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Abstract

We present an approach for real-time, robust and accu-

rate hand pose estimation from moving egocentric RGB-D

cameras in cluttered real environments. Existing meth-

ods typically fail for hand-object interactions in cluttered

scenes imaged from egocentric viewpoints—common for

virtual or augmented reality applications. Our approach

uses two subsequently applied Convolutional Neural Net-

works (CNNs) to localize the hand and regress 3D joint

locations. Hand localization is achieved by using a CNN

to estimate the 2D position of the hand center in the input,

even in the presence of clutter and occlusions. The localized

hand position, together with the corresponding input depth

value, is used to generate a normalized cropped image that

is fed into a second CNN to regress relative 3D hand joint

locations in real time. For added accuracy, robustness and

temporal stability, we refine the pose estimates using a kine-

matic pose tracking energy. To train the CNNs, we intro-

duce a new photorealistic dataset that uses a merged reality

approach to capture and synthesize large amounts of anno-

tated data of natural hand interaction in cluttered scenes.

Through quantitative and qualitative evaluation, we show

that our method is robust to self-occlusion and occlusions

by objects, particularly in moving egocentric perspectives.

1. Introduction

Estimating the full articulated 3D pose of hands is be-

coming increasingly important due to the central role that

hands play in everyday human activities. Applications

in activity recognition [21], motion control [42], human–

computer interaction [25], and virtual/augmented reality

(VR/AR) require real-time and accurate hand pose estima-

tion under challenging conditions. Spurred by recent de-

velopments in commodity depth sensing, several methods

that use a single RGB-D camera have been proposed [33,

26, 30, 17, 4, 37]. In particular, methods that use Con-

Figure 1: We present an approach to track the full 3D pose

of the hand from egocentric viewpoints (left), a challenging

problem due to additional self-occlusions, occlusions from

objects and background clutter. Our method can reliably

track the hand in 3D even under such conditions using only

RGB-D input. Here we show tracking results overlaid with

color and depth map (center), and visualized from virtual

viewpoints (right).

volutional Neural Networks (CNNs), possibly in combina-

tion with model-based hand tracking, have been shown to

work well for static, third-person viewpoints in uncluttered

scenes [34, 24, 13], i.e., mostly for free hand motion in mid-

air, a setting that is uncommon in natural hand interaction.

However, real-time hand pose estimation from moving,

first-person camera viewpoints in cluttered real-world

scenes where the hand is often occluded as it naturally in-

teracts with objects, remains an unsolved problem. We

define first-person or egocentric viewpoints as those that

would typically be imaged by cameras mounted on the

head (for VR/AR applications), shoulder, or chest (see Fig-

ure 1). Occlusions, cluttered backgrounds, manipulated ob-

jects, and field-of-view limitations make this scenario par-

ticularly challenging. CNNs are a promising method to

tackle this problem but typically require large amounts of

annotated data which is hard to obtain since markerless

hand tracking (even with multiple views), and manual an-

notation on a large scale is infeasible in egocentric set-

tings due to (self-)occlusions, cost, and time. Even semi-
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automatic annotation approaches [12] would fail if large

parts of the hand are occluded. Photorealistic synthetic data,

on the other hand, is inexpensive, easier to obtain, removes

the need for manual annotation, and can produce accurate

ground truth even under occlusion.

In this paper, we present, to our knowledge, the first

method that supports real-time egocentric hand pose es-

timation in real scenes with cluttered backgrounds, occlu-

sions, and complex hand-object interactions using a single

commodity RGB-D camera. We divide the task of per-

frame hand pose estimation into: (1) hand localization, and

(2) 3D joint location regression. Hand localization, an im-

portant task in the presence of scene clutter, is achieved by

a CNN that estimates the 2D image location of the center

of the hand. Further processing results in an image-level

bounding box around the hand and the 3D location of the

hand center (or of the occluding object directly in front of

the center). This output is fed into a second CNN that re-

gresses the relative 3D locations of the 21 hand joints. Both

CNNs are trained with large amounts of fully annotated

data which we obtain by combining hand-object interac-

tions with real cluttered backgrounds using a new merged

reality approach. This increases the realism of the training

data since users can perform motions to mimic manipulat-

ing a virtual object using live feedback of their hand pose.

These motions are rendered from novel egocentric views us-

ing a framework that photorealistically models RGB-D data

of hands in natural interaction with objects and clutter.

