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Abstract

Although Convolution Neural Networks(CNNs) are un-

precedentedly powerful to learn effective representations,

they are still parameter expensive and limited by the lack of

ability to handle with the orientation transformation of the

input data. To alleviate this problem, we propose a deep

architecture named Rotation Invariant Local Binary Con-

volution Neural Network(RI-LBCNN). RI-LBCNN is a deep

convolution neural network consisting of Local Binary ori-

entation Module(LBoM). A LBoM is composed of two parts,

i.e., three layers steerable module (two layers for the first

and one for the second part), which is a combination of

Local Binary Convolution (LBC)[19] and Active Rotating

Filters (ARFs)[38]. Through replacing the basic convolu-

tion layer in DCNN with LBoMs, RI-LBCNN can be easily

implemented and LBoM can be naturally inserted to other

popular models without any extra modification to the opti-

misation process. Meanwhile, the proposed RI-LBCNN thus

can be easily trained end to end. Extensive experiments

show that the updating with the proposed LBoMs leads to

significant reduction of learnable parameters and the rea-

sonable performance improvement on three benchmarks.

1. Introduction

Recent developments in deep learning lead to im-

pressive results in various fields both in computer vi-

sion and machine learning. Architectures based on tra-

ditional convolution neural networks with sufficient data

provided have achieved state-of-the-art performance in im-

age classification, object detection, semantic segmentation,

and action recognition tasks, etc. These advantages are

largely attributed to the evolution of CNN based archi-

tecture, AlexNet[21], ZFNet[29], NIN[25], VGGNet[32],

∗corresponding author

GoogLeNet[33], ResNet[16].

This is true for all the neural networks with sufficient

memory and disk storage. However, for the resource lim-

ited platform and consumer applications on low-power de-

vices (cell phones, unmanned aerial vehicle(UAV), embed-

ded electronics, etc.), a deep neural network with heavy pa-

rameters is unsuitable. Under this circumstance, the net-

work models need to make a trade-off between efficiency

and accuracy. To alleviate this problem, a lot of researches

based on the compressed network is produced. For exam-

ple, [6, 7, 31] used -1 and 1 value to reduce the parameters

of DCNNs while maintaining the performance.

While in real world scenarios, a challenge is that the in-

put data is not always canonical due to the variation in ori-

entation or other visual appearance. The rotation invariance

is often important due to the great with-in class variance. In

addition, orientation information encoding is an important

procedure in the image processing pipeline. For example,

when taking a photo with a smart phone, the object should

be recognized no matter whether it is rotate or not. Take a

glance at the designing of traditional CNN architecture, we

can find that the network lacks the ability of rotation invari-

ant. The investigation of pre-defined max pooling mecha-

nism in conventional CNNs endows the capacity of process-

ing moderate transitions, scale change and some rotations of

the input data, but they lack the ability to fully understand

the rotation information due to the absence of orientation

encoding mechanism.

Our goal is to reduce the number of learnable weights

and endow the network architecture with orientation invari-

ance. In this paper, we present an alternative architecture

of CNNs to reduce the complexity of learnable parameters

and encode the location and orientation information simul-

taneously while achieve on-par performance with standard

CNNs. We introduce the Local Binary orientation Mod-

ule(LBoM). Based on LBoM, a Rotation Invariant Local

Binary Convolution Neural Network(RI-LBCNN) is imple-
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mented. A LBoM is composed of two parts, i.e., three layers

steerable module (two layers for the first and one for the sec-

ond part), which is a combination of Local Binary Convo-

lution (LBC)[19] and Active Rotating Filters (ARFs)[38].

Through replacing the basic convolution layer in DCNN

with LBoMs, RI-LBCNN can be easily implemented and

LBoM can be naturally inserted to other popular models

without any extra modification to the optimisation process.

Meanwhile, the proposed RI-LBCNN thus can be easily

trained end to end. Our approach can naturally update the

neural network with less learnable parameters and endow

with orientation invariance. In summary, the contributions

of this paper are as follows:

• We introduce the LBoM and propose RI-LBCNN

based on LBoM, which endows the DCNNs with ro-

tation invariant capacity and then reduces the number

of learnable weights.

