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Abstract

This paper presents an effective yet simple video repre-

sentation for RGB-D based action recognition. It proposes

to represent a depth map sequence into three pairs of struc-

tured dynamic images at body, part and joint levels respec-

tively through bidirectional rank pooling. Different from

previous works that applied one Convolutional Neural Net-

work (ConvNet) for each part/joint separately, one pair of

structured dynamic images is constructed from depth maps

at each granularity level and serves as the input of a Con-

vNet. The structured dynamic image not only preserves the

spatial-temporal information but also enhances the struc-

ture information across both body parts/joints and differ-

ent temporal scales. In addition, it requires low computa-

tional cost and memory to construct. This new representa-

tion, referred to as Spatially Structured Dynamic Depth Im-

ages (S2DDI), aggregates from global to fine-grained levels

motion and structure information in a depth sequence, and

enables us to fine-tune the existing ConvNet models trained

on image data for classification of depth sequences, without

a need for training the models afresh. The proposed repre-

sentation is evaluated on five benchmark datasets, namely,

MSRAction3D, G3D, MSRDailyActivity3D, SYSU 3D HOI

and UTD-MHAD datasets and achieves the state-of-the-art

results on all five datasets.

1. Introduction

Human action recognition from RGB-D (Red, Green,

Blue and Depth) data has attracted increasing attention

in computer vision in recent years due to the advantages

of depth information over conventional RGB video, typ-

ically, being insensitive to illumination changes and reli-

able to estimate body silhouette and skeleton [26]. Since

the first work of such a type [18] reported in 2010, many

methods [1, 23, 41] have been proposed based on spe-
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Figure 1: The differences between DI (left) and DDI (right)

for action “drink” from MSRDailyActivity3D Dataset [34].

The DI has much interference of texture information on the

body compared with DDI.

cific hand-crafted feature descriptors extracted from depth

and/or skeleton data. Most of previous methods employ ag-

gregation of local video descriptors to provide invariance to

variations in the video. However, these methods may fail

to capture important spatio-temporal and structure informa-

tion at the same time.

With the recent development of deep learning, a few

methods [35, 36, 8, 38, 45, 24] have been developed based

on Convolutional Neural Network (ConvNet) or Recurrent

Neural Network (RNN). However, it remains unclear how

video could be effectively represented and fed to deep neu-

ral networks for classification. For example, one can con-

ventionally consider a video as a sequence of still im-

ages [40] with some form of temporal smoothness [27, 15]

and feed them into a ConvNet, or extend ConvNet to a third,

temporal dimension [16, 30] by replacing 2D filters with 3D

ones, or regard the video as the output of a neural network

encoder [29], or treat the video as a sequence of images and

feed the sequence to a RNN [7, 8, 31, 45, 25, 24], or encode

the video into motion images [35, 36, 38, 2, 37]. Which one

among these and other possibilities would result in the best

representation is not well understood.

Inspired by the promising performance of recently in-

troduced rank pooling machine [10, 2, 9] on RGB video,

this paper proposes to adopt rank pooling method to en-

code depth map sequences into dynamic images. Given a
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Figure 2: The three hierarchical structured DDIs for action

“play game” from the MSRDailyActivity3D Dataset [34].

From left to right: structured body DDI, structured part DDI

and structured joint DDI. The red circle denotes the hand

motion need to be recognized while the blue one represents

the large body swaying motion.

sequence of video frames, the rank pooling method returns

a vector of parameters that aggregates spatio-temporal in-

formation contained in that video sequence. This vector of

parameters is obtained by solving an unsupervised learning

problem using RankSVM [28], where the order of frames in

the video is considered as weak labels. Our empirical study

has demonstrated that the rank pooling method works more

effectively on depth map sequences than RGB ones. As

shown in Figure 1, for the action “drink” from MSRDaily-

Activity3D dataset, the Dynamic Depth Images (DDI) gen-

erated by rank pooling is more informative (without inter-

ference of texture information on the body) than Dynamic

Images (DI) proposed in [2] with respect to classification of

actions, due to the fact of depth being insensitive to illumi-

nation and object appearance variations.