The 3D joint location predictions obtained from the

CNN are accurate but suffer from kinematic inconsistencies

and temporal jitter expected in single frame pose estima-

tion methods. To overcome this, we refine the estimated 3D

joint locations using a fast inverse kinematics pose track-

ing energy that uses 3D and 2D joint location constraints

to estimate the joint angles of a temporally smooth skele-

ton. Together, this results in the first real-time approach for

smooth and accurate hand tracking even in cluttered scenes

and from moving egocentric viewpoints. We show the ac-

curacy, robustness, and generality of our approach on a new

benchmark dataset with moving egocentric cameras in real

cluttered environments. In sum, our contributions are:

• A novel method that localizes the hand and estimates,

in real time, the 3D joint locations from egocentric

viewpoints, in clutter, and under strong occlusions us-

ing two CNNs. A kinematic pose tracking energy fur-

ther refines the pose by estimating joint angles of a

temporally smooth tracking.

• A photorealistic data generation framework for synthe-

sizing large amounts of annotated RGB-D training data

of hands in natural interaction with objects and clutter.

• Extensive evaluation on our new annotated real bench-

mark dataset EgoDexter featuring egocentric cluttered

scenes and interaction with objects.

2. Related work

Hand pose estimation has a rich history due to its ap-

plications in human–computer interaction, motion control

and activity recognition. However, most previous work es-

timates hand pose in mid-air and in uncluttered scenes with

third-person viewpoints, making occlusions less of an is-

sue. We first review the prior art for this simpler setting

(free hand tracking) followed by a discussion of work in the

harder hand-object and egocentric settings.

Free Hand Tracking: Many approaches for free hand

tracking resort to multiple RGB cameras to overcome self-

occlusions and achieve high accuracy [28, 1, 39]. However,

single depth or RGB-D cameras are preferred since multi-

ple cameras are cumbersome to setup and use. Methods that

use generative pose tracking have been successful for free

hand tracking with only an RGB-D stream [14, 17, 30, 32].

However, these approaches fail under typical fast motions,

and occlusions due to objects and clutter. To overcome

this, most recent approaches rely solely on learning-based

methods or combine them with generative pose tracking.

Random forests are a popular choice [9, 31, 29, 40, 38]

due to their capacity but still result in kinematically in-

consistent and jittery pose estimates. Many methods over-

come this limitation through combination with a genera-

tive pose tracking strategy [26, 17, 33]. All of the above

approaches fail to work under occlusions arising from ob-

jects and scene clutter. Recent deep learning methods

promise large learning capacities for hand pose estima-

tion [34, 4, 24, 43, 41, 13]. However, generating enough ex-

amples for supervised training remains a challenge. Com-

mercial systems that claim to work for egocentric view-

points [11] fail under large occlusions, see Section 6.

Hand Tracking under Challenging Conditions: Hand

pose estimation under challenging scene, background,

and camera conditions different from third-person mid-air

tracking remains an unsolved problem. Some methods can

track hands even when they interact with objects [5, 22], but

they are limited to slow motions and limited articulation.

A method for real-time joint tracking of hands and objects

from third-person viewpoints was recently proposed [27],

but is limited to known objects and small occlusions. Meth-

ods for capturing complex hand-object interactions and ob-

ject scanning were proposed [15, 1, 10, 36, 35, 16]. How-

ever, these are offline methods and their performance in

egocentric cluttered scenarios is unknown.

Using egocentric cameras for human performance cap-

ture has gained attention due to ready availability of con-

sumer wearable cameras [18]. Sridhar et al. [26] showed

a working example of real-time egocentric tracking in un-

cluttered scenes. Rogez et al. [19, 20] presented one of the

first methods to achieve this in cluttered scenes with natu-

ral hand-object interactions pioneering the use of synthetic

images for training a machine learning approach for diffi-
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Figure 2: Overview: Starting from an RGB-D frame, we initially regress the 2D hand position heatmap using our CNN

HALNet and compute a cropped frame. A second CNN, JORNet, is used to predict root-relative 3D joint positions as well as

2D joint heatmaps. Both CNNs are trainned with our new SynthHands dataset. Finally, we use a pose tracking step to obtain

the joint angles of a kinematic skeleton.

cult egocentric views. However, this work was not meant

for real-time tracking. We introduce an approach to lever-

age large amounts of synthetic training data to achieve real-

time, temporally consistent hand tracking, even under chal-

lenging occlusion conditions.

