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Abstract

This paper introduces a graph-based semi-supervised

elastic embedding method as well as its kernelized ver-

sion for face image embedding and classification. The

proposed frameworks combines Flexible Manifold Embed-

ding and non-linear graph based embedding for semi-

supervised learning. In both proposed methods, the non-

linear manifold and the mapping (linear transform for the

linear method and the kernel multipliers for the kernelized

method) are simultaneously estimated, which overcomes

the shortcomings of a cascaded estimation. Unlike many

state-of-the art non-linear embedding approaches which

suffer from the out-of-sample problem, our proposed meth-

ods have a direct out-of-sample extension to novel samples.

We conduct experiments for tackling the face recognition

and image-based face orientation problems on four public

databases.These experiments show improvement over the

state-of-the-art algorithms that are based on label propa-

gation or graph-based semi-supervised embedding.

Keywords: Manifold learning, semi-supervised learning,

graph-based embedding, out-of-sample extension, classifi-

cation

1. Introduction

Feature extraction with dimensionality reduction is an

important step and essential process in embedding face im-

ages. Although the supervised feature extraction methods

had been successfully applied to many pattern recognition

applications, they require a full labeling of data samples.

It is well-known that it is much easier to collect unlabeled

data than labeled samples. The labeling process is often

expensive, time consuming, and requires intensive human

involvement. As a result, partially labeled datasets are more

frequently encountered in real-world problems.

In the last decade, semi-supervised learning algorithms

have been developed to effectively utilize limited number

of labeled samples and a large amount of unlabeled sam-

ples for real-world applications [29, 5, 30, 18, 11]. In the

past years, many graph-based methods for semi-supervised

learning have been developed. The main advantage of

graph-based methods is their ability to identify classes of

arbitrary distributions. The use of data-driven graphs has

led to many progresses in the field of semi-supervised learn-

ing (e.g., [3, 26, 16, 8, 7]). Toward classification, an excel-

lent subspace should be smooth as well as discriminative.

Hence, a graph-theoretic learning framework is usually de-

ployed to simultaneously meet the smoothness requirement

among nearby samples and the discriminative requirement

among differently labeled samples (e.g.,[13]). In [10], the

authors propose a joint learning of labels and distance met-

ric approach, which is able to optimize the labels of unla-

beled samples and a Mahalanobis distance metric in a uni-

fied scheme. It was shown that a good distance metric can

be constructed with only very few training samples.

In addition to the use of partial labeling in semi-

supervised learning, many researchers use pairwise con-

straints which can be seen as another form of side infor-

mation [4]. These constraints are simply indicating if two

instances are similar (must-link) or dissimilar (cannot-link).

These constraints are usually used for getting a linear or

non-linear embedding by adding these constraints to the cri-

terion derived from unlabelled data samples [23]. The final

application is to help spectral clustering recover from an un-

desirable partition.

Semi-supervised learning has benefited from many ad-

vances proposed for supervised and unsupervised manifold

learning which aims to represent data samples in appropri-

ate subspaces according to some criteria (e.g., [2, 25, 22]).

Despite the success of many graph-based algorithms in

dealing with partially labeled problems, there are still some
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problems that are not properly addressed. Almost all semi-

supervised feature extraction techniques can suffer from

one of the following limitations:

• The non-linear semi-supervised approaches do not

have, in general, a function that can map unseen data

samples. In other words, the non-linear methods pro-

vide embedding for only the training data. This is the

transductive setting, i.e., the test set coincides with the

set of unlabeled samples in the training dataset. In-

deed, solving the out-of-sample extension is still an

open problem for non-linear embedding techniques.

• Almost all proposed semi-supervised approaches tar-

get the estimation of a linear transform that maps orig-

inal data into a low dimensional subspace. While

this simplifies the learning processes and gets rid of

the out-of-sample problem, there is no guarantee that

such approaches will have optimal performances for

all datasets. The main reason behind this is that the

criterion used is already a rigid constraint that is based

on solving a linear mapping. Any coordinate in the

low-dimensional subspace is supposed to be a linear

combination of the original features. Thus, the adopted

criterion that derives the linear mapping has not the

flexibility to adapt it to a given non-linear model.