• LBoM is successfully deployed to some popular CNN

architectures including VGGNet[32], ResNet[16],

WideResNet[36], and achieving better performance

compared to LBCNN baseline networks.

2. Related Works

In this section, we discuss the prior works related to the

paper, covering the main idea of hand-crafted rotation in-

variant features and modelling transformations with DC-

NNs. Meanwhile, we give a brief introduction to the evolu-

tion of deep compressing neural networks.

2.1. Transformation invariant features

Handcrafted features. Transformation categories are

consisted of rotation, affine, scale, illumination, clutter etc.

The easiest way to tackle transformation variance in most

computer vision research is to use well-designed hand-

crafted features. The pre-defined features such as Gabor

filter[13], SIFT[27], RI-LBP[30] and RI-HOG[26] is rota-

tion invariant. SIFT is the most representative transforma-

tion invariant feature and is widely used in various computer

vision tasks. Another example of domain-specific descrip-

tor is scale and rotation invariant LBP[26].

Nevertheless, these features can only cope with the in-

puts that are already invariant to rotation. But they also have

limitations: the designing of these hand-crafted features is

time expensive and heavily depended on the experience of

the feature designer. Moreover, most of these well-designed

features are domain-specific and only tackle specific trans-

formation variance.

Deep neural networks features. Convolution Neural

Networks[24] are known to learn good distinctive features

from raw data directly, but are lack of abilities to be spa-

tially invariant to the input data. To tackle with global

and arbitrary transformations, data augmentation is usually

used to achieve local/global transformation invariance[34].

It improves the network performance through enlarging the

volume of datasets using some predefined rules. In [24],

through estimating the linear relationships between repre-

sentations of the original and transformed images, the repre-

sentations in CNNs to input image transformations are stud-

ied. Most recent study TI-Pooling[22] incorporates the ro-

tation invariance by using the parallel network architecture

and multi-instance learning strategy to learn the rotation in-

formation from source data.

Spatial Transform Network(STN)[18] shows some new

hints to look for the canonical representation of the input

data. STN learns the transformation matrix of the input data

by an additional neural network framework. The STN can

be inserted into any existing CNN architectures to encap-

sulate with spatial invariance, but the problem about how

to estimate the global transformation parameters precisely

remains unsolved[12].

Instead of introducing extra functional modules or new

network topology, most recent studies[38, 28] implement

the prior knowledge of rotation to the most basic element

of DCNNs, i.e., the convolution operator. [38] introduced

Actively Rotating Filters (ARFs) to generate feature maps

which encode the location and orientation information. In

[28], they incorporated conventional Gabor filters into DC-

NNs to enhance the resistance of learned features to the ori-

entation and scale changes. Both the ORNs and GCNs can

be naturally fused with any popular deep learning architec-

ture, as well as latest techniques(BatchNorm, ReLu). Nev-

ertheless, the number of learnable parameters in both ORNs

and GCNs is still large despite the parameters reduction in

convolution layers.

2.2. Deep compression neural networks

Deep neural networks are typically over-parametered,

thus suffered from redundant parameters in their

modules[9]. This results in a great cost on both computa-

tion and memory usage. The researches on compressing

network aim to get efficient training and representation.

Several approaches have been proposed to address efficient

training with parameter saving in deep neural networks.

Through replacing fully connected layer with global aver-

age pooling, Network in Network[25], GoogLeNet[33] and

ResNet[15, 16] improve the state-of-the-art performance

with less parameters.

Over-parameters are not very important in achieving

high performance in deep networks[31]. Through inves-

tigating information theoretical vector quantization meth-

ods, [11] quantized the weights of dense connected lay-

ers. They achieved 16∼24× compression of the network

with only 1% loss of classification accuracy on 1000-class

classification task in the ImageNet challenge. Similarly,
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[35] took one step further and proposed to quantize both

the filter kernels in convolutional layers and the weights

in fully-connected layers to compress the network storage

and computation costs. [3] used a low-cost hash function

to randomly group connection weights into hash buckets,

and through weight-sharing in the same hash bucket. In

this way, they compressed the number of weights by a fac-

tor 8×. By finding an appropriate low-rank approximation

of the parameters, [10] exploited the linear structure of the

neural network and kept the accuracy within 1% loss of the

original model. Network pruning have been proved to be

a good solution both to reduce network complexity and to

prohibit over-fitting. In [14], they proposed a three stage

pipeline to shrink the network parameters and storage.

