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Abstract

A local geometry-inclusive global representation of 3D

shapes based on the shortest quasi-geodesic paths between

all possible pairs of points on the shape manifold is pro-

posed. In the proposed representation, the normal cur-

vature values along the quasi-geodesic paths are shown

preserve the local shape geometry. The eigenspectrum of

the proposed global representation is exploited to charac-

terize the shape self-symmetry. The commutative property

of the shape descriptor spectrum is exploited to address

region-based correspondence determination between iso-

metric 3D shapes without requiring prior correspondence

maps and to extract stable regions between 3D shapes that

differ from one another by a high degree of isometry trans-

formation. Eigenspectrum-based characterization metrics

are proposed to quantify the performance of the proposed

3D shape descriptor for correspondence determination and

self-symmetry detection in comparison to its relevant state-

of-the-art counterparts. The proposed shape descriptor

spectrum and the optimization criterion based on spec-

tral commutativity are observed to yield competitive per-

formance compared to relevant state-of-the-art methods.

Keywords: 3D shape representation, eigenspectrum de-

composition, shape correspondence, shape symmetry

1. Introduction

In the field of shape analysis, the computation of an op-

timal global description of a 3D shape is critically depen-

dent upon the underlying application. Applications based

on shape similarity computation typically rely on a suitably

formulated global metric to characterize shape similarity.

On the other hand, local shape geometry is important for

applications where it is essential to establish point-to-point

correspondence between candidate shapes. Based on the

objective(s) of the application and nature or modality of the

underlying shape data/information (i.e., geometric, topolog-

ical, etc.), 3D shape analysis applications can be broadly

categorized as purely geometric, semantic or knowledge-

driven [1]. However, a large number of 3D shape analy-

sis applications that belong to these categories or lie within

their intersections are compelled to address a fundamental

problem, i.e., that of determining accurate correspondence

between the 3D shapes under consideration. Typical exam-

ples of such applications include rigid and non-rigid shape

registration [2, 3], shape morphing [4], self-symmetry de-

tection [5], shape deformation transfer [6], 3D surface

reconstruction [7], shape-based object recognition and re-

trieval [8], to name a few. In each of the aforementioned

applications, shape descriptors play a critical role in deter-

mining the required 3D shape correspondence. Depend-

ing on the nature of the application, 3D shape descriptors

could be purely geometric and used to capture the local

3D geometry of the shapes whereas others may incorpo-

rate prior knowledge about the global 3D shape. Ideally, a

3D shape descriptor should demonstrate robustness to topo-

logical noise while simultaneously capturing the underly-

ing invariant shape features that are useful in computing the

correspondence between 3D shapes.

In this paper, we address an important problem, i.e.,

that of determining correspondence between isometric 3D

shapes (i.e., 3D shapes that have undergone isometry defor-

mation or transformation with respect to each other) without

requiring any prior knowledge about the underlying shapes.

To this end, we propose a 3D shape descriptor based on es-

timation of the approximate geodesic distance between all

point pairs on the 3D shape manifold. The proposed rep-

resentation is used to address the computation of 3D self-

symmetry, determination of correspondence between iso-

metric 3D shapes and detection of the most stable parts

of the 3D shape under varying degrees of isometry (i.e,

non-rigid pose) transformation between shapes. Since the

geodesics over a 3D shape manifold are defined as surface

curves of constant normal curvature, they are observed to

naturally encode the local surface geometry along the curve.

On a discrete triangulated 3D surface mesh, the discrete ap-

proximation to a geodesic is characterized by an optimal

balance of the distribution of angles on either side of the

discrete geodesic computed over the local neighborhood of
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each mesh point on the geodesic as depicted in Figure 2.

This balance of the local angular distribution is observed to

encode the local geometry of the triangulated mesh along

the discrete geodesic. The aforementioned approximation

to a geodesic computed over a discrete 3D triangulated

mesh is referred to as a quasi-geodesic [9]. The proposed

global shape descriptor represents the 3D shape by comput-

ing the quasi-geodesic paths between all point pairs on the

discrete 3D triangulated surface mesh.