In this paper, we propose a graph-based semi-supervised

elastic embedding method as well as its kernelized ver-

sion. The dimension of the final embedding obtained by

the two proposed methods is not limited to the number of

classes and they can be used by any kind of classifiers. Un-

like many state-of-the art non-linear embedding approaches

which suffer from the out-of-sample problem, our proposed

methods have a direct out-of-sample extension to novel

samples, and are thus easily generalized to the entire high-

dimensional input space. The paper is structured as follows.

In section II, we briefly review the main methods for semi-

supervised learning including the graph-based label prop-

agation and the semi-supervised embedding methods. In

section III, we introduce our graph-based semi-supervised

elastic embedding method. In Section IV, we present its

kernel version. Section V contains the experimental results

obtained with seven real datasets. This section compares

the performance of the proposed methods with that of the

competing methods. Finally, in section VI, we present our

conclusions. In the sequel, capital bold letters denote matri-

ces and small bold letters denote vectors.

2. Related work

2.1. Notation and preliminaries

We define the training data matrix as X =
[x1, x2, ..., xl, xl+1, ..., xl+u] ∈ R

D×(l+u), where xi|
l
i=1

and xi|
l+u
i=l+1 are the labeled and unlabeled samples, respec-

tively, with l and u being the total numbers of labeled and

unlabeled samples, respectively, and D being the sample

dimension. For face image analysis, the sample xi can refer

to a raw face image (or its descriptor). Let N = l+u be the

total number of training samples and nc be the total number

of labeled samples in the cth class. We represent the labeled

samples as Xl = [x1, x2, ..., xl] ∈ R
D×l with the label of xi

as yi ∈ 1, 2, ..., C, where C is the total number of classes.

Let S ∈ R
(l+u)×(l+u) be the graph similarity matrix with

S(i, j) representing the similarity between xi and xj , i.e.,

S(i, j) = sim(xi, xj). In a supervised context, one can

also consider two similarity matrices Sw and Sb that encode

the within class and between class graphs, respectively. Sw

encodes the pairwise similarities among samples having the

same label. Thus, Sw(i, j) = sim(xi, xj) if xi and xj have

the same class label; Sw(i, j) = 0, otherwise. Similarly,

Sb encodes the pairwise similarities among samples having

different labels. Thus, Sb(i, j) = sim(xi, xj) if xi and xj

have different labels; Sb(i, j) = 0, otherwise. The function

sim(., .) can be any symmetric function that measures the

similarity between two samples. This can be given by the

cosine or the Gaussian kernel.

For each similarity matrix, a Laplacian matrix can be

computed. For the similarity matrix S, the Laplacian ma-

trix is given by L = D − S where D is a diagonal matrix

whose elements are the row (or column since the similarity

matrix is symmetric) sums of S matrix. Similar expression

can be found for Lb and Lw. The normalized Laplacian L̂

is defined by L̂ = I − D−1/2 S D−1/2 where I denotes the

identity matrix.

We also define a binary label matrix Y ∈ B
N×C asso-

ciated with the samples with Y (i, j) = 1 if xi has label

yi = j; Y (i, j) = 0, otherwise. In addition to Y, we can

define an unknown label matrix denoted by F ∈ R
N×C . In

a semi-supervised setting, F =

(
FL

FU

)
where FL = YL.

2.2. Graph-based label propagation methods

In the last decade, the semi-supervised learning methods

using graph-based label propagation attracted much atten-

tion. All of them impose that samples with high similarity

should share similar labels. They differ by the regulariza-

tion term as well as by the loss function used for fitting la-

bel information associated with the labeled samples. All

of these methods take as input the similarity matrix S as-

sociated with data and the label matrix Y associated with

the labeled samples. The state-of-the art label propaga-

tion methods (can also be called classifiers [19]) can be:

Gaussian Fields and Harmonic Functions (GFHF) [31], Lo-

cal and Global Consistency (LGC) [28], Laplacian Reg-

ularized Least Square (LapRLS) [1], Robust Multi-class

Graph Transduction (RMGT) [12], Flexible Manifold Em-
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bedding (FME) [14], and Manifold Adaptive Label Propa-

gation (MALP) [15].