In work [9], the authors indicated that the rank pooling

method employed by Fernado et al. [10, 11] is restricted to

exploit long term dynamics. This paper further argues that

the rank pooling method is also limited in the spatial do-

main. Due to the unsupervised learning process, the rank

pooling method mainly encodes the salient global features

in the temporal domain, without mining the discriminative

motion patterns in both spatial and temporal domains simul-

taneously. It is also found that by applying the rank pool-

ing method directly on the full body sequences, the small

but discriminative motion information to recognize actions

is usually suppressed by large motion, especially for these

fine-grained actions where the local spatio-temporal sub-

volume motion is more important compared with the global

motion of the whole sequences. As shown in Figure 2, the

action “play game” from the MSRDailyActivity3D dataset,

the large interference of body swaying motion occupies the

motion in structured body DDI, and hands motion which is

essential for recognition is not well highlighted in the DDI.

To address this problem, this paper proposes to apply

rank pooling method on depth map sequences at three hi-

erarchical spatial levels, namely, body level, part level and

joint level based on our proposed non-scaling method. Dif-

ferent from previous method [6] that adopted one ConvNet

for each human body part, it is proposed to construct one

structured dynamic depth image as the input of a ConvNet

for each level such that the structured dynamic images not

only preserve the spatial-temporal information but also en-

hance the structure information, i.e. the coordination and

synchronization of body parts over the period of the ac-

tion. Such construction requires low computational cost and

memory requirement. This representation, referred to as

Spatially Structured Dynamic Depth Images (S2DDI), ag-

gregates motion and structure information from global to

fine-grained levels for action recognition. In this way, the

interference of large motion with small motion can be mini-

mized. As shown in Figure 2, for action “play game”, in the

structured part DDI and structured joint DDI, the small hand

motion is easy to recognize compared with that in struc-

tured body DDI. Moreover, the three structured dynamic

images are complementary to each other, and an effective

multiply score fusion method is adopted to improve the fi-

nal recognition accuracy. The proposed image-based rep-

resentation can take advantage of the available pre-trained

models for standard ConvNet architectures without train-

ing millions of parameters afresh. It is evaluated on five

benchmark datasets, namely, MSRAction3D [18], G3D [3],

MSRDailyActivity3D [34], SYSU 3D HOI [13] and UTD-

MHAD [4], and achieves the state-of-the-art results.

The key highlights of this paper are four folds. (1) A sim-

ple yet effective video representation, S2DDI, is proposed

for RGB-D video based action recognition by constructing

three level structured dynamic depth images through bidi-

rectional rank pooling. (2) An efficient non-scaling method

is proposed to construct the S2DDI. (3) The three level

structured dynamic images aggregate motion and structure

information from global to fine-grained levels for action

recognition. A multiply score fusion method is adopted

to improve the final action recognition accuracy. (4) The

proposed method achieves state-of-the-art results on five

benchmark datasets.

2. Spatially Structured Dynamic Depth Images

The proposed method mainly consists of three phases, as

illustrated in Figure 3, the constructions of S2DDI guided

by skeletons, three weights-shared ConvNets training and

multiply-score fusion for final action recognition. The first

phase is an unsupervised learning process. It applies bidi-

rectional rank pooling method to three hierarchical levels of

a depth sequence to generate the structured DDIs, with each

level of DDIs being represented by two motion images, for-

ward (DDIF) and backward (DDIB). In the following sec-

tions, the three phases will be described in detail. The rank

pooling method [2], that aggregates spatio-temporal infor-
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Figure 3: The framework of proposed method.

mation from one video sequence into one dynamic image,

is also briefly summarized.

2.1. Bidirectional Rank Pooling

Rank pooling defines a function that maps a video clip

into one feature vector [2]. A rank pooling function is for-

mally defined as follows.

Rank Pooling Let a depth map sequence with k frames

be represented as < d1, d2, ..., dt, ..., dk >, where dt is the

average of depth features over the frames up to t-timestamp.