The all-point-pairs geodesic matrix representation of 3D

shapes displays a symmetrical pattern as shown in Figure 1.

We employ the eigenspectrum of this representation to de-

tect self-symmetry within a shape. Furthermore, we inves-

tigate the commutative property of the eigenvectors of the

shape descriptor spectrum, which are shown to be approxi-

mately orthogonal to each other, for discrete settings such as

the triangulated mesh-based representations of 3D shapes.

Approximate orthogonality refers to the fact that for two

distinct eigenvectors of the shape descriptor spectrum φi

and φj (where i 6= j), |〈φi, φj〉| < ǫ where 〈·, ·〉 denotes

the scalar inner product of the vector arguments and ǫ ≈ 0.

It should be noted that the eigenspectrum of the proposed

representation is distinct from the well known Laplace-

Beltrami eigenspectrum that has been used extensively in

several 3D shape analysis and 3D shape synthesis applica-

tions. In our case, we exploit the commutative property of

the shape descriptor eigenspectrum to establish the corre-

spondence between isometric 3D shapes. It should also be

emphasized that, unlike many related approaches [10, 11],

the proposed optimization criterion used to establish the

correspondence between isometric 3D shapes does not ex-

ploit nor require prior user-specified correspondence maps

between the 3D shapes.

We use the proposed correspondence optimization

scheme to test the hypothesis that the presence of implicit

isometry between 3D shapes can be characterized using a

global quasi-geodesic-based shape representation that en-

codes local shape geometry. Furthermore, we also contend

that the proposed representation can be exploited to address

problems such as self-symmetry detection and characteriza-

tion, correspondence determination and stable part or region

detection under isometry deformation without resorting to

prior knowledge of correspondence maps. To the best of our

knowledge, the problem of correspondence determination

in the absence of prior knowledge had not been addressed in

the research literature. In some of our experiments, we ob-

tain poor results for correspondence determination as a con-

sequence of not requiring any prior knowledge in the face of

high variability in the isometry transformations. However,

our experiments show that the proposed correspondence de-

termination technique is able to detect stable corresponding

parts or regions between shapes, i.e., corresponding parts

or regions that have undergone the least degree of isometry

deformation (Section 5).

The remainder of the paper is organized as follows. In

Section 2, we present a brief survey of the most relevant

works on 3D shape description that can be effectively used

to address 3D shape correspondence determination with an

added emphasis on related work on coupled quasi-harmonic

bases by Kovnatsky et. al. [10]. Section 3 describes the

specific contributions of our work. The mathematical model

on which the proposed technique is based is detailed in Sec-

tion 4. In Section 5, we present the experimental results for

3D self-symmetry detection and characterization, 3D cor-

respondence determination between isometric shapes, and

stable 3D part or region detection. We conclude the paper

in Section 6 with an outline of directions for future work.

2. Related Work and Background

The proposed global shape descriptor is based on the

computation of quasi-geodesics between all pairs of points

over the discrete triangulated 3D surface mesh that can en-

code the local geometry at discrete points over the surface

mesh as well. The eigenspectrum of the descriptor is ex-

ploited to address shape self-symmetry and correspondence

determination between isometric shapes. In this section, we

first present a brief survey of relevant local shape represen-

tation schemes and spectrum-based shape correspondence

models [12, 1]. We also discuss relevant work on coupled

quasi-harmonic bases [10], which exploits the commutativ-

ity of the isometric shape eigenspectrum to establish corre-

spondence between approximately isometric shapes.

2.1. Local shape descriptors

The different classes of local shape descriptors can be

categorized based on their approach towards sampling of

the underlying local surface geometry. Ring-based de-

scriptors are typically based on local sampling of a pre-

defined metric over the discrete 3D surface mesh, however,

they differ in their strategies for evaluation of the metric.

Some of the prominent descriptors belonging to this class

employ blowing bubbles [13, 14] centered around a sam-

ple surface point, whereas others use the geodesic diameter

to sample the surface metric in a local neighborhood [14].