2.3. Graph-based embedding methods

Many of the existing label propagation algorithms and

non-linear embedding techniques can only work on trans-

ductive setting, which requires that both the training and

test set are available during the learning process. There-

fore, they are not always suitable for recognition applica-

tions where the test set is generally not available during

the training phase. Unlike label propagation techniques

that seek label inference, the embedding techniques seek

a general coordinate representation where the dimension

of the mapped data is not necessarily limited to the num-

ber of classes. Cai et al. extended Linear Discriminant

Analysis (LDA) to Semi-supervised Discriminant Analysis

(SDA) [2] by adding a geometrically-based regularization

term in the objective function of LDA. The core assump-

tion in SDA is still the manifold smoothness assumption,

namely, nearby points will have similar representations in

the lower-dimensional space. Semi-supervised Discrimi-

nant Embedding (SDE) [9, 25] can be seen as the semi-

supervised variant of the Local Discriminant Embedding

(LDE) method [6]. In order to discover both geometrical

and discriminant structure of the data manifold, SDE re-

lies on three graphs: the within-class graph Gw (intrinsic

graph), the between-class graph Gb (penalty), and the graph

defined over the whole set (labeled and unlabeled samples).

3. Proposed method

3.1. Margin based Discriminant Embedding for su-
pervised case

The concept of margin among classes has been already

used in the literature in order to get discriminant projec-

tions. For instance, the work of [21] used a margin that is

defined in two local neighborhoods. This is a sample based

margin that relies on a specific neighborhood size for intra-

class and inter-class samples.

We proceed as follows. Let w be a projection vector.

The linear representation of a sample xi on that axis is zi =
wT xi. Let us denote the 1-D projections of labeled samples

onto the axis w as {zi = wT xi}
l
i=1. In matrix form, the

latter equations can be written as zT = (z1, z2, ..., zl) =
wT Xl.

For each labeled sample xi, we define a samplewise mar-

gin. This is given by the difference between two types of

distances (along the projection axis w): one is the distance

between xi and samples taking different labels, the other is

the distance between xi and samples sharing the same label.

At xi (i ∈ Ck), there are lk intra-class distances and l − lk
inter-class distances, where Ck (k = 1, ..., C) is the set of

indices of samples from the same class and lk = |Ck|. The

margin associated with sample xi, in the projected space, is

given by:

m(i) =
∑

j /∈Ck

(zi − zj)
2 1

l − lk
−

∑

t∈Ck

(zi − zt)
2 1

lk
(1)

Note that the above sample-based margin is the one given in

[21] in which all homogeneous and heterogeneous samples

are used. Let us focus on l labeled examples x1, ..., xl be-

longing to C classes, upon which two graphsGw andGb are

built using label information. Within the intra-class graph

Gw, we establish an undirected edge from each sample xi

in the graph to those sharing the same label as xi. Within

the inter-class graph Gb, we establish a directed edge from

xi to all samples taking different labels. Therefore, Gw is

undirected and Gb is directed, and then we define two sim-

ilarity matrices Sw and Sb ∈ R
l×l pertaining to Gw and Gb

respectively, by

Sw
ij =

{
1
lk

if i ∈ Ck and j ∈ Ck

0, otherwise
(2)

Sb
ij =

{
1

l−lk
if i ∈ Ck and j /∈ Ck

0, otherwise
(3)

Note that the sum of each row in Sw and Sb is 1 and Sw is

symmetric. We further define a diagonal matrix Db with the

entries being the column sums of Sb. By using Eqs. (2 ) and

(3), we can write the local margin defined in Eq. (1) as:

m(i) =

l∑

j=1

[(zi − zj)
2 Sb

ij − (zi − zj)
2 Sw

ij ] (4)

The average margin m = 1
l

∑l
i=1 m(i) over all the labeled

samples is given by:

m =
1

l

l∑

i=1

l∑

j=1

[(zi − zj)
2 Sb

ij − (zi − zj)
2 Sw

ij ]

