This ICCV workshop paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the version available on IEEE Xplore.

Learning Invariant Riemannian Geometric Representations Using Deep Nets

Suhas Lohit
Arizona State University

slohit@asu.edu

Abstract

Non-Euclidean constraints are inherent in many kinds
of data in computer vision and machine learning, typically
as a result of specific invariance requirements that need to
be respected during high-level inference. Often, these geo-
metric constraints can be expressed in the language of Rie-
mannian geometry, where conventional vector space ma-
chine learning does not apply directly. The central ques-
tion this paper deals with is: How does one train deep neu-
ral nets whose final outputs are elements on a Riemannian
manifold? To answer this, we propose a general frame-
work for manifold-aware training of deep neural networks
— we utilize tangent spaces and exponential maps in or-
der to convert the proposed problem into a form that al-
lows us to bring current advances in deep learning to bear
upon this problem. We describe two specific applications
to demonstrate this approach: prediction of probability dis-
tributions for multi-class image classification, and predic-
tion of illumination-invariant subspaces from a single face-
image via regression on the Grassmannian. These applica-
tions show the generality of the proposed framework, and
result in improved performance over baselines that ignore
the geometry of the output space. In addition to solving this
specific problem, we believe this paper opens new lines of
enquiry centered on the implications of Riemannian geom-
etry on deep architectures.

1. Introduction

Many applications in computer vision employ data that
are naturally represented on manifolds [32]. Shapes that are
invariant to affine transforms [5] and linear dynamical sys-
tems [42] can be represented as points on the Grassmannian.
In diffusion tensor imaging, each pixel” of the “image” is
a symmetric positive definite (SPD) matrix and the space
of SPD matrices forms a manifold [36]. Lie groups like
SO(3) and SE(3) are used to represent human skeletons
[43, 44]. Predicting probability density functions is another
area of interest, applicable to multi-class classification and
bag-of-words models [30], and saliency prediction [25].

Pavan Turaga
Arizona State University

pturagal@asu.edu

Several years of research has presented us with vari-
ous tools for statistics, and thereby machine learning ap-
proaches to be deployed when the objects of interest have
manifold-valued domains (c.f. [40]). In deep learning, it is
usually the case that data samples are viewed as elements
of vector spaces. Any additional structure that the data
may possess is left to be learned through the training exam-
ples. However, recently, there has been interest in employ-
ing deep learning techniques for non-Euclidean inputs as
well: [7] including graph-structured data [8, 20, 34] and 3D
shapes viewed as Riemannian manifolds [33]. Also, deep
networks that preserve the input geometry at each layer have
been studied for inference problems, e.g., for symmetric
positive definite matrices [22], Lie groups [23] and points
on the Stiefel manifold [24]. Another recent work consid-
ers weight matrices which are constrained to be orthogonal,
i.e., points of the Stiefel manifold, and propose a general-
ized version of backpropagation [19]. These works do not
consider output variables with geometric constraints.

In contrast to the above, instead of enforcing geometry
at the inputs, our goal is to design a general framework to
extend neural network architectures where output variables
(or deeper feature maps) lie on manifolds of known geom-
etry, typically due to certain invariance requirements. We
do not assume the inputs themselves have known geometric
structure and employ standard back-propagation for train-
ing. Equivalently, one may consider this approach as trying
to estimate a mapping from an input x € R to a manifold-
valued point m € M ie., f : RV — M, using a neural
network, where m is the desired output.

That is, this paper provides a framework for regression
that is applicable to predicting manifold-valued data and at
the same time is able to leverage the power of neural nets
for feature learning, using standard backpropagation for un-
constrained optimization. In this paper, we focus on two
manifolds that are of wide interest in computer vision — the
hypersphere and the Grassmannian. We describe the appli-
cations next.