These descriptors explicitly control the radius parameter of

the bubbles or discs which in turn determines the size of the

sample surface region.

Some ring-based descriptors [15] use the local surface

normal vectors computed at discrete points on the surface

mesh to capture the local surface features. Geodesic fan de-

scriptors [15, 16] sample a local surface metric based on

the values of the local surface curvature or the outward sur-

face normal vector within regions of varying radii defined

over the 3D surface mesh. Splash descriptors employ val-

ues of the surface normal vector as the primary metric for

local surface characterization [17] whereas point descrip-
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Figure 1. Global representation of 3D shapes using quasi-geodesics computed over a discrete triangulated 3D surface mesh. The 3D shape

models shown are (a) Victoria (b) Dog (c) Cat (d) Michael and (e) Horse. The all-point-pairs quasi-geodesic matrix representation of the

3D shapes is observed to be approximately symmetric and the resulting eigenspectrum is observed to preserve self-symmetry over the

discrete triangulated 3D mesh-based representation of the 3D shapes.

tors [18, 19, 20] encode the local geometric features on the

surface mesh defined by the relative local surface normal

at a sample point with respect to a superimposed plane or

line segment at the sample points. One of the more promi-

nent examples from this category of shape descriptors is the

point descriptor proposed by Kokkinos et al. [21] where fea-

ture points are represented by local geometric and photo-

metric fields.

Expanding descriptors fit a hypothesis-based model

to a surface region in order to characterize it. Important

shape descriptors from this category typically employ a

parametric model involving features such as geodesic dis-

tance [22, 13], volume and/or surface area [23, 24]. Some

variants of this descriptor use a mesh smoothing [25] or

mesh saliency computation [26] procedure that is employed

over a specific region on the 3D surface mesh.

Iterative operator-based descriptors capture the geo-

metric changes within a shape by manipulating the entire

mesh surface. As a manipulation strategy they employ tech-

niques such as smoothing [25] or estimation of local diffu-

sion geometry [27] over the mesh surface. The well known

Laplace-Beltrami operator [28] is typically employed to

compute the diffusion-based shape descriptors within this

class.

2.2. Global shape representation

In most situations, knowledge of local surface geometry

alone is insufficient to characterize the entire shape. Con-

sequently, a global shape representation based upon local

surface features is necessary to effectively address the cor-

respondence problem, which is fundamental to many com-

puter vision and computer graphics applications. In recent

times, surface descriptors based on the eigenspectrum of

the Laplace-Beltrami operator have gained popularity in the

context of the correspondence problem. Some well known

examples of surface descriptors from this class are based on

the formulation of a diffusion process. The diffusion pro-

cess is guided by the Laplace-Beltrami operator [28] that

samples a surface metric, such as the mesh connectivity,

along the geodesic curves on the 3D surface mesh. In re-

lated work, Bronstein et al. [27] use diffusion geometry to

measure the point-to-point length along a specific path on

the surface mesh using a random walk model.

Surface descriptors based on the heat kernel signature

(HKS) [29, 30] employ the heat diffusion model in conjunc-

tion with the eigenspectrum of the Laplace-Beltrami oper-

ator to characterize global shape. In an anisotropic varia-

tion, Boscaini et al. [31] use the eigenspectrum of a direc-

tional version of the Laplace-Beltrami operator for shape

representation. The wave kernel signature (WKS) [32] is

another popular category of shape descriptors based on the

Laplace-Beltrami eigenspectrum, that employs the princi-

ples of quantum mechanics instead of heat diffusion to char-

acterize the shape. Smeets et al. [33] address the global rep-

resentation of shape by computing the geodesic distances

between sample points on the 3D surface mesh resulting in

a shape representation scheme that is shown to achieve ro-

bustness against nearly isometric deformations. The level

set-based deformable shape model [34], a variant of the

diffusion-based shape descriptor, has been successfully em-

ployed in various applications such as surface segmentation,

surface registration and object tracking.
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2.3. Joint diagonalization of the commutative eigen­
spectrum

Point- or region-specific correspondence between iso-

metric shapes can be addressed by exploiting the commu-

tative property of the shape spectrum representation. In this

section we briefly describe the technique by laying empha-

sis on relevant work on coupled quasi-harmonic bases [10]

that employs the commutative property of the isometric (or

near isometric) shape spectrum to address the problem of

correspondence determination between isometric shapes.