=
1

l

⎛
⎝

l∑

i=1

z2i +
l∑

j=1

z2jD
b
jj − 2

l∑

i=1

l∑

j=1

ziS
b
ijzj

⎞
⎠−

1

l

⎛
⎝2

l∑

i=1

z2i − 2
l∑

i=1

l∑

j=1

ziS
w
ijzj

⎞
⎠

=
1

l
zT (I + Db − 2 Sb) z −

1

l
zT (2 I − 2 Sw) z

=
1

l
zT (I + Db − Sb − SbT ) z −

2

l
zT (I − Sw) z

=
2

l
wT Xl Dl XT

l w −
1

l
wT Xl MlX

T
l w (5)

where Dl = I+Db and Ml = 3 I+Db+Sb+SbT −2 Sw. In

the above derivation, we have used the equalities zT Sb z =
zT SbT z and zT = wT Xl.
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The projection axis can be found by maximizing the av-

erage marginm, i.e., w = argmaxw m. This maximization

can be casted into a minimization problem using an equality

constraint, i.e.

w = argmax
w

m =⇒

w = argmin
w

[wT Xl MlX
T
l w] s.t. wT Xl DlX

T
l w = 1

We can also conclude that the non-linear embedding can be

obtained by using the elements of z = XT
l w as unknowns:

z = argmin
z

zT Ml z s.t. zT Dl z = 1 (6)

3.2. Proposed semi-supervised elastic embedding

In this section, we propose a semi-supervised elastic em-

bedding that combines the merits of Flexible Manifold Em-

bedding idea [14] and the non-linear graph based embed-

ding. It should be noticed that the dimension of the final em-

bedding is not limited to the number of classes. We assume

that the non-linear embedding of the seen data samples is

given by the matrix Z ∈ R
N×d, i.e., the row vector Zi. is

the non-linear representation of the vector xi. We consider

again the within class and between class graphs associated

with the labeled data (Sw and Sb) as well as the graph as-

sociated with the labeled and unlabeled data represented by

its Laplacian matrix L. We have shown that (6) is the crite-

rion derived from the labeled part of data in order to get the

non-linear 1D embedding. Note that, for semi-supervised

case that deals with all N samples, the same criterion can

be written as (the dimension of z is now N ):

z = argmin
z

zT M̃l z s.t. zT D̃l z = 1 (7)

where M̃l ∈ R
N×N and D̃l ∈ R

N×N are the augmented

form of Ml ∈ R
l×l and Dl ∈ R

l×l:

M̃l =

(
Ml 0

0 0

)
, D̃l =

(
Dl 0

0 0

)

A natural way to get a non-linear Semi-supervised Dis-

criminant Embedding for more one dimension is to simul-

taneously minimize the following criteria:

min
Z

trace(ZT L Z) (8)

min
Z

trace(ZT M̃l Z) s.t. ZT D̃l Z = I (9)

Note that (8) is simply the graph smoothness criterion that

imposes locality preserving. We propose to combine the

above criteria with regression and regularization terms. We

simultaneously recover a non-linear embedding and its lin-

ear approximation by minimizing the following criterion

that depends on both the non-linear embedding and the re-

gression transform:

e(Z,W, b) = trace(ZT L Z) + λ trace(ZT M̃l Z) +

µ (‖W‖2 + γ ‖XT W + 1 bT − Z‖2)

= trace(ZT L1 Z) +

µ (‖W‖2 + γ ‖XT W + 1 bT − Z‖2)(10)

where L1 = L + λ M̃l and 1 ∈ R
N is a column vector of

1s. µ, γ, and λ are positive balance parameters. Note that

in the above criterion Z is the non-linear embedding and W

and b are the linear transform that embed data X such that

Z ≈ XT W + 1 bT .