There are many works focusing on binarizing the

weights and the activations in neural networks. Due to

the destructive property of binary quantization, the per-

formance of highly quantized network has been proved to

be very poor[5]. BinaryConnect[6] used only two pos-

sible values (e.g. -1 or 1) to construct DCNN, and up-

dated the parameters using the back propagated error. Bina-

ryConnect achieved state-of-the-art results on small datasets

(e.g.,CIFAR-10, SVHN), but performed not very well on

large-scale datasets(e.g. ImageNet)[31]. Based on [6],

BinaryNet[7] stepped further. It trained DNNs with both

binary weights and activations and then replaced most mul-

tiplications with 1-bit XNOR operations to reduce mem-

ory usage. Different from [6] and [7], XOR-Net[31] pro-

posed to binarize both the filters and the input to convolu-

tion layers, and outperformed BinaryNet by a large margin

on ImageNet tasks. [19] proposed an approximation to stan-

dard convolution layer, where the module comprised of a

set of sparse pre-defined non-learnable binary convolutional

filters together with a 1×1 learnarable convolution layer.

LBCNN[19] is the most related research to our approach,

but our method is different from it in the orientation encod-

ing mechanism. We also compare with LBCNN, and our

method outperforms LBCNN by a large margin(as shown

in Section 4.3, 4.4). [17] proposed a small CNN architec-

ture named SqueezeNet and achieved on-par performance

with AlexNet while with 50× fewer parameters.

3. Orientation Invariant Local Binary Convo-

lution topology

Rotation Invariant Local Binary Convolution Network

(RI-LBCNN) is a deep convolution neural network with

Local Binary orientation Modules (LBoMs). A LBoM is

composed of two parts, i.e., three layers steerable module

(two layers for the first and one for the second part), which

is a combination of Local Binary Convolution (LBC)[19]

and Active Rotating Filters (ARFs)[38]. With LBoMs,

RI-LBCNN not only involves significant fewer learnable

weights, but also leads to an easily-trained and enhanced

deep models.

In the following subsections, we will address three is-

sues in adopting LBoMs in DCNN. Firstly, we give a brief

introduction of LBCNN[19] and ORN[38]; Secondly, we

describe how to obtain LBoM and give a detailed analysis

of LBoM; Thirdly, we show how LBoM is learned during

the back-propagation stage.

3.1. Local Binary Convolution Networks

LBCNN is a parameter saving architecture, which is

built by replacing the traditional convolution layer with lo-

cal binary convolution(LBC). LBC is a three layers alterna-

tive representation to standard convolution layer. The first

layer in LBC is a set of fixed sparse pre-defined binary con-

volution layer, followed by an non-linear activation function

layer. The last layer is a set of learnable 1×1 convolution

weights.

The steps of initializing the LBC are as follows: First,

determine a sparsity level which indicates the percentage

of non-zero value weights of binary convolution layer. The

sparsity is defined as:

sparsity =
#number of non−zero weights

#sum of weights
(1)

Then initialize the first convolution layer through

Bernoulli distribution with 0, 1, and -1 randomly using the

sparsity. Specially, each location in local binary (LB) filters

shares an equal probability. Let us assume the LBC with

p pre-defined non-learnable binary filters, q learnable 1×1

convolution filters. The input image is filtered by p binary

filters and becomes p different maps, which are changed to

p bit maps through non-linear activation layer. Finally, the

p bit maps are linear combined using the q learnable 1×1

weights to approximate the traditional convolution layer.

The weights in first binary convolution layer are fixed and

do not update at the back propagation stage. The learn-

able weights in 1×1 convolution layer are updated just like

what’s in standard convolution layer.

Because of the sparsity and the fixed binary value of the

first convolution layer, it is less representative than the stan-

dard convolution layer. To achieve a better performance at

each LB, it needs a competitive number of LB filters (512

in [19]) and 1×1 learnable weights. Compared with stan-

dard CNN architectures, LBC based network can get on-par

performance with less learnable parameters, but it lacks the

abiltiy to handle with the rotation transformation.