At each time t, a score rt = ωT · dt is assigned. The score

satisfies ri > rj ⇐⇒ i > j. In general, more recent frames

are associated with larger scores. The process of rank pool-

ing is to find ω∗ that satisfies the following objective func-

tion:

argmin
ω

1

2
‖ ω ‖2 +λ

∑

i>j

ξij

s.t. ωT · (di − dj) ≥ 1− ξij , ξij ≥ 0

, (1)

where ξij is a slack variable. Since the score ri assigned

to frame i is often defined as the order of the frame in the

sequence, ω∗ aggregates information from all of the frames

in the sequence and can be used as a descriptor of the se-

quence. In this paper, the rank pooling is directly applied

on the pixels of depth maps and the ω∗ is of the same size

as depth maps and forms a dynamic depth image (DDI).

Bidirectional Rank Pooling Different from work [2],

this paper proposes to apply rank pooling bidirectionally,

i.e. to apply the rank pooling forward and backward, to

a sequence of depth maps. In the forward rank pooling,

the ri is defined in the same order as the time-stamps of

the frames. In the backward rank pooling, ri is defined in

the reverse order of the time-stamps of the frames. When

bidirectional rank pooling is applied to a sequence of depth

maps, two DDIs, DDIF and DDIB, are generated. Since

in rank pooling the averaged feature up to time t is used to

classify frame t, the pooled feature is biased towards be-

ginning frames of the depth sequence, hence, frames at the

beginning has more influence to ω∗. This is not justifiable in

action recognition as there is no prior knowledge on which

frames are more important than other frames. The proposed

bidirectional rank pooling is to reduce such bias.

2.2. Construction of S2DDI

In the construction of S2DDI, a human body is processed

hierarchically at three spatial levels, namely, joint level, part

level and body level. At each level, the body is divided

into several components, and each component is composed

of several joints. Specifically in this paper, there are 16

components at the joint level, each component containing 1
joint; at body part level, there are 9 components, each com-

ponent consisting of 3 joints as defined below; at body level,

the entire body is treated as a single component consisting

of 16 joints. For each component, a Dynamic Depth Images

(DDI) is generated by applying the rank pooling forward or

backward to a sequence of depth patches that encloses the

component. Two DDIs, i.e. DDIF and DDIB, at each level

are constructed by simply stitching their component DDIs

in a predefined arrangement. The three DDIFs and three

DDIBs at body, part and joint levels together are referred to

as S2DDI. Note the rank pooling requires that the frames in

a depth patch sequences be of same size.

Let C = {j1, j2, . . . , jn} be a component consisting of

n joints. Centered at each joint in the image plane, a depth

patch, referred to as a joint patch, of size p × q pixels is

cropped. A patch for the component C at frame t is ex-

tracted from the depth map based on the bounding box of

C by keeping the depth values inside the joint patches and

setting depth values outside of the joint patches but within

the bounding box to zero. Notice that size of the component

bounding box varies from frame to frame due to movement
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Figure 4: Illustration of non-scaled component patches of a component consisted of three joints {J1, J2, J3} from three

frames. The solid black boxes are the bounding boxes of the component in each frame, while the dashed red box is the

sequence-based bounding box of the component.

Figure 5: The joint configuration for Kinect V1 skeleton.

The total number of joints is 20.

of the joints on one hand and, on the other hand, rank pool-

ing requires the same size of the component patches over

a sequence. Conventionally, the component patches would

be scaled to a same size, referring to as scaled patches. The

obvious disadvantage of such scaling is the distortion of the

spatial information within a frame and, hence, motion in-

formation over the sequence. It is proposed in this paper

to define a sequence-based component bounding box that

is able to enclose the instances of the component over the

sequence instead of using the bounding box at each frame.