The non-linear embedding as well as the regression are

estimated by minimizing e. To obtain the optimal solution,

we vanish the derivatives of the objective function e with

respect to W and b. We have:

b =
1

N
(ZT 1 − WT X 1) (11)

W = γ (γ Xc XT
c + I)−1Xc Z = A Z (12)

where A = γ (γ Xc XT
c + I)−1Xc and Xc is the centered

data matrix, i.e., Xc = X Hc with Hc being the centering

matrix Hc = I − 1
N 1 1T . We use the above expression for

W and b in the regression function XT W + 1 bT , we get:

XT W + 1 bT = XT A Z +
1

N
11T Z −

1

N
11T XT A Z

= (I −
1

N
1 1T )XT A Z +

1

N
11T Z

= Hc XT A Z +
1

N
11T Z = B Z

with B = HcXT A + 1
N 11T . Thus, the criterion e(Z,W, b)

becomes:

e = trace(ZT L1 Z) + µ [trace(ZT AT A Z)

+γ trace((B Z − Z)T (B Z − Z))]

= trace(ZT (L1 + µAT A + µγ(B − I)T (B − I))Z)

= trace(ZT (L1 + E)Z) (13)

where E = µAT A + µγ(B − I)T (B − I).
Thus, the non-linear embedding Z is estimated by mini-

mizing the above criterion under the constraint used in the

criterion (9):

Z⋆ = argmin
Z

trace(ZT (L1 + E)Z) s.t. ZT D̃l Z = I

Thus Z⋆ can be solved by generalized eigenvalue de-

composition. Once Z⋆ is estimated the corresponding re-

gression W⋆ and b⋆ are estimated by Eqs. (12) and (11),

respectively. Given an unseen sample xtest, its embedding

(a column vector) is given by ztest = W⋆T xtest + b⋆.
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3.3. Features of the proposed method

Our proposed method has several advantages over exist-

ing methods. First, unlike FME [14] which estimates la-

bels, our method estimates a non-linear embedding whose

dimension is not limited to the number of classes as it is the

case with many frameworks adopting the label propagation

paradigm [12, 14]. Second, it is a non-linear feature ex-

tractor that lends itself nicely to all machine learning tools

that can be used in the output subspace with any dimension.

Third, the proposed method is not limited to a transduc-

tive setting in the sense that it can work with unseen data.

Fourth, it inherits the flexibility of FME [12, 14].

4. Kernelized version

In this section, we propose the kernel version of the pro-

posed method. The motivation behind the use of kernel is

that in some cases the non-linearity of data cannot be close

to a linear subspace [27, 20]. In such cases, the flexibil-

ity introduced by the linear regression term may not lead to

good approximation of the embedded data. The proposed

kernel version aims at a flexibility in which the regression

itself is non-linear. Thus, the role of the kernel trick is to

seek an inductive non-linear embedding that is close to a

real non-linear subspace.

In [1], it is shown that a kernelized version of label prop-

agation based on the linear LapRLS can be written as:

min

l∑

i=1

L(d(xi), yi) + λA ‖d‖2K + λI ‖d‖G

where L(., .) is a loss function. ‖d‖K and ‖d‖G are the

RKHS-norm and the graph-based smoothness of the model

d, respectively. The linear homologue of the above criterion

is given by the linear LapRLS where the function is given

by d(xi) = WT xi + b. According to Belkin [1], the model

d will expand over all the labeled and unlabeled points in

the form of (here d is a row vector having C elements):

d(x) =

l+u∑

j=1

vTj K(x, xj) = [K(x, x1), . . . ,K(x, xl+u)]V

where K ∈ R
(l+u)×(l+u) is a kernel Gram matrix, and the

matrix V ∈ R
(l+u)×C is the matrix of multipliers (V =

[v1, v2, . . . , vl+u]
T ). The entries of the Gram matrix are

given by K(xi, xj) that represents a dot product in feature

space. This kernel function can be Gaussian or polynomial.

For all samples, this condition can be written in matrix form

as Z = K V where the rows of Z will be the predicted labels.