3. Overview

Our goal is to estimate the full 3D articulated pose of

the hand imaged with a single commodity RGB-D sensor.

We use the RGB and depth channels from the Intel Re-

alSense SR300 [7], both with a resolution of 640×480 pix-

els and captured at 30 Hz. We formulate hand pose estima-

tion as an energy minimization problem that incorporates

per-frame pose estimates into a temporal tracking frame-

work. The goal is to find the joint angles of a kinematic

hand skeleton (Section 3.1) that best represent the input ob-

servation. Similar strategies have been shown to be suc-

cessful in state-of-the-art methods [33, 26, 27, 17] that use

per-frame pose estimation to initialize a tracker that refines

and regularizes the joint angles of a kinematic skeleton for

free hand tracking. However, the per-frame pose estimation

components of these methods struggle under strong occlu-

sions, hand-object interactions, scene clutter, and moving

egocentric cameras. We overcome this limitation by com-

bining a CNN-based 3D pose regression framework, that is

tailored for this challenging setting, with a kinematic skele-

ton tracking strategy for temporally stable results.

We divide the task of hand pose estimation into several

subtasks (Figure 2). First, hand localization (Section 4.1) is

achieved by a CNN that estimates an image-level heatmap

(that encodes position probabilities) of the root — a point

which is either the hand center (knuckle of the middle fin-

ger, shown with a star shape in Figure 3a) or a point on

an object that occludes the hand center. The 2D and 3D

root positions are used to extract a normalized cropped im-

age of the hand. Second, 3D joint regression (Section 4.2)

achieved with a CNN that regresses root-relative 3D joint

locations from the cropped hand image. Both CNNs are

trained with large amounts of annotated data which were

generated with a novel framework to automatically generate

3D hand joint motion with natural hand interaction (Section

4.4). Finally, the regressed 3D joint positions are used in

a kinematic pose tracking framework (Section 5) to obtain

temporally smooth tracking of the hand motion.

3.1. Hand Model

To ensure a consistent representation for both joint loca-

tions (predicted by the CNNs) and joint angles (optimized

during tracking), we use a kinematic skeleton. As shown

in Figure 3, we model the hand using a hierarchy of bones

(gray lines) and joints (circles). The 3D joint locations are

used as constraints in a kinematic pose tracking step that es-

timates temporally smooth joint angles of a kinematic skele-

ton. In our implementation, we use a kinematic skeleton

with 26 degrees of freedom (DOF), which includes 6 for

global translation and rotation, and 20 joint angles, stored

in a vector Θ, as shown in Figure 3b. To fit users with dif-

ferent hand shapes and sizes, we perform a quick calibration

step to fix the length of the bones for different users.

4. Single Frame 3D Pose Regression

The goal of 3D pose regression is to estimate the 3D joint

locations of the hand at each frame of the RGB-D input. To

achieve this, we first create a colored depth map D, from the

raw input produced by commodity RGB-D cameras (e.g.,

Intel RealSense SR300). We define D as

D = colormap(R,G,B,Z), (1)

where colormap(·) is a function, that depends on the cam-

era calibration parameters, to map each pixel in the color
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(a) Global 3D positions (b) Kinematic skeleton

Figure 3: We use two different, but consistent, represen-

tations to model the hands. Our 3D joint regression step

outputs J = 21 global 3D joint locations, shown in (a) in

green, which are later used to estimate the joint angles of a

kinematic skeleton hand model, shown in (b). The orange

star depicts the joint used as a hand root.

image plane onto the depth map Z. Computing D allows

us to ignore camera-specific variations in extrinsic param-

eters. We also downsample D to a resolution of 320×240

to aid real-time performance. We next describe our pose

regression approach that is robust even in challenging clut-

tered scenes with notable (self-)occlusions of the hand. As

we show in the evaluation (Section 6), using a two step

approach to first localize the hand in full-frame input and

subsequently estimate 3D pose outperforms using a single

CNN for both tasks.