A component patch at each frame is then extracted by cen-

tering the sequence-based bounding box onto the compo-

nent in the frame, referring to as non-scaled patches. In

this way, the spatial and temporal distortion due to scal-

ing can be eliminated. Figure 4 illustrates the extraction

of non-scaling patches of a component consisting of three

joints {J1, J2, J3} from three frames. In the figure, the solid

black boxes are the bounding boxes of the component in

each frame, while the dashed red box is the sequence-based

bounding box of the component.

For the structured body DDIs, all the 20 joints are in-

cluded in a single component. For the structured part DDIs,

9 components are defined according to the joint configura-

tion in Figure 5 as follows.

C1 head,shoulder center,shoulder left

C2 head,shoulder center,shoulder right

C3 elbow left,wrist left,hand left

C4 elbow right,wrist right,hand right

C5 spine,hip center,hip right

C6 spine,hip center,hip left

C7 knee left,ankle left,foot left

C8 knee right,ankle right,foot right

C9 shoulder left,shoulder center,shoulder right

For the structured joint DDIs, the following 16 out of the

20 joints which usually bear relatively small noise are used

and each joint forms a component.

hip

center
spine

shoulder

center
head

shoulder left elbow left hand left shoulder right

elbow right hand right hand left knee left

foot left hip right knee right foot right

Different from the work in [6] that adopted one ConvNet

for each component, all component DDIs at the part level

are stitched together to form a structured part DDI and the

component DDIs at the joint level are stitched together to

form a structured joint DDI as shown in Figure 6. Such ar-

rangement of component DDIs into a single structured DDI

at each spatial level enables ConvNets to explore more ef-

fectively the structured information of an action than any

late fusion approach.

2.3. Network Training

After the construction of structured DDIs at three levels,

there are six dynamic images for each depth map sequence,

as illustrated in Figure 3. Three ConvNets are trained on

the three kinds of DDIs individually. The AlexNet [17]

is adopted in this paper. The network weights are learned

using the mini-batch stochastic gradient descent with the

momentum being set to 0.9 and weight decay being set
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Figure 6: Stitching of component DDIs to a structured part

DDI (left) and structured joint DDI (right).

to 0.0005. All hidden weight layers use the rectification

(RELU) activation function. At each iteration, a mini-batch

of 256 samples is constructed by sampling 256 shuffled

training samples. All the images are resized to 256 × 256.

The learning rate is set to 10−3 for fine-tuning the pre-

trained models on ILSVRC-2012, and then it is decreased

according to a fixed schedule, which is kept the same for

all training sets. For each ConvNet, the training undergoes

3K iterations and the learning rate decreases every 1K iter-

ations. For all experiments, the dropout regularization ratio

is set to 0.5 in order to reduce complex co-adaptations of

neurons in the nets.

2.4. Multiply­Score Fusion for Classification

Given a test depth video sequence (sample), three pairs

of dynamic images (structured body DDIs, structured part

DDIs and structured joint DDIs) are generated and fed

into three different trained ConvNets. For each image

pair, multiply-score fusion is used. The score vectors out-

putted by the weight sharing ConvNets are multiplied in an

element-wise way, and then the resultant score vectors are

normalized using L1 norm. The three normalized score vec-

tors are then multiplied in an element-wise fashion and the

max score in the resultant vector is assigned as the prob-

ability of the test sequence. The index of this max score

corresponds to the recognized class label.

3. Experiments

The proposed method is evaluated on five widely

used benchmark RGB-D datasets [41], namely, MSRAc-

tion3D [18], G3D [3], MSRDailyActivity3D [34], SYSU

3D HOI [13] and UTD-MHAD [4] datasets. These five

datasets cover a wide range of different types of actions

including simple actions, actions for gaming, daily activi-

ties, human-object interactions and fine-grained activities.