In our proposed kernel version, the non-linear embed-

ding of the feature vector xi is represented by the row vector

Zi. whose dimension is d. Note that the value of d can be

any arbitrary number such that d ≤ l + u. The non-linear

embedding of all training samples Z should be as close as

possible to its kernel embedding given by K V. Thus, the

global criterion that allows the simultaneous estimation of

the matrix of multipliers V and the non-linear embedding Z

will be given by:

e(Z,V) = trace(ZT L1 Z) + (14)

µ [trace(VT K V) + γ trace((K V − Z)T (K V − Z))]

At the extremum of e, the derivative of e w.r.t. V should

vanish. This gives:

2K V + 2γ K (K V − Z) = 0

This can written in the following form:

V = γ (I + γK)−1 Z = A1 Z

where A1 = γ (I + γK)−1. By plugging the above expres-

sion in Eq. (14), this becomes:

e(Z) = trace(ZT L1 Z) +

µ trace(ZT AT
1 A1 Z) + µ γ trace(ZT BT

1 B1 Z)

= trace(ZT (L1 + µAT
1 KA1 + µ γ BT

1 B1)Z)(15)

with B1 = K A1 − I.

The solution Z⋆ is estimated by minimizing the above

criterion under the constraint used in the criterion (9):

argmin
Z

trace(ZT (L1 + µAT
1 KA1 + µ γ BT

1 B1)Z)

s.t.ZT D̃l Z = I

Thus Z⋆ can be solved by generalized eigenvalue de-

composition. Given an unseen sample xtest its em-

bedding (a column vector) is given by ztest =
V⋆T [K(xtest, x1), . . . ,K(xtest, xN )]T .

5. Performance study

We test our proposed methods on four public face

datasets: Extended Yale1, FERET2, PIE3, and FacePix4.

The first three datasets are used for face recognition tasks.

However, FacePix dataset is used for coarse face orientation

estimation. This dataset includes a set of face images with

pose angle variations. It is composed of 181 face images

(representing yaw angles from −90◦ to +90◦ at 1 degree

increments) of 30 different subjects, with a total of 5430

images. We subsampled this dataset so that we have 10 dif-

ferent yaw angles/classes, each with 30 subjects. The classi-

fication carried out for this dataset concerned the yaw angle

classification.

1www.vision.ucsd.edu/ ∼ leekc/ExtY aleDatabase/
ExtY aleB.html

2www.itl.nist.gov/iad/humanid/feret/
3http : //www.ri.cmu.edu/projects/project 418.html
4www.facepix.org/
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We adopt a common preprocessing step for images in

which the images of all datasets are resized to 32×32 pixels

in order to get small sizes.

Semi-supervised learning and empirical setting We

compare our proposed methods with GFHF, RMGT,

LapRLS, FME, SDA, SDE, and Transductive Component

Analysis (TCA) [13]. For the methods relying on a projec-

tion matrix (SDA, SDE, TCA, and the two proposed meth-

ods), any classifier can be used with the obtained mapped

data in order to classify the unlabeled and unseen data

samples. All compared semi-supervised methods use the

graph Laplacian, L, associated with the training data. For a

fair comparison, we adopt the same graph for all methods.

This graph is constructed using the KNN graph (symmetric

KNN) and the Gaussian kernel for the edge weights. Thus,

the weight associated with each neighboring pair is given by

S(xi, xj) = exp(−||xi−xj‖
2/t0) where t0 ∈ R

+ is the ker-

nel bandwidth parameter. It is set as in many works to the

average of squared distances in the training set. The neigh-

borhood size was set to 10. For SDE method, we need to

compute the within-class and the between-class graph (built

on the labeled subset). The weights associated are set to

ones or zeros, i.e. the corresponding similarity matrices Sb

and Sw are binary matrices. It is worth noting that all com-

pared methods used the same data graph. This makes sure

that the difference in performance is due to the embedding

method only and not to the data graph.

We randomly select 50% of data as the training dataset

and use the remaining 50% data as the unseen test dataset.

Among the training data, we randomly label P samples per

class and treat the other training samples as unlabeled data.

The above setting is a natural setting to compare different

methods. All the training data (labeled and unlabeled sam-

ples) are used to learn a subspace (i.e., a projection matrix)

for semi-supervised embedding methods or a classifier for

the label propagation methods. In all the experiments, PCA

is used as a preprocessing step to preserve 98% energy of

the data.

Method comparison For LapRLS, FME, TCA, SDA,

and SDE, two regularization parameters should be tuned.

For our proposed methods three parameters are used,

namely λ, µ, and γ. For fair comparison, we set

each parameter to a subset of values belonging to

{10−9, 10−6, 10−3, 1, 103, 106, 109} as in [14].