3.2. Oriented Response Network

Oriented response network (ORN) is composed of rota-

tion information learning mechanism (Active Rotating Fil-

ters, ARFs) and rotation encoding layers (ORAlign/ OR-

Pooling). It can reduce the number of parameters while
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Figure 1. Basic local binary orientation module in RI-LBCNNs. This module is a LBoM with 3×3 kernels. Each LBoM consists of two

parts (three layers), which are the non-learnable sparse representation(box with dash line) and the partial learnable linear combination(box

with solid line). The first convolution layer is initialized using Bernoulli distribution with 0, 1 and -1. Xl and Xl+1 are the input and output

of the module, respectively. Wl is the learnable weights for each module. The extra orientation channel is obtained through clockwise

rotate the learnable kernels(green circle).

maintain the inter-class discrimination. Through adding ro-

tation encoding layer at the top of ORN, it can produce ro-

tation invariant feature representation.

An ARFs is like a filter bank in which only one filter

being materialized and learned. Let us assume N to be

the number of the orientation channels in ORNs. Through

clockwise rotating the filters N − 1 times by 2πn
N

, n =
1, ..., N−1, the remaining N−1 rotated filters are obtained

without any extra parameter. Compared with standard con-

volution layer with same number of filters, ARFs based con-

volution layer (ORConv) can reduce the number of parame-

ters N−1 times at a single layer. Feature maps generated by

ARFs are not rotation-invariant as orientation information

are encoded instead of discarded. In order to obtain within-

class rotation invariant representation, ORAlign and OR-

Pooling strategy is introduced in [38]. Assume the size of

feature map after the last ORConv is 1×1×N . ORAlign is

done by first calculating the dominant orientation as D, and

then spinning the feature by −D 2π
N

. The size of ORAlign

output is still 1×1×N . Another rotation invariance encod-

ing strategy is called ORPooling, which is implemented by

simply pooling the maximum value of N orientations. This

strategy shrinks the output to size of 1× 1× 1.

Although ORN can reduce parameters by actively ro-

tating filters, the number of learnable parameters is still

large especially for those popular network architectures like

VGGNet[32]. The performances of ORN on image classifi-

cation have demonstrated its efficiency of this architecture,

as well as the parameter redundancy in networks.

3.3. Local Binary orientation Module

In order to get the maximum approximation to the stan-

dard convolution layer with less learnable parameters, as

well as to learn the orientation information from raw data,

we propose a new local binary orientation module(LBoM),

Fig. 1. Along with orientation invariant encoding layer, we

can get rotation equivariance feature representation. Infor-

mally, the LBoM will learn the sparse representation from

the input data, as well as the orientation information. Fi-

nally, the orientation invariant encoding layer is used to

discard the orientation information in the feature maps to

achieve rotation invariance.

Each LBoM is a combination of LBC and ARFs. LBoM

is a two-part (three layers) differential module, which con-

sists of a pre-defined non-learnable convolution layer, an

activation function layer and a 1×1 learnable convolution

layer. Each convolution layer in LBoM possesses an addi-

tional orientation channel which is obtained through ARF.

Compared with ORNs[38], the parameters of first convolu-

tion layer of LBoM is initialized with 0, 1 and -1, which

is fixed and do not updated at the back propagation stage.

Thus all the learnable parameter of LBoM are those learn-

able parameters in 1×1 convolution layer.

As illustrated in the Fig. 1, the LBoM is started with p
pre-defined non-learnable binary filters bi with N orienta-

tion channels, where i = 1, ..., p. Only the canonical filter b
is materialized using the Bernoulli distribution with sparsity

level s, and the rest N−1 orientation channel filter b is built

using ARFs by clockwise rotating by 2πn
N

, n = 1, ..., N−1.

The input image Xl is filtered by these local binary orienta-

tion filters(LBoFs) and achieves p different maps, which are

then passed into a non-linear activation gate (ReLu in Fig.