Face — Illumination Subspace as regression on the
Grassmannian: The illumination subspace of a human
face is a popular example from computer vision where for

1329

a particular subject, the set of all face images of that sub-
ject under all illumination conditions can be shown to lie
close to a low dimensional subspace [17]. These illumi-
nation subspaces are represented as points on the Grass-
mannian (or Stiefel, depending on application) manifold.
Several applications such as robust face recognition have
been proposed using this approach. In this work, in order to
demonstrate how deep networks can be employed to map to
Grassmannian-valued data, we consider the problem of esti-
mating the illumination subspace from a single input image
of a subject under unknown illumination. We refer to this
application as Face—Illumination Subspace (F2IS).

Multi-class classification as regression on the unit hy-
persphere: Classification problems in deep learning use
the softmax layer to map arbitrary vectors to the space of
probability distributions. However, more formally, proba-
bility distributions can be easily mapped to the unit hyper-
sphere, under a square-root parametrization [38] inspired by
the Fisher-Rao metric used in information geometry. Thus,
multi-class classfication can be posed as regression to a hy-
persphere. Indeed, there has been work recently that con-
sider spherical-loss functions which use the Euclidean loss
on unit-norm output vectors of a network [45, 11]. In this
work, we propose loss-functions for the classification prob-
lem based on the geometry of the sphere.

Main contributions: In this paper, we address the train-
ing of neural networks using standard backpropagation to
output elements that lie on Riemannian manifolds. To this
end, we propose two frameworks in this paper:

(1) We discuss how to map to simpler manifolds like the
hypersphere directly using a combination of geodesic
loss functions as well as differentiable constraint sat-
isfaction layers such as the normalization layer in the
case of the hypersphere.

(2) We also propose a more general framework that is ap-
plicable to Riemannian manifolds that may not have
closed-form expressions for the geodesic distance or
when the constraints are hard to encode as a layer in
the neural network. In this framework, the network
maps to the tangent space of the manifold and then the
exponential map is employed to find the desired point
on the manifold.

We carry out experiments for the applications described
above in order to evaluate the proposed frameworks and
show that geometry-aware frameworks result in improved
performance compared to baselines that do not take output
geometry into account.

2. Related work

We will now point to some related work that also exam-
ine the problem of predicting outputs with geometric struc-
ture using neural networks. Byravan and Fox [9] and Clark
et al. [10] design deep networks to output SE(3) trans-
formations. The set of transformations SE(3) is a group
which also possesses manifold structure, i.e., a Lie group.
It is not straightforward to predict elements on SE(3) since
it involves predicting a matrix constrained to be orthogonal.
Instead, the authors map to the Lie algebra se(3) which is
a linear space. We note that the Lie algebra is nothing but
the tangent space of SE(3) at the identity transformation
and can be considered a particular case of the general for-
mulation presented in this paper. Huang et al. [23] use the
logarithm map to map feature maps on SE(3) to se(3) be-
fore using regular layers for action recognition. However,
the logarithm map is implemented within the network, since
for SE(3), this function is simple and differentiable. In
contrast, in this work, we require the network output to be
manifold-valued and thus do not impose any geometry re-
quirements at the input or for the feature maps. This also
means that a suitable loss function needs to be defined, tak-
ing into account, the structure of the manifold of interest.

In a more traditional learning setting, there has been
work using geodesic regression, a generalization of linear
regression, on Riemannian manifolds [15, 14, 37, 21, 26],
where a geodesic curve is computed such that the aver-
age distance (on the manifold) from the data points to the
curve is minimized. This involves computing gradients on
the manifold. Recent work has also included non-linear re-
gression on Riemannian manifolds [4, 3]. Here, the non-
linearity is provided by a pre-defined kernel function and
the mapping algorithm solves an optimization problem it-
eratively. Our work is a non-iterative deep-learning based
approach to the problem described in Banerjee et al. [4]
as regression with the independent variable in RY and the
dependent variable lying on a manifold M. That is, un-
like these works, the mapping f : RV — M in our case
is a hierarchical non-linear function, learned directly from
data without any hand-crafted feature extraction, and the re-
quired mapping is achieved by a simple feed forward pass
through the trained network.