We then report the top-1 recognition accuracy (best aver-

age recognition rate) of all methods from the best parameter

configuration.

Tables 1 and 2 report the best average recognition ac-

curacy (for all datasets) over ten random splits on the unla-

beled data and the test data, which are referred to as Unlabel

and Test, respectively. Note that in Table 2 the classification

concerned the yaw angle using face patches (model-less 3D

face orientation estimation).

For the embedding methods (SDA, SDE, TCA, and the

two proposed methods), the classification was performed

using the Nearest Neighbor classifier. For the two proposed

methods, the dimension of the embedding is bounded by

the number of training samples N . Thus, for each parame-

ter configuration associated with the criterion and for each

split we have a curve for the recognition rate that depict

the rate at several sampled dimensions. Thus, for each pa-

rameter configuration, the performance is set to the best

rate in the average curve which was obtained by averaging

the rate curves over the ten splits. For the kernel method,

we used the Gaussian kernel whose expression is given by

K(xi, xj) = exp(−||xi − xj‖
2/(2m t0)) in which t0 is set

to the average of squared distances in the training set, and

m is an integer chosen in the interval {1, 2, 3, 4, 5, 6}.

Figure 1 illustrates the average recognition rate curves

as a function of feature dimension for Extended Yale and

FERET datasets. The used classifier was the Nearest Neigh-

bor (NN) classifier. These curves were obtained for the test

part of data using three labeled samples per class. We recall

that FME method does not depend on the feature dimen-

sion. We stress the fact that the maximum dimensions of

all methods are not the same. Indeed, the maximum dimen-

sion of SDA method is given by C − 1, and the maximum

dimension of SDE is given by the dimension of input sam-

ples. For the two proposed methods, the maximum dimen-

sion is given by the number of training samples. Figure 2

illustrates the average recognition rate curves as a function

of feature dimension when the used classifier was a linear

Support Vector Machine (SVM). Figure 3 illustrates the av-

erage recognition rate curves as a function of feature di-

mension when the used classifier was the Two Phase Test

Sample Sparse Representation (TPTSSR) classifier [24] for

which the number of chosen neighboring samples was set

to 5%.

We can draw the following conclusions:

(1) In general, the proposed method and its kernelized

version have given the best recognition rate.

(2) In general, the kernel version has given better perfor-

mance than the non-kernel method.

(3) At low dimensions, the rate obtained with the TCA

method was poor. Indeed, a competing performance for

TCA was obtained whenever enough features were used.

(4) The superiority of the proposed methods holds for

three different classifiers: Nearest Neighbor, Support Vector

Machine, and the Two Phase Test Sample Sparse Represen-

tation. This indicates that the embedding provided by the

proposed methods was more discriminative than that pro-

vided by the competing graph-based embedding techniques.

(5) As can be seen from the recognition accuracy curves,

by increasing the number of features in the projection sub-
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space (obtained by the proposed methods) the recognition

accuracy of the proposed methods will not necessarily in-

crease. Thus, in practice, the two proposed methods will

provide good performance even with few dimensions.

(6) We can observe that unlike many non-linear embed-

ding methods whose performance deteriorates by increasing

the number of features (e.g., [17]), ours do not have such

disadvantage.

6. Conclusion

This paper presented two novel graph-based semi-

supervised embedding methods for classification tasks.

More precisely, we propose a graph-based semi-supervised

elastic embedding as well as its kernelized version. The

proposed schemes retained the merits of Flexible Mani-

fold Embedding and the graph-based non-linear embed-

ding. The proposed methods simultaneously estimate a

non-linear embedding as well as its out-of-sample trans-

form that is needed for mapping the unseen samples.
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Figure 1. Recognition accuracy vs. feature dimension for Ex-

tended Yale and FERET datasets (test evaluation). Three labeled

samples per class were used. The classifier used was 1-NN.
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Figure 2. Recognition accuracy vs. feature dimension for Ex-

tended Yale and FERET datasets (test evaluation). Three labeled

samples per class were used. The classifier used was a linear SVM.
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