1) and the corresponding bit maps are produced. These bit

maps are only discrete description because of the sparsity

of the convolution kernels. Afterwards, the p bit maps are

linear combined by q weights Wl, which leads to the final
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output feature map of the module. In order to get the corre-

sponding q channels output, here we use 1×1 convolution

layer with N orientation channels. Among these q learnable

1×1 weights, there only q/N weights are learnable, where

the rest weights are its copies by ARFs. Finally, the output

feature maps Xl+1 are with N orientation channels and the

k-th channel is computed as:

Xk
l+1 =

N−1∑

n=0

F
(n)
θk

∗X
(n)
l , θk = k

2π

N
, k = 0, ..., N−1 (2)

Fθk =

p∑

i=1

δ · bθki ·W θk
l (3)

Here Xk
l+1 is the input of (l + 1)-th layer with k orien-

tation; F is the ARF representation of LBoM; Fθk is the

clockwise θk-rotated version of F ; bθki is the i-th θk-rotated

version of binary weights; W θk
l is θk-rotated version of

learnable 1×1 weights. For the sake of simplicity, there’s

no bias item in the convolution layer of the LBoM. Specifi-

cally, the initialization of LBoM is nearly the same as LBC,

but with a little difference. Both the first layer of LBoM and

LBC are pre-defined, fixed and do not update at the back

propagation stage. But only the canonical filters of the first

convolution layer in LBoM are initialized using the strategy

of LBC, the rest N − 1 orientation channels is produced

by ARFs. Besides, the 1×1 learnable linear weights is ini-

tialized using ARFs, which are partial-learnable compared

with those in LBC. For LBCNN, the number of learnable

weights is p× q. For RI-LBCNN, the learnable weights are

only parts of the 1×1 convolution step, so the number is
p×q

N
. Then we have:

#params in LBCNN

#params in RI − LBCNN
=

p× q

(p× q)/N
= N (4)

RI-LBCNN is not rotation invariant as the orientation

information is encoded in the feature maps. To achieved

within-class rotation invariance, we use ORPooling and

ORAlign operator introduced in ORN[38] at the top layer

of RI-LBCNN. After adding the rotation invariant opera-

tion layer, the feature representation lose feature arrange-

ment information and RI-LBCNN is rotation invariant.

Because the sparsity of the first convolution layer in

LBoM, thus the representation capacity of each module

is decreased. In order to get the expected results, LBoM

based deep neural networks need to enlarge the width of

first sparse convolution layer or the depth of whole network

architecture to get a better performance.

3.4. LBoM Updating

The training of the LBoM is quite straightforward. Gra-

dients are propagated through the fixed LBoFs just like

they do with learnable weights. Note that during the back-

propagation stage, we do not update the weights in LBoFs.

Only the weights in the learned filters in 1×1 ORConv layer

W θk
l,i needs to be updated. And we have:

δ(k) =
∂L

∂Fθk

, θk = k
2π

N
, k = 0, ..., N − 1 (5)

W = W − η

∑N−1
n=0 δ

(k)
−θk∑m

i=1 δbi
(6)

where L is the loss function and η is learning rate. Error

signals δ(k) of all the rotated versions of the ARF are as-

signed to δ
(k)
−θk

. The backward procedure is almost the same

as which that in ORNs, but with a little difference in calcu-

lation. From the above description, it can be seen that the

BP process in LBoM is easily implemented. By only updat-

ing the weights W in learnable 1×1 convolution layer, the

RI-LBCNNs model can be more compact and efficient, and

also is more robust to orientation variations from raw data.

4. Experiment

In this section, we present the experimental results on

three benchmarks. The first one is MNIST series, includ-

ing MNIST[24], a small MNIST rotation version MNIST-

rot-12k[23], as well as MNIST-rot used in ORN[38]. First,

we use both the MNIST and MNIST-rot datasets to show

the advantages of RI-LBCNN on rotation information en-

coding and parameter saving of RI-LBCNN. Furthermore,

RI-LBCNN is tested on MNIST-rot-12k to validate its gen-

eralization ability on rotation. Afterwards, we upgrade the

VGGNet[32], ResNet[16] and WideResNet[36] network ar-

chitecture using LBoMs, and applied the new models on

CIFAR-10 and CIFAR-100[20], i.e., two real-world image

classification datasets, to further evaluate the performance

and the generality of our RI-LBCNN networks.

4.1. Experiment settings

For all the three MNIST datasets, we use the same net-

work topology. The baseline CNN we adopt is as intro-

duced in ORN[38], which is composed of four convolution

layers with multiple 3×3 kernels, as illustrated in Fig. 2.