4.1. Hand Localization

The goal of the first part of pose regression is to localize

the hand in challenging cluttered input frames resulting in a

bounding box around the hand and 3D root location. Given

a colored depth map D, we compute

D̃ = imcrop(D, HR), (2)

where HR is a heatmap encoding the position probability of

the 2D hand root and imcrop(·) is a function that crops

the hand area of the input frame. In particular, we esti-

mate HR using a CNN which we call HALNet (HAnd Lo-

calization Net). The imcrop(·) function picks the image-

level heatmap maximum location φ(HR) = (u, v) and uses

the associated depth z in D to compute a depth-dependent

crop, the side length of which is inversely proportional to

the depth and contains the hand. Additionally, imcrop(·)
also normalizes the depth component of the cropped image

by subtracting z from all pixels.

HALNet uses an architecture derived from ResNet50 [6]

which has been shown to have a good balance between ac-

curacy and computational cost [2]. We reduced the num-

ber of residual blocks to 10 to achieve real-time framerate

while maintaining high accuracy. We train this network us-

ing SynthHands, a new photorealistic dataset with ample

variance across many dimensions such as hand pose, skin

color, objects, hand-object interaction and shading details.

See Sections 4.3 and 4.4, and the supplementary document

for training and architecture details.

Post Processing: To make the root maximum location ro-

bust over time, we add an additional step to prevent outliers

from affecting 3D joint location estimates. We maintain a

history of maxima locations and label them as confident or

uncertain based on the following criterion. If the likelihood

value of the heatmap maximum at a frame t is < 0.1 and

it occurs at > 30 pixels from the previous maximum then it

is marked as uncertain. If a maximum location is uncertain,

we update it as

φt = φt−1 + δk
φc−1 − φc−2

||φc−1 − φc−2||
, (3)

where φt = φ(Ht
R) is the updated 2D maximum location at

the frame t, φc−1 is the last confident maximum location,

k is the number of frames elapsed since the last confident

maximum, and δ is a decay factor to progressively down-

weight uncertain maxima. We empirically set δ = 0.98 and

use this value in all our results.

4.2. 3D Joint Regression

Starting from a cropped and normalized input D̃ that

contains a hand, potentially partially occluded, our goal is

to regress the global 3D hand joint position vector pG ∈
R

3×J . We use a CNN, referred to as JORNet (JOint Re-

gression Net), to predict per-joint 3D root-relative positions

pL ∈ R
3×J in D̃. Additionally, JORNet also regresses

per-joint 2D position likelihood heatmaps H = {Hj}
J
j=1,

which will be used to regularize the predicted 3D joint po-

sitions in a later step. We obtain global 3D joint positions

pG

j = pL

j +r, where r is the global position of the hand cen-

ter (or a point on an occluder) obtained by backprojecting

the 2.5D hand root position (u, v, z) to 3D. JORNet uses the

same architecture as HALNet and is trained with the same

data. See Sections 4.3 and 4.4 for training details, and the

supplementary document for architecture details.

4.3. SynthHands Dataset

Supervised learning methods, including CNNs, require

large amounts of training data in order to learn all the varia-

tion exhibited in real hand motion. Fully annotated real data

would be ideal for this purpose but it is time consuming to

manually annotate data and annotation quality may not al-

ways be good [12]. To circumvent this problem, existing

methods [19, 20] have used synthetic data. Despite the ad-

vances made, existing datasets are constrained in a number

of ways: they typically show unnatural mid-air motions, no
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Figure 4: Our SynthHands dataset is created by posing a

photorealistic hand model with real hand motion data. Vir-

tual objects are incorporated into the 3D scenario. To allow

data augmentation, we output object foreground and scene

background appearance as a constant plain color (top row),

which are composed with shading details and randomized

textures in a postprocessing step (bottom row).

Figure 5: Our SynthHands dataset has accurate annotated

data of a hand interacting with objects. We use a merged

reality framework to track a real hand, where all joint po-

sitions are annotated, interacting with a virtual object (top).

Synthetic images are rendered with chroma key-ready col-

ors, enabling data augmentation by composing the rendered

hand with varying object texture and real cluttered back-

grounds (bottom).

complex hand-object interactions, and do not model realis-

tic background clutter and noise.

We propose a new dataset, SynthHands, that combines

real captured hand motion (retargeted to a virtual hand

model) with natural backgrounds and virtual objects to sam-

ple all important dimensions of variability at previously un-

seen granularity. It captures the variations in natural hand

motion such as pose, skin color, shape, texture, background

clutter, camera viewpoint, and hand-object interactions. We

now highlight some of the unique features of this dataset

that make it ideal for supervised training of learning-based

methods.