For the experiments on all datasets, the offset parameters

(p, q) are empirically set. Specifically, for the construction

of structured body DDI, they are (80, 30) for head, two feet

and two hands, and (80, 50) for other joints. For structured

part DDI, they are fixed to (30, 30) for all joints. For struc-

Figure 7: Illustration of using scaled component patches

(left) and non-scaled component patches (right) for action

“write on a paper” from MSRDailyActivity3D Dataset [34]

for construction of structured joint DDI. The red circle de-

notes spatial distortion among human body while the blue

one represents the preservation of aspect ratio among the

parts and joints.

tured joint DDI, they are set to be (20, 30). In the following,

ablations studies are conducted, and the results on the five

datasets are presented and the detailed analysis on MSRDai-

lyActivity3D Dataset are described. The detailed analysis

based on the confusion matrices for the other four datasets

are described in the supplementary material.

3.1. Effects of Design Choices

3.1.1 DDI vs. DI

Table 1 compares the performance of body DDI from depth

and DI [2] from RGB for action recognition on the MSR-

DailyActivity3D dataset. Three DDIs are generated, one

without foreground extraction, one using bounding box

as foreground extraction, and the last one using the pro-

posed method. From the results it can be seen that the

DDI, especially the proposed structured body DDI, achieves

much better results than DI. This verifies that the proposed

method is robust to the noise in skeleton data.

Method Accuracy

DI [2] 52.13%

DDI (without foreground extraction) 53.01%

DDI (with foreground bounding box) 58.75%

Structured body DDI (proposed) 61.00%

Table 1: Comparison of DDI and DI on the MSRDailyAc-

tivity3D dataset.

3.1.2 Scaled vs. Non-Scaled Component Patches in

Constructing DDI

Experiments are conducted to evaluate on the S2DDI con-

structed using scaled and non-scaled component patches.

Table 2 shows the comparisons of these two methods in
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terms of recognition accuracy. It can be seen that us-

ing non-scaled patches greatly outperforms using scaled-

patches mainly due to the elimination of distortion induced

by the scaling.

Method Accuracy

Structured part DDI (scaled) 67.88%

Structured joint DDI (scaled) 85.15%

S2DDI (scaled) 87.04%

Structured part DDI (non-scaled) 81.88%

Structured joint DDI (non-scaled) 93.13%

S2DDI (non-scaled) 97.50%

Table 2: Comparison of Construction of S2DDI using

scaled and non-scaled component patches on the MSRDai-

lyActivity3D dataset.

3.1.3 Structured Images vs. Channel Fusion

To verify the effectiveness of proposed structured images,

taking part level from MSRDailyActivity3D dataset for ex-

ample, we compared the structured images with channel fu-

sion using ConvNets and SIFT+FV+SVM [12], as in Ta-

ble 3. It can be seen that the proposed structured part DDI

not only outperforms the fusion of 9 separate DDIs, but also

has computational advantage (1 channel vs. 9 channels).

This is probably because the structural information is ex-

plored by the ConvNet from the structured part DDI. But

such structural information can hardly be explored if each

DDI is input to separate ConvNets and fused at the score

level. From the comparisons we can also see that the pro-

posed method can take advantages of the pre-trained mod-

els over ImagesNet for recognition compared with the tra-

ditional classifiers (e.g. SVM).

Method Acc

Structured part DDI (ConvNet) 81.88%

Structured part DDI (SIFT+FV+SVM) 76.25%

9 channel part DDIs fusion (ConvNet) 72.81%

9 channel part DDIs fusion (SIFT+FV+SVM) 71.88%

Table 3: Comparison of structured images and channel fu-

sion on the MSRDailyActivity3D dataset.

3.1.4 Traditional Rank pooling vs. Bidirectional Rank

Pooling

Traditional pooling emphasizes the earlier frames in the

pooling segment more than later frames. One of the key mo-

tivations of bidirectional rank pooling is to overcome this

so that reversing cyclic movement patterns can be well dis-

tinguished. In addition, it effectively arguments the train-

ing data. The effectiveness of bidirectional rank pooling is

shown in Table 4, taking MSRDailyActivity3D dataset for

example.

3.1.5 Multiply vs. Average vs. Max Score Fusion

This paper adopts multiply score fusion method to improve

the final accuracy on the three structured DDIs. The other

two commonly used late score fusion methods are average

and maximum score fusion. The comparisons among the

three late score fusion methods are shown in Table 5. It can

be seen that the multiply score fusion method achieves the

best results on all the five datasets. This verifies that the

three structured DDIs are likely to be statistically indepen-

dent and carry complementary information.