We build another LBCNN baseline through replacing each

convolution layer in baseline CNN with local binary convo-

lution module[19]. Meanwhile, we generate ORNs through

replacing standard convolution layer with ARFs. Due to

the mechanism of ARFs, only limited rotation channels are

supported. For example, given a convolution layer with fil-

ters size of 3×3, the number of the orientation channels N
can only be 1, 2, 4, 8. RI-LBCNN is generated by updating

convolution layer in baseline CNN using LBoM with 4 or 8

orientation channels. To obtain the rotation invariant repre-

sentation, ORAlign and ORPooling layer introduced in [38]
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Figure 2. Comparisons of network structures on MNIST of

CNN, ORN and RI-LBCNN. LEFT: CNN baseline. MIDDLE:

ORN architecture, as in [38]. RIGHT: our RI-LBCNN topology.

The right column of each architecture are the size of the output

feature maps(e.g. 1×32×32). The numbers in the box indicate

the hyper parameters of each layer. Blue boxes denote convolu-

tion layers with learnable weights; Green boxes denote convolu-

tion layers with non-learnable binary weights; Box with dashline

is optional for the networks; With actively rotating convolution

filters clockwise (green circles), convolution layers obtain extra

orientation channels.

are used at the top layer of RI-LBCNNs architecture. In or-

der to make a fair comparison, we make a trade-off between

representative and learnable weights saving. Considering

the LBoM module has an additional channel (orientation),

we decrease the number of kernels of the first sparse binary

layer to one quarter (128 vs. 512 in LBCNN), while the

second learnable convolution kernel reduce to one-eighth.

Therefore, the RI-LBCNN complexity is reduced as com-

pared with CNN (see the third column of Tab. 1).

In our experiments, we use the same hyper-parameters

as ORN[38], i.e., and we perform the training using

tuning-free convergent Adadelta algorithm[37], training

epochs(50), batch size(128) and dropout rate(0.5) for the

fully-connected layers. Our implementation is based on

Torch[4]. We run our experiment with GeForce GTX TI-

TAN X(12G).

4.2. MNIST datasets

MNIST. The original MNIST datasets is a very typical

dataset to verify the performance of the newly introduced

algorithms. MNIST contains a training set of 60k and a

testing set of 10k with 32×32 gray scale images showing

the handwritten digits from 0 to 9.

MNIST-rot-12k. MNIST-rot-12k is the most common

used dataset for validating rotation-invariant algorithm. It

consists of images from a subset from original MNIST,

rotated by a random angle in [0, 2π]. This dataset con-

tains 12k training samples and 50k testing samples. Among

them, 2k images are randomly selected as validation set and

the remaining 10k images are training set.

MNIST-rot. To access the effect of data augmentation,

and develop into RI-LBCNN architecture, the MNIST-rot

dataset introduced in [38] is considered. The reasons why

we choose the MNIST-rot dataset to validate the rotation

invariance capacity of RI-LBCNN are two-fold. Firstly, the

scale of MNIST-rot-12k is smaller than that of the MNIST-

rot (12k vs. 60k); Secondly, it may include some limitations

for the training images (less rotation variance for example).

So they proposed to take the full MNIST dataset, generated

the training set with a random angle in the range of [0, 2π].

This simple strategy not only enlarges the content of the

training data, but also increases the rotation diversity as well

as generality of the data, which makes the problem more

closer to the real-world scenario.

4.3. Experiment Analysis on MNIST

MNIST and MNIST-rot. For both MNIST and MNIST-

rot, we randomly select 10k images from training set for

validation, and the rest 50k images for training. The best

model is selected by 5-fold cross validation and then is ap-

plied to the test set. The results on MNIST and MNIST-

rot are presented in Tab. 1. Besides, the state-of-the-art

STN[18], TI-Pooling[22] and ORNs[38] are involved in the

comparison.

In Tab. 1, the second column refers to the network con-

volution kernel width of each layer, and a similar notation is

also used in[36, 28]. In each LBoM (4 in total), we use the

same hyper-parameter setting as in LBCNN[19]. We use

0.5 for sparsity, and 512 LB filters in the first sparse layer.