Natural Hand Motions: Instead of using static hand

poses [20], we captured real, non-occluded, hand motion

in mid-air from a third-person viewpoint, with a state-of-

the-art real-time markerless tracker [26]. These motions

were subsequently re-targeted onto a photorealistic syn-

thetic hand rigged by an artist. Because we pose the syn-

thetic hand using the captured hand motion, it mimics real

hand motions and increases dataset realism.

Hand Shape and Color: Hand shape and skin color ex-

hibit large variation across users. To simulate real world

diversity, SynthHands contains skin textures randomly sam-

pled from 12 different skin tones. We also sample variation

in other anatomical features (e.g., male hands are typically

bigger and may contain more hair) in the data. Finally, we

model hand shape variation by randomly applying a scaling

parameter β ∈ [0.8, 1.2] along each dimension of a default

hand mesh.

Egocentric Viewpoint: Synthetic data has the unique ad-

vantage that we can render from arbitrary camera view-

points. In order to support difficult egocentric views, we

setup 5 virtual cameras that mimic different egocentric per-

spectives. The virtual cameras generate RGB-D images

from this perspective while also simulating sensor noise and

camera calibration parameters.

Hand-Object Interactions: We realistically simulate

hand-object interactions by using a merged reality approach

to track real hand motion interacting with virtual objects.

We achieve this by leveraging the real-time capability of ex-

isting hand tracking solutions [26] to show the user’s hand

interacting with a virtual on-screen object. Users perform

motions such as object grasping and manipulation, thus

simulating real hand-object interactions (see Figure 5).

Object Shape and Appearance: SynthHands contains in-

teractions with a total of 7 different virtual objects in vari-

ous locations, rotations and scale configurations. To enable

augmentation of the object appearance to increase dataset

variance, we render the object albedo (i.e., pink in Figure

4) and shading layers separately. We use chroma keying

to replace the pink object albedo with a texture randomly

sampled from a set of 145 textures and combining it with

the shading image. Figure 4 shows some examples of the

data before and after augmentation. Importantly, note that

SynthHands does not contain 3D scans of the real test ob-

jects nor 3D models of similar objects used for evaluation in

Section 6. This demonstrates that our approach generalizes

to unseen objects.

Real Backgrounds: Finally, we simulate cluttered scenes

and backgrounds by compositing the synthesized hand-

object images with real RGB-D captures of real back-

grounds, including everyday desktop scenarios, offices, cor-

ridors and kitchens. We use chroma keying to replace the
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default background (green in Figure 4) with the captured

backgrounds.

Our data generation framework is built using the Unity

Game Engine and uses a rigged hand model distributed by

Leap Motion [11]. In total, SynthHands contains roughly

220,000 RGB-D images exhibiting large variation seen in

natural hands and interactions. Please see the supplemen-

tary document for more information and example images.

4.4. Training

Both HALNet and JORNet are trained on the SynthHands

dataset using the Caffe framework [8], and the AdaDelta

solver with a momentum of 0.9 and weight decay factor

of 0.0005. The learning rate is tapered down from 0.05

to 0.000025 during the course of the training. For train-

ing JORNet, we used the ground truth (u, v) and z of the

hand root to create the normalized crop input. To improve

robustness, we also add uniform noise (∈ [−25, 25] mm)

to the backprojected 3D root position in the SynthHands

dataset. We trained HALNet for 45,000 iterations and JOR-

Net for 60,000 iterations. The final networks were chosen

as the ones with the lowest loss values. The layers in our

networks that are similar to ResNet50 are initialized with

weights of the original ResNet50 architecture trained on Im-

ageNet [23]. For the other layers, we initialize the weights

randomly. For details of the loss weights used and the taper

scheme, please see the supplementary document.