Dataset

Score Fusion Method

Max Average Multiply

MSRAction3D 93.67% 97.56% 100%

G3D 94.83% 94.83% 96.05%

MSRDailyActivity3D 93.75% 95.00% 97.50%

SYSU 3D HOI 91.25% 94.17% 95.42%

UTD-MHAD 87.44% 88.54% 89.04%

Table 5: Comparison of three different late score fusion

methods on the five datasets.

3.2. MSRAction3D Dataset

The MSRAction3D Dataset [18] contains 20 simple ac-

tions performed by 10 subjects facing the camera, with each

subject performing each action 2 or 3 times. The same ex-

perimental setting adopted in [34] is followed, namely, the

cross-subjects settings: subjects 1, 3, 5, 7, 9 for training

and subjects 2, 4, 6, 8, 10 for testing. Table 6 lists the per-

formance of the proposed method, as well as the results of

several methods reported in recent three years. From the re-

sults, we can see that the proposed method can well recog-

nize the simple actions, because the three hierarchical spa-

tial dynamic image patches generated via bidirectional rank

pooling can aggregate rich spatio-temporal information in

each level, and the structure information of human body is

explicitly exploited by the proposed non-scaled component

patches and structured motion images.

3.3. G3D Dataset

Gaming 3D Dataset (G3D) [3] focuses on real-time ac-

tion recognition in gaming scenario. It contains 10 subjects

performing 20 gaming actions. For this dataset, the first 4

subjects are used for training, the fifth for validation and the

remaining 5 subjects for testing, following the configuration

in [21]. Table 7 compares the performance of the proposed

method with that reported in [21, 38]. It can been seen that

S2DDI achieves better results.
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Method body DDI part DDI joint DDI fusion

Traditional rank pooling(SIFT+FV+SVM) 42.50% 68.75% 80.00% 86.25%

Traditional rank pooling(ConvNets) 59.38% 80.00% 89.37% 95.63%

Bidirectional rank pooling(SIFT+FV+SVM) 49.69% 76.25% 81.25% 88.75%

Bidirectional rank pooling(ConvNets) 61.00% 81.88% 93.130% 97.50%

Table 4: Comparison of traditional rank pooling and bidirectional rank pooling on the MSRDailyActivity3D dataset.

Method Accuracy

Lie Group [32] 89.48%

HCM [19] 93.00%

SNV [39] 93.09%

Range Sample [20] 95.62%

MTDMM + FV [5] 95.97%

Structured body DDI 79.18%

Structured part DDI 83.83%

Structured joint DDI 95.40%

S2DDI 100%

Table 6: Comparison of the proposed method with existing

methods on the MSRAction3D dataset.

Method Accuracy

LRBM [21] 90.50%

JTM [38] 94.24%

Structured body DDI 74.81%

Structured part DDI 89.97%

Structured joint DDI 93.62%

S2DDI 96.05%

Table 7: Comparison of the proposed method with previous

methods on the G3D dataset.
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Figure 8: Confusion matrix for S2DDI on the MSRDaily-

Activity3D dataset.

3.4. MSRDailyActivity3D Dataset

The MSRDailyActivity3D Dataset [34] has 16 activi-

ties and there are 10 subjects and each subject performed

each activity twice, one in standing position and the other

in sitting position. Most activities in this dataset involve

human-object interactions. The same cross-subject experi-

mental setting as in [34] is adopted. Compared with existing

methods on this dataset, the results in Table 8 show that the

proposed method is superior for dataset having fine-grained

human-object interaction actions.

Method Accuracy

IPM [44] 83.30%

WHDMMs+ConvNets [36] 85.00%

SNV [39] 86.25%

DS+DCP+DDP+JOULE-SVM [13] 95.00%

Range Sample [20] 95.63%

MFSK+BoVW [33] 95.70%

Structured body DDI 61.00%

Structured part DDI 81.88%

Structured joint DDI 93.13%

S2DDI 97.50%

Table 8: Comparison of the proposed method with previous

methods on the MSRDailyActivity3D dataset.