The performance comparison is shown in the last three

columns in terms of error rate. By comparing with base-

line CNN, RI-LBCNN achieves much better performance

with LBoM module but only using 1/3, 1/6 parameters of

CNN. On the original MNIST dataset without rotation, RI-

LBCNN with 4 orientations and ORAlign operator achieves

0.76% test error(vs. 3.26% in LBCNN). Compared with the

data augmentation strategy, RI-LBCNN with 8 orientations

and ORPooling operator achieves 1.36% test error, which is

better than those of LBCNN baseline and ORNs. This can

be explained by the fact that with the additional orientation

channel, the LBoM can capture better orientation response

features from raw data, which is hard for LBCNN baseline

structure. With the sparse representation in the first con-

volution layer, the features learned in RI-LBCNN are more

representative than those in ORNs.
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Methods error(%)

#network conv kernels #params(M) original(%) rot(%) original → rot(%)

CNN-baseline 80-160-320-640 3.08 0.73 2.82 56.28

STN 80-160-320-640 3.20 0.66 2.88 55.59

TI-Pooling (80-160-320-640)×8 24.64 0.97 - -

ORN-4(ORPooling) 10-20-40-80 0.25 0.59 1.84 27.74

ORN-4(ORAlign) 10-20-40-80 0.49 0.57 1.69 27.92

ORN-8(ORPooling) 10-20-40-80 0.39 0.66 1.37 16.67

ORN-8(ORAlign) 10-20-40-80 0.96 0.59 1.42 16.21

Ours

LBCNN-baseline 80-160-320-640 1.18 0.8 3.46 58.68

RI-LBCNN-4(None) 10-20-40-80 0.49 0.94 2.72 60.6

RI-LBCNN-4(ORPooling) 10-20-40-80 0.24 0.9 2.02 32.49

RI-LBCNN-4(ORAlign) 10-20-40-80 0.49 0.76 1.84 34.54

RI-LBCNN-8(None) 10-20-40-80 0.96 1.44 3.02 58.03

RI-LBCNN-8(ORPooling) 10-20-40-80 0.39 0.97 1.36 25.77

RI-LBCNN-8(ORAlign) 10-20-40-80 0.96 0.97 1.85 30.27

Table 1. Results on the MNIST and MNIST-rot datasets.

Method Errors(%)

ScatNet-2[1] 7.48

PCANet-2[2] 7.37

CNN 4.34

ORN-8(ORAlign)[38] 2.25

LBCNN[19] 6.39

RI-LBCNN-8(ORAlign) 3.05

TIPooling(with data augmentation)[22] 1.93

OR-TIPooling(with data augmentation) 1.54

Table 2. Classification error rates on the MNIST-rot-12k datasets.

Tab. 1 also demonstrates that a larger orientation chan-

nels can result in a better performance. Moreover, in

MNIST-rot datasets, the performance on baseline CNN

and LBCNN model is greatly disturbed by rotation, while

ORN and RI-LBCNN can capture orientation features and

achieve better results. However, our RI-LBCNN performs

not very well compared with ORN, especially when deploy

models trained on original MNIST to MNIST-rot. The rea-

son causes this differences is that with the parameter saving

strategy in the first binary convolution layer, the sparse fea-

ture response in LBoM is less robust than that in ORN.

MNIST-rot-12k. Because the sample resolution in

MNIST-rot-12k is smaller than that of MNIST (32×32 vs.

28×28), we make a minor modification to the network ar-

chitecture to fit the input. At the second convolution layer,

the kernel padding is 1, compared to 0 in MNIST exper-

iment. We train this network on a single GPU for 200

epochs and compare the achieved test error with the best

result published for this dataset. In this dataset, we test

the RI-LBCNN-8 models that uses 8 orientation LBoM and

an ORAlign layer to encode the orientation information.

The state-of-the-art ScatNet[1], PCANet[2], TI-Pooling and

ORN are also involved. Tab. 2 shows that RI-LBCNN-8

can decrease the state-of-the-art error rate from 6.39% to

3.05% using only 75% network parameters of the baseline

LBCNN. Compared with TIPooling and ORN, RI-LBCNN-

8 uses less learnable parameters to achieve on-par perfor-

mance, which shows that RI-LBCNN has good generaliza-

tion for such reduced training sample cases.