5. Hand Pose Optimization

The estimated per-frame global 3D joint positions pG

are not guaranteed to be temporally smooth nor do they

have consistent inter-joint distances (i.e., bone lengths) over

time. We mitigate this by fitting a kinematic skeleton pa-

rameterized by joint angles Θ, shown in Figure 3b, to the

regressed 3D joint positions. Additionally, we refine the fit-

ting by leveraging the 2D heatmap output from JORNet as

an additional contraint and regularize it using joint limit and

smoothness constraints. In particular, we seek to minimize

E(Θ) = Edata(Θ,pG,H) + Ereg(Θ), (4)

where Edata is the data term that incorporates both the 3D

positions and 2D heatmaps

Edata(Θ,pG,H) = wp3Epos3D(Θ,pG) + wp2Epos2D(Θ,H).
(5)

The first term Epos3D minimizes the 3D distance between

each predicted joint location pG

j and its corresponding po-

sition M(Θ)j in the kinematic skeleton set to pose Θ

Epos3D(Θ) =

J∑

j=1

||M(Θ)j − pG

j ||22. (6)

The second data term, Epos2D, minimizes the 2D distance

between each joint heatmap maximum φ(Hj) and the pro-

jected 2D location of the corresponding joint in the kine-

matic skeleton

Epos2D(Θ) =

J∑

j=1

||π(M(Θ)j)− φ(Hj))||
2
2, (7)

where π projects the joint onto the image plane. We empir-

ically tuned the weights for the different terms as: wp3 =
0.01 and wp2 = 5× 10−7.

We regularize the data terms by enforcing joint limits and

temporal smoothness constraints

Ereg(Θ) = wlElim(Θ) + wtEtemp(Θ) (8)

where

Elim(Θ) =
∑

θi∈Θ





0 , if θli ≤ θi ≤ θui

(θi − θli)
2 , if θi < θli

(θui − θi)
2 , if θi > θui

(9)

is a soft prior to enforce biomechanical pose plausibility,

with Θl,Θu being the lower and upper joint angle limits,

respectively, and

Etemp(Θ) = ||∇Θ−∇Θ(t−1)||22 (10)

enforces constant velocity to prevent dramatic pose

changes. We empirically chose weights for the regularizers

as: wl = 0.03 and wt = 10−3. We optimize our objective

using 20 iterations of conditioned gradient descent.

6. Results and Evaluation

We conducted several experiments to evaluate our

method and different components of it. To facilitate evalua-

tion, we captured a new benchmark dataset EgoDexter con-

sisting of 3190 frames of natural hand interactions with ob-

jects in real cluttered scenes, moving egocentric viewpoints,

complex hand-object interactions, and natural lighting. Of

these, we manually annotated 1485 frames using an anno-

tation tool to mark 2D and 3D fingertip positions, a com-

mon approach used in free hand tracking [1, 28]. In to-

tal we gathered 4 sequences (Rotunda, Desk, Kitchen,

Fruits) featuring 4 different users (2 female), skin color

variation, background variation, different objects, and cam-

era motion. Note that the objects in EgoDexter are distinct

from the objects in the SynthHands training data to show the

ability of our approach to generalize. In addition, to enable

evaluation of the different components of our method, we

also held out a test set consisting of 5120 fully annotated

frames from the SynthHands dataset.

Component Evaluation: We first analyze the performance

of HALNet and JORNet on the synthetic test set. The main
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Figure 6: Comparison of 2D (left) and 3D (right) error of

the joint position estimates of JORNet. JORNet was ini-

tialized with either the ground truth (GT, blue) or with the

proposed hand localization step (HL, orange). We observe

that HL initialization does not substantially reduce the per-

formance of JORNet. As expected, fingertips-only errors

(dashed lines) are higher than the errors for all joints.

goal of HALNet is to accurately localize the 2D position of

the root (which either lies on the hand or on an occluder

in front) accurately. We thus use 2D Euclidean pixel er-

ror between the ground truth root position and the predicted

position as the evaluation metric. On average, HALNet pro-

duces an error of 2.2 px with a standard deviation of 1.5 px

on the test set. This low average error ensures that we al-

ways obtain reliable crops for JORNet.

To evaluate JORNet, we use the 3D Euclidean distance

between ground truth joint positions (of all hand joints) and

the predicted position as the error metric. For comparison,

we also report the errors for only the 3D fingertip positions

which are a stricter measure of performance. Since the out-

put of JORNet is dependent on the crop estimated in the

hand localization step, we evaluate two conditions: (1) us-

ing ground truth crops, (2) using crops from the hand lo-

calization step. This helps evaluate how hand localization

affects the final joint positions. Figure 6 shows the percent-

age of the test set that produces a certain 2D or 3D error

for all joints and fingertips only. For 3D error, we see that

using ground truth (GT) crops is better than using the crops

from the hand localization (HL). The difference is not sub-

stantial which shows that the hand localization step does not

lead to catastrophic failures of JORNet. For 2D error, how-

ever, we observe that JORNet initialized with HL results

in marginally better accuracy. We hypothesize that this is

because JORNet is trained on noisy root positions (Section

4.4) while the ground truth lacks any such noise.