The confusion matrices for structured body DDI, struc-

tured part DDI and structured joint DDI are shown in Fig-

ure 9 and S2DDI in Figure 8. From the confusion matrix,

we can see that the structured body DDI confuses most ac-

tivities, especially “Eat”, “Read book”, “Write on a paper”

and “play game”. This is because the structured body DDIs

of these activities have similar shapes, and the motion to be

recognized is very small compared with the interference of

large body swaying motion, as illustrated in Figure 2. But

as the granularity increases, most of the activities can be

well recognized, because the fine-grained small motion is

enhanced in the patches of parts and joints. By fusion of

the three levels, most of the activities are better recognized,

which reflects that the three structured motion images are

complementary to each other. Compared with the method

proposed in [13], ours can better recognize “Drink”, “Read

book”,“Write on a paper” and “Play game” activities, due

to the capability of both global to fine-grained motion and

structure information aggregation of our method. These ac-

tivities are very easily confused by global motion informa-

tion aggregation method. However, the skeleton guided de-

composition can not work well for human-large object inter-

action. For example, due to the large size of guitar, the pro-

1011



0.50

 

 

0.10

 

 

0.10

 

 

0.10

 

 

 

 

 

0.10

 

0.30

0.10

0.10

0.10

 

 

 

 

 

 

 

 

 

 

 

 

0.10

0.30

0.10

0.10

 

 

 

 

 

0.10

 

 

0.10

 

 

0.30

 

 

0.50

0.10

 

 

 

 

0.10

0.10

 

 

 

 

 

0.10

 

0.20

0.10

0.40

0.10

 

 

 

 

0.20

 

 

 

 

 

 

 

0.10

 

 

0.60

 

 

 

0.10

 

 

 

0.10

 

 

 

 

 

0.10

 

 

0.70

 

 

 

 

 

0.10

 

 

 

 

 

 

 

 

 

 

1.00

 

 

 

 

 

 

 

 

 

0.30

0.10

 

0.10

0.20

 

 

0.90

 

0.30

 

 

0.10

 

 

0.10

 

0.10

 

 

 

 

 

 

0.50

 

 

 

 

 

 

 

0.30

0.10

 

0.20

0.10

 

 

0.10

 

0.30

 

 

0.20

 

 

 

 

 

 

 

 

0.10

 

 

 

 

1.00

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.90

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.50

 

 

 

 

 

 

 

 

0.10

 

 

 

 

 

 

 

1.00

0.20

 

 

 

 

 

 

 

 

 

0.20

 

 

 

 

 

0.70

Drink

Eat

Read book

Call cellphone

Write on a paper

Use laptop

Use vacuum cleanner

Cheer up

Sit still

Toss paper

Play game

Lay down on sofa

Walk

Play guitar

Stand up

Sit down

0.90

0.10

 

0.20

 

 

 

 

 

 

0.10

 

 

 

 

 

 

0.50

 

 

0.10

 

 

 

 

 

 

 

 

 

 

 

 

 

1.00

 

0.10

 

 

 

 

 

 

 

 

0.30

 

 

 

 

 

0.50

 

0.10

 

 

0.10

 

 

 

 

 

 

 

 

 

 

 

0.80

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.80

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.20

0.90

 

 

 

 

 

 

 

 

 

 

 

0.20

 

 

 

 

0.90

 

0.20

 

 

0.10

 

 

 

 

 

 

 

 

 

0.10

 

1.00

 

 

 

 

 

 

 

0.40

 

0.10

 

0.40

 

 

 

 

0.70

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.00

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.00

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.60

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.00

 

0.10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.00

Drink

Eat

Read book

Call cellphone

Write on a paper

Use laptop

Use vacuum cleanner

Cheer up

Sit still

Toss paper

Play game

Lay down on sofa

Walk

Play guitar

Stand up

Sit down

1.00

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.00

 