4.4. Real­world image classification

For the real-world image classification task, we use the

CIFAR10 and CIFAR100 datasets[20]. CIFAR dataset con-

tains 60k samples, which is composed of a training set of

50K and a testing set of 10K. Images in CIFAR dataset are

32×32 color images for 10 or 100 classes, each class con-

tains 6000 or 600 images.

CIFAR dataset contains a wide variety of categories

with object local/global orientation variations. First, we

build LBCNN baseline on three famous DCNNs including

VGGNet[32], ResNet[16] and WideResNet[36]. We use the

LBoM to replace the standard convolution layer in DCNNs,

the bottlenecks in ResNet and wideResNet are replaced by

1×1 LBoM. The convolution layer in the main branch is

replaced by LBoM, which consists of 3×3 LBoMs, Batch-

Norm layer, ReLu activation layer, and followed by 1×1

ORConv layer to learn the linear combination of the binary

sparse representation.

Both the settings of VGGNet and WideResNet are fol-

lowed from [36], please refer to [36] for more details. From

Tab. 3, we can find that DCNNs based on LBoM outper-

form LBC based baseline on all three popular topology with

much fewer parameters. While compared with baseline ar-
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Method #depth-k #params CIFAR-10(%) CIFAR-100(%)

NIN[25] - - 8.81 35.67

VGG[32] 16 20.1M 6.32 28.69

LB-VGG 16 3.0M 20.65 59.02

RI-LB-VGG 16 0.012M 17.08 50.95

ResNet[16] 20 0.27M 8.75 -

LB-ResNet 20 4.2M 29.97 -

RI-LB-ResNet 20 1.1M 27.71 50.77

WideResNet[36]

40-4 8.7M 4.97 22.89

16-8 11.0M 4.81 22.07

28-10 36.5M 4.17 20.50

RI-LB-WideResNet

16-4 0.23M 16.23 49.39

16-8 0.47M 16.46 45.49

28-5 0.58M 21.03 50.1

28-10 1.16M 21.25 51.07

Table 3. Results on the real-world image classification benchmarks CIFAR-10 and CIFAR-100 dataset. k is the widening factor introduced

in WideResNet[36].

chitecture, our network performs comparably. Though RI-

LB-VGG uses only 0.05% learnable parameters of the base-

line, but it achieves 17.08 (vs 6.32 on baseline) and 50.95

(vs 28.69 on baseline) error rate on CIFAR-10 and CIFAR-

100 respectively. With regard to ResNet, RI-LB-ResNet

uses 5 times learnable parameter than baseline architecture,

but achieve a much worse performance (27.71 vs 8.75) both

on CIFAR-10 and CIFAR-100. The reasons for the results

are two folds: (1) Both VGGNet and WideResNet are com-

posed of wider kernels and considerable network depth. In

other words, each convolution layer has huge amount of fil-

ters (512 in VGGNet, 64 × k in WideResNet), which en-

hance the capacity of the LBoM with more 1×1 learnable

weights. (2) Because of the sparsity of the first convolu-

tion layer, the capacity of the first convolution layer is weak

compared with standard convolution layer. To achieve on-

par or better performance, we should use more learnable

1×1 filters as well as a considerable network depth.

5. Conclusion

In this paper, we introduce a LBoM, which is a combina-

tion of LBC[19] and ARFs[38]. Based on that, a novel net-

work architecture named RI-LBCNNs is proposed, which

is parameter saving, fast and orientation invariant. The pro-

posed RI-LBCNN exploits the probability to construct neu-

ral networks with less learnable parameters while endows

with orientation invariance. Meanwhile, it improves DC-

NNs on the generalization ability of rotation by introducing

an extra orientation channel with an alternative approach to

convolution kernels. LBoM can be easily implanted with

popular architectures as well as latest deep learning tech-

niques. The extensive experiments show that RI-LBCNNs

can get on-par performance with the state-of-the-art perfor-

mance over several benchmarks.

Future work Extension of this work could involve

more experiments of proposed RI-LBCNN on more

datasets(including larger datasets like ImageNet[8]). This

will allow yet more expressibility in network representa-

tions, extending the benefits we have seen afforded by rota-

tion invariance.
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