CNN Structure Evaluation: We now show that, on our

real annotated benchmark EgoDexter, our approach that

uses two subsequently applied CNNs is better than a single

CNN to directly regress joint positions in cluttered scenes.

We trained a CNN with the same architecture as JORNet

but with the task of directly regressing 3D joint positions

from full frame RGB-D images which often have large oc-

clusions and scene clutter. In Figure 7, we show the 3D

Figure 7: Comparison of our two-step RGB-D CNN archi-

tecture, the corresponding depth-only version and a single

combined CNN which is trained to directly regress global

3D pose. Our proposed approach achieves the best perfor-

mance on the real test sequences.

Figure 8: Ablative analysis of the proposed kinematic pose

tracking on our real annotated dataset EgoDexter (average

fingertip error). Using only the 2D fitting energy leads to

catastrophic tracking failure on all sequences. The version

restricted to the 3D fitting term achieves a similar error as

the raw 3D predictions while it ensures biomechanical plau-

sibility and temporal smoothness. Our full formulation that

combines 2D as well as 3D terms yields the lowest error.

fingertip error plot for this CNN (single RGB-D) which is

worse that our two-step approach. This shows that learn-

ing to directly regress 3D pose in cluttered scenes with oc-

clusion is a harder task, which our approach simplifies by

breaking it into two steps.

Input Data Evaluation: We next show, on our EgoDex-

ter dataset, that using both RGB and depth input (RGB-D)

is superior to using only depth, even when using both our

CNNs. Figure 7 compares the 3D fingertip error of a vari-

ant of our two-step approach trained with only depth data.

We hypothesize that additional color cues help our approach

perform significantly better.

Gain of Kinematic Model: Figure 8 shows an ablative

analysis of our energy terms as well as the effect of kine-

matic pose tracking on the final pose estimate. Because we

1290



Rotunda Desk Fruits Kitchen

Figure 9: Qualitative results on our real annotated test sequences from the EgoDexter benchmark dataset. The results over-

layed on the input images and the corresponding 3D view from a virtual viewpoint (bottom row) show that our approach is

able to handle complex object interactions, strong self-occlusions and a variety of users and backgrounds.

enforce joint angle limits, temporal smoothness, and con-

sistent bone lengths, our combined approach produces the

lowest average error of 32.6 mm.

We were unable to quantitatively evaluate on the only

other existing egocentric hand dataset [20] due to a differ-

ent sensor unsupported by our approach. To aid qualita-

tive comparison, we include similar reenacted scenes, back-

ground clutter, and hand motion in the supplemental docu-

ment and video.

Qualitative Results: Figure 9 shows qualitative results

from our approach which works well for challenging real

world scenes with clutter, hand-object interactions, and dif-

ferent hand shapes. We also show that a commercial solu-

tion (LeapMotion Orion) does not work well under severe

occlusions caused by objects, see Figure 10 right. We refer

to the supplemental document for results on how existing

third person methods fail on EgoDexter and how our ap-

proach in fact generalizes to third person views.

Runtime Performance: Our entire method runs in real-

time on an Intel Xeon E5-2637 CPU (3.5 GHz) with an

Nvidia Titan X (Pascal). Hand localization takes 11 ms,

3D joint regression takes 6 ms, and kinematic pose tracking

takes 1 ms.

Limitations: Our method works well even in challeng-

ing egocentric viewpoints and notable occlusions. However,

there are some failure cases which are shown in Figure 10.

Please see the supplemental document for a more detailed

discussion of failure cases. We used large amounts of syn-

thetic data for training our CNNs and simulated sensor noise

for a specific camera preventing generalization. In the fu-

ture, we would like to explore the application of deep do-

main adaptation [3] which offers a way to jointly make use

of labeled synthetic data together with unlabeled or partially

labeled real data.

Figure 10: Fast motion that leads to misalignment in the

colored depth image or failures in the hand localization step

can lead to incorrect predictions (left two columns). Leap-

Motion Orion fails under large occlusions (right).

7. Conclusion

We have presented a method for hand pose estimation

in challenging first-person viewpoints with large occlusions

and scene clutter. Our method uses two CNNs to localize

and estimate, in real time, the 3D joint locations of the hand.