2.3.1 Commutative eigenspectrum

Formally, the commutative property implies that given two

unitary (i.e., Hermitian or orthogonal) operators ΦX and

ΦY defined over an isometric pair of shapes X and Y ,

one can determine a joint diagonalizer Ψ that diagonalizes

both ΨTΦXΨ and ΨTΦY Ψ [35]. The joint diagonalizer

Ψ represents the common eigenbases between the isomet-

ric shape spectra ΦX and ΦY . Shapes represented as dis-

crete triangulated meshes need not be exactly isometric to

each other due to discretization error. Therefore, in the dis-

crete case, the corresponding shape spectra would be ap-

proximately commutative. In this paper, the term approx-

imately commutative is used in the following sense: The

spectra ΦX and ΦY of the triangulated shapes X and Y are

approximately commutative if ||ΦXΦY − ΦY ΦX ||F ≈ 0
where ||Λ||F represents the Frobenius norm of matrix Λ.

A detailed treatment of the common eigenbases for ap-

proximately commutative spectral operators can be found

in [35, 36]. Some recent important works [37, 10] employ

the commutative principle to formulate a least-squares op-

timization criterion which is then used to extract a common

spectral bases to address the problem of correspondence

determination between isometric shapes. In the follow-

ing subsection, we specifically describe the coupled quasi-

harmonic bases formulated by Kovnatsky et. al. [10].

2.3.2 Coupled quasi-harmonic bases

The coupled quasi-harmonic bases address the problem of

correspondence determination between two approximately

isometric 3D shapes X and Y by determining the common

bases that exist within their respective eigenspectra. The

proposed optimization criterion determines bases Φ̂X and

Φ̂Y that jointly diagonalize the Laplacians ∆X and ∆Y de-

fined over the approximately isometric 3D shapes X and

Y respectively. The common eigenbases Φ̂X and Φ̂Y are

extracted via minimization of the optimization criterion in

eqn. (1).

argmin
Φ̂X ,Φ̂X

{
off(Φ̂T

XWXΦ̂X) + off(Φ̂T
Y WY Φ̂Y )+

||FT Φ̂X −GT Φ̂Y ||
2

F

}

such that Φ̂T
XDXΦ̂X = I and Φ̂T

Y DY Φ̂Y = I

(1)

In eqn. (1), off(A) =
∑

1≤i 6=j≤n |a
2

ij | for an n × n ma-

trix A with elements aij . Matrices W and D are compo-

nents of the discrete cotangent Laplacians ∆X and ∆Y of

the discrete surface meshes X and Y respectively such that

∆X = W−1

X DX and ∆Y = W−1

Y DY . The cotangent dis-

cretization scheme for the mesh-based Laplacian proposed

by Meyer et. al. [38] is used to compute the values of

∆X and ∆Y . The third term in the optimization criterion

(eqn. (1)) represents the coarse correspondence between the

3D shapes X and Y provided that prior knowledge of the

point-wise mapping between the shapes X and Y is stored

in matrices F and G.

In this paper, we employ the principle of common eigen-

bases between shape spectrum corresponding to isometric

shapes to establish region wise correspondence. However,

in contrast to the coupled quasi-harmonic bases [10] de-

scribed is eqn. (1), the optimization criterion proposed in

the paper does not require any prior knowledge of the cor-

respondence between the shapes under consideration. We

further elaborate upon the optimization scheme for corre-

spondence determination in Section 4.2.