All neural nets in the paper are trained and tested using
Tensorflow [1], making use of its automatic differentiation
capability. Before we discuss the contributions of this work,
if required, please refer supplementary material for defini-
tions of some important terms from differential geometry.

3. Two approaches for deep manifold-aware
prediction

We propose two ways of predicting manifold-valued data
using neural networks with standard backpropagation. See

1330

Method 1: Method 2:

Map to manifold Map via the
directly tangent space
Input Input

i l

[Neural Network } [Neural Network }

Figure 1. This figure illustrates the two approaches presented in
this paper for training neural networks to predict manifold-valued
data. It also explains some basic concepts from differential ge-
ometry visually. M is a manifold, Tp.M is the tangent space at
p € M. pis called the pole of the tangent space. The curve con-
nected p and ¢ € M is the geodesic curve . v is a point on T, M
such that the exponential map exp,,(v) = (1) and the logarithm

map exp;l(q) = .

Figure 1 for visual illustration and important notation.

Mapping to the manifold via geodesic-loss functions:
In this case, the network directly maps input vectors to ele-
ments on the manifold M and is required to learn the man-
ifold constraints from the data. If we represent the neu-
ral network as a mapping NN, we have NN: RY — M.
Firstly, unlike simple manifolds like the sphere, manifolds
in general do not have a differentiable closed-form expres-
sion, that are also efficiently computable, for the geodesic
distance function that can be used as a loss function for the
neural network. Although one can still resort to using a dif-
ferentiable loss function such as the Euclidean distance, this
approach is not mathematically correct and does not yield
the right estimate for distance on the manifold. Secondly,
the network output has to satisfy the manifold constraints.
In the case of the sphere, it is simple to enforce the unit-
norm constraint at the output layer of the neural network
using a differentiable normalization layer. It is however
less clear how to map to more complicated manifolds such
as the Stiefel and Grassmann manifolds where the points
are usually represented by tall-thin orthonormal matrices.
That is, in addition to the unit-norm constraints, orthogo-
nality constraints between all pairs of columns in the matrix
need to be enforced. The Grassmann manifold, presents a
more difficult challenge, since each point in this space is an
equivalence class of points on the Stiefel manifold that are
orthogonal transforms of each other. As we will see later,
the data representation that respects this equivalence (pro-

jection matrix) does not admit a feasible way for a neural
network to map to this manifold directly.

Mapping via the tangent space — toward a general
framework: This is a more general formulation that is
applicable to all the manifolds of interest. Here, the net-
work first maps to a vector on the tangent space constructed
at a suitable pole p € M, which forms the intermediate
output. Once the network outputs the required tangent, the
exponential map (exp,,) is employed to find the correspond-
ing point on the manifold. Mathematically, we decompose
the desired function f : RN — M as f = exp, o NN and
NN: RN — T, M. Intuitively, since the tangent space is a
vector space that encodes geometric constraints implicitly,
it is attractive here, as neural networks have been shown to
be effective for estimating vector-valued data. We note that
an assumption is implicit in this framework: all the data
points of interest on the manifold are much closer to p than
the cut-locus of the manifold and in this case, the distance
on the tangent space serves as a good approximation to the
geodesic distance. This is the same assumption that goes
into currently successful approaches for statistical comput-
ing methods on manifolds [36]. In practice, we find this
assumption is respected in our applications as well.