A pose tracking energy further refines the pose by estimat-

ing the joint angles of a kinematic skeleton for temporal

smoothness. To train the CNNs, we presented SynthHands,

a new photorealistic dataset that uses a merged reality ap-

proach to capture natural hand interactions, hand shape,

size and color variations, object occlusions, and background

variations from egocentric viewpoints. We also introduce a

new benchmark dataset EgoDexter that contains annotated

sequences of challenging cluttered scenes as seen from ego-

centric viewpoints. Quantitative and qualitative evaluation

shows that our approach is capable of achieving low errors

and consistent performance even under difficult occlusions,

scene clutter, and background changes.

Acknowledgements: This work was supported by the ERC

Starting Grant CapReal (335545). Dan Casas was sup-

ported by a Marie Curie Individual Fellow, grant 707326.

1291



References

[1] L. Ballan, A. Taneja, J. Gall, L. V. Gool, and M. Pollefeys.

Motion Capture of Hands in Action using Discriminative

Salient Points. In European Conference on Computer Vision

(ECCV), 2012. 2, 6

[2] A. Canziani, A. Paszke, and E. Culurciello. An analysis of

deep neural network models for practical applications. arXiv

preprint arXiv:1605.07678, 2016. 4

[3] Y. Ganin and V. Lempitsky. Unsupervised domain adaptation

by backpropagation. arXiv preprint arXiv:1409.7495, 2014.

8

[4] L. Ge, H. Liang, J. Yuan, and D. Thalmann. Robust 3D Hand

Pose Estimation in Single Depth Images: from Single-View

CNN to Multi-View CNNs. In IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2016. 1, 2

[5] H. Hamer, K. Schindler, E. Koller-Meier, and L. Van Gool.

Tracking a hand manipulating an object. In Computer Vision,

2009 IEEE 12th International Conference On, pages 1475–

1482. IEEE, 2009. 2

[6] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2016. 4

[7] IntelRealSenseSR300. https://click.intel.com/

realsense.html, 2016. 3

[8] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-

tional architecture for fast feature embedding. arXiv preprint

arXiv:1408.5093, 2014. 6

[9] C. Keskin, F. Kra,̧ Y. E. Kara, and L. Akarun. Real time hand

pose estimation using depth sensors. In IEEE International

Conference on Computer Vision Workshops (ICCVW), pages

1228–1234, 2011. 2

[10] N. Kyriazis and A. Argyros. Scalable 3d tracking of multiple

interacting objects. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 3430–3437, 2014. 2

[11] LeapMotion. https://developer.leapmotion.

com/orion, 2016. 2, 6

[12] M. Oberweger, G. Riegler, P. Wohlhart, and V. Lepetit. Effi-

ciently Creating 3D Training Data for Fine Hand Pose Esti-

mation. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2016. 2, 4

[13] M. Oberweger, P. Wohlhart, and V. Lepetit. Training a feed-

back loop for hand pose estimation. In IEEE International

Conference on Computer Vision (ICCV), pages 3316–3324,

2015. 1, 2

[14] I. Oikonomidis, N. Kyriazis, and A. A. Argyros. Efficient

model-based 3d tracking of hand articulations using kinect.

In BmVC, volume 1, page 3, 2011. 2

[15] I. Oikonomidis, N. Kyriazis, and A. A. Argyros. Full dof

tracking of a hand interacting with an object by model-

ing occlusions and physical constraints. In Computer Vi-

sion (ICCV), 2011 IEEE International Conference on, pages

2088–2095. IEEE, 2011. 2

[16] P. Panteleris, N. Kyriazis, and A. A. Argyros. 3d tracking of

human hands in interaction with unknown objects. In BMVC,

pages 123–1, 2015. 2

[17] C. Qian, X. Sun, Y. Wei, X. Tang, and J. Sun. Realtime

and Robust Hand Tracking from Depth. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

1106–1113, 2014. 1, 2, 3

[18] H. Rhodin, C. Richardt, D. Casas, E. Insafutdinov,

M. Shafiei, H.-P. Seidel, B. Schiele, and C. Theobalt. Ego-

cap: egocentric marker-less motion capture with two fisheye

cameras. ACM Transactions on Graphics (TOG), 35(6):162,

2016. 2

[19] G. Rogez, M. Khademi, J. Supančič III, J. M. M. Montiel,
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