3. Contributions of the Paper

In this paper, we propose a global shape representation

Dg(X) for a 3D manifold X that incorporates local surface

geometry. The proposed representation is based on the com-

putation of the shortest quasi-geodesic distances between

all point pairs on the shape manifold. The proposed shape

representation is shown to preserve the local surface geom-

etry at each point on the 3D surface mesh. Furthermore, we

effectively exploit the eigenspectrum of the proposed shape

representation in the following applications:

(1) Self-symmetry characterization: We address the prob-

lem of self-symmetry characterization by exploiting the

eigenspectrum of the proposed global shape descriptor

Dg(X).
(2) Correspondence determination: We determine the

region-wise correspondence between isometric 3D shapes

without requiring the user to determine and specify a priori

the point-wise mapping between the two 3D shapes.

(3) Isometry deformation characterization: We exploit the

results of the region-wise correspondence to characterize

and quantify the extent of isometry deformation between

the 3D shapes.

(4) Stable part or region detection: We exploit the commu-

tative property of the eigenfunctions of Dg(X) to extract
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pose-invariant stable parts or surface regions within non-

rigid 3D shapes under high degree of isometry transforma-

tion.

4. Local Geometry Inclusive Shape Operator

In the proposed scheme, a discrete 3D shape manifold

X is characterized by an operator Dg(X), that is computed

by determining the quasi-geodesics over the discrete man-

ifold X . It is known that along a geodesic over a con-

tinuous manifold, only the normal component of the lo-

cal curvature is dominant when compared to the tangen-

tial component. A discrete 3D shape manifold X , in the

form of a triangulated 3D surface mesh, can be represented

by a C2 differentiable function f : R
3 → R as X =

{f(x1), f(x2), ..., f(xn)} where n denotes the number of

vertices xi, 1 ≤ i ≤ n of X [39, 40]. The quasi-geodesic

computed for a discrete path xi  xj minimizes the dis-

tance measure d(f(xi), f(xj)) between the vertices xi and

xj of X . The proposed shape representation Dg(X) records

all such quasi-geodesics, computed between all vertex-pairs

or point-pairs over the surface mesh X . Furthermore, the

matrix representation of Dg(X) reveals an implicit sym-

metrical form, as is evident for the example 3D shapes

shown in Figure 1.

For discrete meshes, the computation of geodesics is en-

abled by stable schemes such as the ones described in [9].

The local geometry along a quasi-geodesic over a discrete

mesh is preserved as follows: Figure 2 depicts two scenarios

where a probable quasi-geodesic (marked in red) crosses a

neighborhood of triangular meshes. In either case, one can

measure the discrete geodesic curvature at a point P as fol-

lows:

κg(P ) =
2π

θ
(
θ

2
− θr) (2)

In eqn. (2), θ denotes the sum of all angles incident at

point P where the geodesic crosses the surface mesh. In

both cases, depicted in Figures 2(a) and 2(b), the quasi-

geodesics generate angular distributions θl and θr such that

θl =
∑

i βi and θr =
∑

i αi. Since the normal curvature

is dominant along the quasi-geodesics, we can compute an

optimum balance between θl and θr that minimizes the dis-

crete geodesic curvature κg , which is the tangential curva-

ture component along the quasi-geodesic. This optimal bal-

ance between angular distributions along the quasi-geodesic

approximately encodes the local angular distribution and

hence, the local geometry at surface point P as depicted

in Figures 2(a) and 2(b).

The spectral decomposition of the symmetric shape op-

erator Dg(X) results in the eigenspectrum ΦX for shape X

as follows:

Dg(X)ΦX = ∆XΦX (3)

where ∆X = diag(γ1, γ2, ..., γn) denotes the diagonal

matrix of eigenvalues γi, 1 ≤ i ≤ n and ΦX =
{Φ1

X ,Φ2

X , ...,Φn
X} denotes the eigenvectors Φi

X , 1 ≤ i ≤ n

of shape X with n surface vertices.

Figure 2. The right and left angular distributions θl and θr gen-

erated by a geodesic at point P on the surface mesh. The angular

measures θl and θr encode the local geometry on a discrete surface

mesh.