4. Deep regression on the Grassmannian for
F2IS

Face — Illumination Subspace: We will now describe
an ill-posed inverse problem from computer vision that
serves as our canonical application to illustrate prediction
on the Grassmann manifold using a neural network. It is
well known that the set of images of a human face in frontal
pose under all illuminations lies close to a low-dimensional
subspace, known as the illumination subspace [17, 13]. If
we compute the eigenvectors of this set of images for dif-
ferent subjects using PCA, we observe that the top 5 princi-
pal components (PCs) capture nearly 90% of the variance.
More importantly, for this paper, an obvious pattern can be
observed between the subject under consideration and the
PC:s of the illumination subspace. Firstly, the identity of the
subject can be easily determined from the PCs. Secondly,
as noted by Hallinan [7], we observe that the illumination
patterns of top 5 principal components are the same across
subjects only up to certain permutations and sign flips. '
Using the terminology in [17], we can interpret the visual-
izations of the top 5 PC’s as a face under the following re-
spective illuminations: frontal lighting, side lighting, light-
ing from above/below, extreme side lighting and lighting
from a corner. The 15 and 2"¢ PC’s have eigenvalues in
a similar range and sometimes exchange places depending
on the subject. The 3"¢ PC, corresponding to eigenvalue is

't is clear that for an eigenvector e, —e is also an eigenvector.

1331

always at the same place. The 4*" and 5*" PCs have eigen-

values in a similar range and can interchange places for a
few subjects.

The illumination subspace refers to the linear span of
these eigenvectors, and is a point on the Grassmannian.
When we represent the subspace by its projection ma-
trix representation, the representation becomes invari-
ant to both sign flips and permutations (in fact, invariant
to the full set of right orthogonal transforms).

In this paper, as an example of predicting points on
Grassmann manifold, we define the following ill-posed in-
verse problem: given a human face in frontal pose under an
unknown illumination, output the corresponding illumina-
tion subspace. We will refer to this problem as the “Face
— Illumination Subspace” problem or F2IS. In our exper-
iments, we consider the illumination subspace to be of di-
mension d = 3, 4,or 5.

Geometry of the Grassmannian: The Grassmann mani-
fold, denoted by G, 4, is a matrix manifold and is the set
of d-dimensional subspaces in R™. To represent a point
on G, 4, we can use an orthonormal matrix, U € Rnxd
(UTU =1,,), to represent the equivalence class of points in
R"™*4_ such that, two points are equivalent if their columns
span the same d-dimensional subspace. That is, G, q =
{[U]}, where [U] = {UQ|UTU = I, Q is orthogonal }.
In order to uniquely represent the equivalence class [U] €
Gn,d, We use its projection matrix representation P =
UU? € R™*", where U is some point in the equiva-
lence class. UU” contains w unique entries as it is
a symmetric matrix. Clearly, for any other point in the
same equivalence class UQ), its projection matrix represen-
tation is (UQ)(UQ)” = UU?, as required. Thus, the
space of all rank d projection matrices of size n x n,
Py, is diffeomorphic to G, 4. The identity element of
P, is given by Ip, = diag(14,0,_4), where 0,_4 is
the matrix of zeros of size (n — d) X (n — d). In order
to find the exponential and logarithm maps for G,, 4, we
will view G, 4 as a quotient space of the orthogonal group,
Gn.d = On/(On_q x O4). The Riemannian metric in this
case is the standard inner product [|2] and thus, the dis-
tance function induced on the tangent space is the Euclidean
distance function. Using this formulation, given any point
P = UU” ¢ P, a geodesic of P, at I», passing through
P at ¢ = 0, is a particular geodesic «(t) of O(n) com-
pletely specified by a skew-symmetric X € R™"*™: a(t) =
exp,, (tX)Ip exp,,(—tX), where exp,, (.) is the matrix ex-
ponential and P = «/(1), such that X belongs to the set M
given by M = { |:_(XT O;LAJ | A€ Rdx(”d)}. X
serves as the tangent vector to G, 4 at the identity and is
completely determined by A. The geodesic between two
points P, P> € P, is computed by rotating P; and P,

to Ip, and some P € P, respectively. The exponential
map, takes as inputs, the pole and the tangent vector and
returns the subspace span(U), represented by some point
UQ. Refer Srivastava and Klassen [39] and Taheri et al.
[41] for algorithms to compute exponential and log maps
for the Grassmannian.

