashing. In ECCV,

2016.

[54] M. Norouzi and D. M. Blei. Minimal loss hashing for com-

pact binary codes. In ICML, 2011.

[55] L. Paulevé, H. Jégou, and L. Amsaleg. Locality sensitive

hashing: A comparison of hash function types and query-

ing mechanisms. Pattern Recognition Letters, 31(11):1348–

1358, 2010.

[56] J. C. Platt. Probabilistic outputs for support vector machines

and comparisons to regularized likelihood methods. In Ad-

vances in large margin classifiers, 1999.

[57] M. Raginsky and S. Lazebnik. Locality-sensitive binary

codes from shift-invariant kernels. In NIPS, 2009.

[58] M. Rastegari, A. Farhadi, and D. Forsyth. Attribute discov-

ery via predictable discriminative binary codes. In ECCV,

2012.

[59] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and

T. Lillicrap. One-shot learning with memory-augmented

neural networks. In ICML, 2016.

[60] F. Shen, C. Shen, W. Liu, and H. T. Shen. Supervised discrete

hashing. In CVPR, 2015.

[61] X. Shi, F. Xing, J. Cai, Z. Zhang, Y. Xie, and L. Yang.

Kernel-based supervised discrete hashing for image retrieval.

In ECCV, 2016.

[62] C. Strecha, A. Bronstein, M. Bronstein, and P. Fua. LDA-

Hash: Improved matching with smaller descriptors. TPAMI,

34(1):66–78, 2012.

[63] B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni,

D. Poland, D. Borth, and L.-J. Li. YFCC100M: The new

data in multimedia research. Communications of the ACM,

59(2):64–73, 2016.

[64] L. Torresani, M. Szummer, and A. Fitzgibbon. Efficient ob-

ject category recognition using classemes. In ECCV, 2010.

[65] L. Torresani, M. Szummer, and A. Fitzgibbon. Classemes:

A compact image descriptor for efficient novel-class recog-

nition and search. In Registration and Recognition in Images

and Videos, pages 95–111. Springer, 2014.

[66] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and

D. Wierstra. Matching networks for one shot learning. In

NIPS, 2016.

[67] J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised hash-

ing for large-scale search. TPAMI, 34(12):2393–2406, 2012.

[68] Y.-X. Wang and M. Hebert. Model recommendation: Gener-

ating object detectors from few samples. In CVPR, 2015.

[69] Y.-X. Wang and M. Hebert. Learning by transferring from

unsupervised universal sources. In AAAI, 2016.

[70] Y.-X. Wang and M. Hebert. Learning from small sample sets

by combining unsupervised meta-training with CNNs. In

NIPS, 2016.

[71] Y.-X. Wang and M. Hebert. Learning to learn: Model re-

gression networks for easy small sample learning. In ECCV,

2016.

[72] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In

NIPS, 2009.

[73] R. Xia, Y. Pan, H. Lai, C. Liu, and S. Yan. Supervised hash-

ing for image retrieval via image representation learning. In

AAAI, 2014.

[74] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba.

SUN database: Large-scale scene recognition from abbey to

zoo. In CVPR, 2010.

[75] R. Zhang, L. Lin, R. Zhang, W. Zuo, and L. Zhang.

Bit-scalable deep hashing with regularized similarity learn-

ing for image retrieval and person re-identification. TIP,

24(12):4766–4779, 2015.

[76] Z. Zhang, Y. Chen, and V. Saligrama. Efficient training of

very deep neural networks for supervised hashing. In CVPR,

2016.

[77] F. Zhao, Y. Huang, L. Wang, and T. Tan. Deep semantic rank-

ing based hashing for multi-label image retrieval. In CVPR,

2015.

1237