4.1. Self­symmetry characterization

We characterize self-symmetric regions over shape X as

follows. Two regions X1, X2 ⊂ X are possible candidates

for being symmetric regions if for some upper bound ε:

∣∣∣∣∣

k0∑

k=1

Φk
X(p)−

k0∑

k=1

Φk
X(q)

∣∣∣∣∣
2

≤ ε ∀p ∈ X1, ∀q ∈ X2

(4)

where | · |2 denotes the L2 norm. Using spectral anal-

ysis one can find a tight bound on ε such that ε ≤∑
p,q∈X1, r,s∈X2

|d(p, q)− d(r, s)|
2

for a C2 distance met-

ric d [41]. Parameter ε depends upon the variance of

geodesic error computed over the entire shape manifold X .

Therefore, for shape manifold X , ε is a measure of the de-

gree of isometry deformation of X vis-a-vis the baseline

shape. We report the bounds on ε computed for different

meshes in the Experimental Results section (Section 5). For

characterizing self-symmetry we restrict ourselves to the

lower-order eigenvectors characterized by k0 ≤ 20. Fur-

thermore, the above characterization can be also used to

jointly analyze the correspondence between two candidate

isometric shapes X and Y (Section 4.2).

4.2. Correspondence determination between iso­
metric shapes

Determining the compatibility between the eigenbases of

various shapes plays a critical role in applications dealing

with analysis of multiple 3D shapes; in particular, deter-

mining the correspondence between 3D shapes. In related

work, Ovsjanikov et al. [11] represent the correspondence

between two shapes by a parametric map between their

functional spaces. However, functional map-based meth-

ods typically rely on user-specified prior knowledge of the
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mapping between the shapes for optimization of the cor-

respondence criterion [42, 11]. In contrast, the proposed

approach does not assume any user-specified prior mapping

between the shapes under consideration.

For correspondence determination between two isomet-

ric shapes X and Y we exploit the fact that the eigendecom-

position of symmetric shape operators Dg(X) and Dg(Y )
leads to approximately commutative eigenspectra ΦX and

ΦY . The characterization “approximately commutative” is

on account of the discretization or triangulation of the sur-

face meshes describing the shapes and follows the formal

definition given in Section 2.3. We couple ΦX and ΦY by

the commutative terms ΦT
X∆Y ΦY and ΦT

Y ∆XΦX to solve

the following optimization problem:

Φ̄X , Φ̄Y = argmin
φx,φy

{
|φT

x∆Y φy|F + |φT
y ∆Xφx|F

}
(5)

where φx ⊂ ΦX , φy ⊂ ΦY and | · |F denotes the Frobenius

norm. It should be emphasized that eqn. (5) does not require

that a priori correspondence maps be provided. The opti-

mized maps Φ̄X and Φ̄Y over shapes X and Y encode the

correspondence between them. From the optimized maps

Φ̄X and Φ̄Y , the relative correspondence error between

shapes X and Y is given by CX,Y =
∑k0

k=1
|Φ̄k

X − Φ̄k
Y |2.

To compute CX,Y we consider the lower-order eigenvectors

by setting k0 ≤ 20.

4.3. Stable 3D surface region or part detection

Relaxing the criterion for correspondence determination

by not requiring a user-specified prior mapping between the

shapes could result in poor correspondence between shapes

that differ significantly from each other via isometry trans-

formation. However, the optimization criterion for corre-

spondence determination can also be used to identify com-

mon stable surface regions or parts within the shapes. These

stable surface regions or parts are deemed to be the ones that

have undergone the least amount of isometry deformation as

a result of pose variation. We present the following criterion

to identify the stable regions SX,Y between shapes X and

Y as follows:

SX,Y =
⋃

p

|Φ̄X(p)− Φ̄Y (p)|2 ≤ ε (6)

where region p represents a corresponding region in both

shapes X and Y identified by the correspondence opti-

mization criterion in eqn. (5). The parameter ε is com-

puted as mentioned in Section 4.1. The stable part detec-

tion is quantified using the following criterion: S̄X,Y =∑
p∈SX,Y

|Φ̄X(p)− Φ̄Y (p)|2.