 

 

0.20

 

 

 

 

 

 

 

 

 

 

 

 

1.00

 

 

 

 

 

 

 

0.10

 

 

0.30

 

 

 

 

 

0.90

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.00

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.80

 

 

 

 

 

 

 

 

 

 

 

 

 

0.10

 

 

1.00

 

 

 

 

 

0.10

 

 

 

 

 

 

 

 

 

 

0.80

 

0.10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.00

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.20

 

0.90

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.90

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.00

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.90

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.70

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.00

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.00

Drink

Eat

Read book

Call cellphone

Write on a paper

Use laptop

Use vacuum cleanner

Cheer up

Sit still

Toss paper

Play game

Lay down on sofa

Walk

Play guitar

Stand up

Sit down

Figure 9: Confusion matrix for structured body DDI (left), structured part DDI (middle) and structured joint DDI (right) on

MSRDailyActivity3D Dataset.

posed method loses much object information and confused

“play guitar” with “Read book”. This can be improved by

setting larger extension around the joints.

3.5. SYSU 3D HOI Dataset

The SYSU 3D Human-Object Interaction Dataset

(SYSU 3D HOI Dataset) [13] was collected to focus on

human-object interactions. There are 40 subjects perform-

ing 12 different activities. For each activity, each partic-

ipants manipulate one of the six different objects: phone,

chair, bag, wallet, mop and besom. Table 9 compares the

performances of the proposed method and that of exist-

ing methods on this dataset using cross-subject settings as

in [13]. It can bee seen that, our proposed method outper-

forms previous methods largely. It should be noticed that

on this dataset, the structured joint DDI achieves the best

performance. From the confusion matrices in the supple-

mentary material we can see that the “Taking from wallet”

action is greatly confused in structured body and part DDIs,

that affects the final performance of S2DDI.

Method Accuracy

HON4D [22] 79.22%

DS+DCP+DDP+MTDA [42] 84.21%

DS+DCP+DDP+JOULE-SVM [13] 84.89%

structured body DDI 65.00%

structured part DDI 85.83%

structured joint DDI 95.83%

S2DDI 95.42%

Table 9: Comparison of the proposed method with previous

approaches on SYSU 3D HOI Dataset.

3.6. UTD­MHAD Dataset

UTD-MHAD [4] contains 27 actions performed by 8

subjects (4 females and 4 males) with each subject perform

each action 4 times. For this dataset, cross-subjects proto-

col is adopted as in [4], namely, the data from the subject

numbers 1, 3, 5, 7 used for training while 2, 4, 6, 8 used for

testing. The results are shown in Table 10. It can be seen

that even the structured joint DDI itself can achieve better

result than previous methods. From the performances on

the five datasets, we can conclude that as the granularity

increases, the proposed method achieves higher accuracy.

Method Accuracy

WHDMMs+ConvNets [36] 73.95%

ELC-KSVD [43] 76.19%

Kinect & Inertial [4] 79.10%

Cov3DJ [14] 85.58%

JTM [38] 85.81%

structured body DDI 66.05%

structured part DDI 78.70%

structured joint DDI 86.81%

S2DDI 89.04%

Table 10: Comparison of the proposed method with previ-

ous approaches on UTD-MHAD Dataset.

4. Conclusion and Future Work

In this paper, an effective yet simple video representa-

tion, S2DDI, constructed using bidirectional rank pooling

is presented for 3D action recognition. This representation

not only preserves the motion information but also enhances

the structure information, and aggregates motion and struc-

ture information from global to fine-grained for final ac-

tion recognition. Such image-based representation takes ad-

vantage of the available trained deep ConvNets models to

fine-tune on small training data. The proposed method has

been evaluated on five popular datasets with large variations

among the actions and achieves state-of-the-art results.The

performance of the proposed method is expected to be fur-

ther improved if large training data are available. Our future

work is to extend the proposed representation to multiple

persons for recognition of actions and interactions.
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