5. Experimental Results

For our experiments we have chosen the TOSCA dataset

consisting of ten non-rigid shape categories, i.e., Cat, Dog,

Wolf, two Human Males, Victoria, Gorilla, Horse, Centaur

and Seahorse [43]. Within each shape category, the indi-

vidual shapes represent different transformations such as

isometry, isometry coupled with topology change, differ-

ent mesh triangulations of the same shape etc. In this work,

we consider shapes that are isometric to one another, i.e.,

shapes that differ via an isometry transformation. Exam-

ples of some shapes that differ from one another via isome-

try transformations are shown in Figure 3. Experimental re-

sults are presented for six different shape categories for each

of the applications formally described in Sections 4.1, 4.2

and 4.3 using visual representations of the results followed

by the corresponding numerical evaluations. We have ex-

perimented with coarse meshes that are reduced by more

than 87% of their original size or resolution. The results of

the proposed shape representation are compared with those

from relevant state-of-the-art shape representation schemes.

The comparable performance achieved by the proposed lo-

cal geometry-inclusive global shape representation scheme

without requiring any prior knowledge of point-to-point or

region-wise correspondences validates the central hypoth-

esis underlying the proposed scheme, namely that the im-

plicit isometry within candidate shapes can be exploited

for correspondence determination without requiring that the

knowledge of coarse correspondence be provided a priori.

Figure 3. Examples of isometry transformation for the shape cate-

gories Human Male and Centaur in the TOSCA dataset.

5.1. Results of 3D self symmetry detection

Figure 4 depicts the self-symmetry maps obtained for the

various shapes using eqn. (4). The maps in Figure 4 corre-

spond to the second eigenvector Φ2

X obtained from the spec-

tral decomposition of the global operator Dg(X) for each

shape using eqn. (3). Table 1 presents the self-symmetry

characterization measure, denoted by the upper bound ε

in eqn. (4), for each shape category. This characterization

measure represents the average degree of isometry transfor-

mation within a shape category vis-a-vis the baseline shape.

Note that the shape category Michael represents one of the

two Human Male shape categories in the TOSCA dataset.
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Figure 4. Self-symmetry detection for five different TOSCA shape categories using the spectrum of the global representation Dg(X) for

the shape X . Each map corresponds to the second eigenvector Φ2

X of the shape operator spectrum.

Table 1. Self-symmetry characterization measure for different

shape categories in the TOSCA dataset. The average degree of

isometry transformation within the category Horse is observed to

be at least 30% higher than the other categories.

Category ε Category ε

Victoria 0.528 Dog 0.462

Cat 0.282 Michael 0.566

Horse 0.815 Centaur 0.203

5.2. Results of 3D correspondence between isomet­
ric shapes

Since the lower-order eigenvectors represent global

shape geometry more accurately, we consider the first 20

eigenvectors to compute the global region-based correspon-

dence between the isometric shapes. Figure 5 shows the

results of correspondence determination between the iso-

metric Human Male shapes obtained via the optimization

criterion described in eqn. (5). The correspondence maps

between the shapes are shown to be consistent across the

different order eigenvectors.

Table 2. Average relative error CX,Y in 3D correspondence deter-

mination between isometric shapes.

Category Average CX,Y Category Average CX,Y

Victoria 0.069 Dog 0.0624

Cat 0.06 Michael 0.057

Horse 0.0559 Centaur 0.052

The relative correspondence error for these maps can be

characterized by the measure CX,Y defined in Section 4.2.

Table 2 lists this measure for isometric shapes from differ-

ent TOSCA shape categories. Lower CX,Y values denote a

higher degree of correspondence accuracy achieved via the

optimization described in eqn. (5). We emphasize here, that

the correspondence accuracy is achieved without requiring

any user-specified prior mapping between the shapes.

5.3. Results of 3D stable region or part detection

Shapes from different categories display varying degrees

of isometry transformations between them. As a result, the

accuracy of global correspondence deteriorates for shapes

that exhibit a very high degree of isometry deformation.

This is expected since the proposed scheme does not as-

sume any prior mapping information that could potentially

improve the correspondence. However, using the criterion

outlined in eqn. (6) we can identify the stable correspond-

ing surface regions or parts within the shapes that are least

transformed by isometry. The detected stable regions or

parts for the Centaur shape category are depicted in Fig-

ure 6. For various poses of the Centaur shape model, the

more dynamic regions such as the tail and the lower legs

exhibit low correspondence accuracy and hence are rejected

by the criterion described in eqn. (6). However, regions that

are least affected by the isometry deformation are detected

as stable regions. These stable regions exhibit high corre-

spondence accuracy and are depicted in Figure 6. We quan-

tify the correspondence accuracy for the detected stable re-

gions using the measure S̄X,Y described in Section 4.3.

However, in our experiments, we observed a high positive

correlation between the measures CX,Y and S̄X,Y . Hence

we contend that the results in Table 2 hold for measure

S̄X,Y as well.

Table 3 compares the performance of the proposed rep-

resentation scheme with the performance of other state-

of-the-art representation schemes [44, 45]. The methods

in [44, 45] were further combined with the functional map

technique [11] in order to improve their correspondence ac-

curacy via functional map-based local refinement. The re-

sults of performance comparison for these combined ap-

proaches with the proposed representation are also pre-

sented in Table 3. The numerical values presented in Ta-

ble 3 denote the highest percentage correspondence accu-

racy achieved by the various representation schemes along

with the corresponding average geodesic error. The perfor-

mance of the proposed representation scheme is observed to

compare very well with the performance of the other state-

of-the-art representation schemes. These results underscore
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Figure 5. Pairwise consistency between corresponding eigenmaps of the Human Male shapes. For correspondence estimation, the optimiza-

tion criterion described in eqn. (5) is used. Lower-order eigenvectors are considered for correspondence estimation since they effectively

capture the global shape geometry.

Figure 6. Stable region detection using the criterion outlined in

eqn. (6). Stable surface regions are detected between isometric

shapes where the correspondence accuracy is observed to deterio-

rate due to a high degree of isometry transformation between the

shapes. Unstable regions are ones that exhibit a higher degree of

isometry transformation between them, for example, parts of the

lower legs, the tail, etc.

the central hypothesis underlying the proposed shape rep-

resentation, namely that competitive performance in self-

symmetry detection and characterization, and correspon-

dence map determination between isometric 3D shapes can

be achieved by the proposed representation scheme without

requiring prior knowledge of coarse correspondence map-

ping between the shapes unlike other state-of-the-art corre-

spondence determination techniques [44, 45].

6. Conclusions and Future Work

In this paper we proposed a global shape representa-

tion scheme using quasi-geodesics computed over the en-

tire discrete shape manifold. The eigenspectral decompo-

Table 3. Comparison between the proposed scheme and other

state-of-the-art schemes described in Kim et al. [44], Sahilli-

oglu and Yemez [45] and their combinations with Ovsjanikov et

al. [11].

Methods Geodesic Error % Correspondence

[44] 0.11 ∼ 95

[11] and [44] 0.06 ∼ 95

[45] 0.25 ∼ 90

[11] and [45] 0.2 ∼ 90

Proposed Scheme 0.15 ∼ 94

sition of this representation is used effectively to identify

self-symmetric regions on the discrete shape manifold. By

exploiting the commutative property of the eigenbases of

the proposed representation, we successfully demonstrated

its use in correspondence determination between isometric

shapes. We also proposed characterization metrics for self-

symmetry identification and correspondence determination.

Furthermore, stable surface regions within 3D shapes were

identified for shape pairs that differed from each other by a

high degree of isometry deformation. The results of corre-

spondence determination obtained via the proposed repre-

sentation scheme were compared with those from relevant

state-of-the-art representation schemes.

A key contribution of this work is the fact that no prior

knowledge, in the form of user-specified mappings, was

used for correspondence determination and self-symmetry

detection. As an extension of the current scheme, we intend

to explore and combine functional maps [11] with the pro-

posed representation that may prove critical in exploring the

group structure within isometric shapes. Furthermore, we

intend to use this combined scheme to address correspon-

dence determination between near-isometric shapes [10].
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