Synthetic dataset for F2IS: We use the Basel Face
Model dataset [35] in order to generate 250 random 3D
models of human faces {S;},7 = 1...250 (200 for train-
ing and 50 for testing chosen randomly).” We then gen-
erate a set of 64 faces for each subject where each face is
obtained by varying the direction of the point source illu-
mination for the frontal pose i.e., S; = {F/},j = 1...64.
The directions of illumination are the same as the ones used
in the Extended Yale Face Database B [16]. Each face im-
age is converted to grayscale and resized to 28 x 28. Once
we have the 250 sets of faces under the 64 illumination
conditions, we calculate the illumination subspace for each
subject as follows. For each subject, we first subtract the
mean face image of that subject under all illumination con-
ditions and then calculate the principal components (PCs).
For a subject ¢ and an illumination condition j, we will
denote the input face image by F} and the desired d top
PCs by E},EZ, ... E¢ (note that the PCs do not depend
on the input illumination condition). It is clear that every
EfF k=1,2,... dis of size 28 x 28 and (E}, E!) = 1, if
k =l and 0 otherwise.

If we lexicographically order each EF to form a
vector vec(EF) of size 784 x 1 and for each sub-
ject, arrange the E!’s to form a matrix U; =
[vec(E}) vec(E2) .. .vec(EY)], then the orthonormality
constraint can be rewritten as U?Ui = 1I,, where I is
the identity matrix of size d x d. As we argued earlier, due
to the nature of the problem, U, should be represented as a
point on the Grassmann Grg4 4 using the projection matrix
representation. With this notation, the desired mapping is
[R#X2 5 Gogy a such that f(F)) = U;Q € [Uy], the
required equivalence class or equivalently, U; U7

For the inputs Ff during training and testing, we do not
use all the illumination directions (j's). We only use illu-
mination directions that light at least half of the face. This
is because for extreme illumination directions, most of the
image is unlit and does not contain information about the
identity of the subject, which is an important factor for de-
termining the output subspaces. We select the same 33 il-
lumination directions for all subjects to form the inputs for
the network. We randomly split the dataset into 200 subjects
for training and 50 subjects for testing. Therefore there are
33 %200 = 6600 and 33 x 50 = 1650 different input-output

2We use a synthetic dataset because we were unable to find any large
publicly available real database that would enable training of neural net-
works without overfitting.

1332

pairs for training and testing respectively. The 33 illumina-
tion directions used for creating inputs for both the training
and test sets are given in the supplementary and are a sub-
set of the illumination directions used in the Extended Yale
Face Database B [16].

4.1. Proposed frameworks for solving F2IS

We propose two frameworks which employ networks
with nearly the same architecture: The network consists of
3 conv layers and two fc layers. ReLU non-linearity is
employed. Each conv layer produces 16 feature maps. All
the filters in the conv layers are of size 11 x 11. The first
fc layer produces a vector of size 512. Size of the sec-
ond fc layer depends on the framework. Both networks are
trained using the Adam optimizer [27] using a learning rate
of 1073 for 50000 iterations with a mini-batch size of 30.
Euclidean loss between the desired output and ground truth
is employed in both cases. We show that the choice of rep-
resentation of the desired output is crucial in this applica-
tion. We carry out three sets of experiments using subspace
dimension d = 3,4 and 5.

Baseline: The first framework is a baseline that attempts
to directly map to the desired PCs represented as a matrix

U,, given F/, i.e., NN(F{) = U,;. We use the Euclidean loss
function between the ground-truth U; and the network out-
put U; for training: Ly = ||U; — U,||% That is, instead of
regressing to the desired subspace, the network attempts to
map to its basis vectors (PCs). However, the mapping from
F/ to U; is consistent across subjects only up to certain
permutations and sign flips in the PCs. Hence, without
correcting these inconsistencies ad hoc, the problem is ren-
dered too complicated, since during the training phase, the
network receives conflicting ground-truth vectors depend-
ing on the subject. Thus, this framework performs poorly as
expected. It is important to note that mapping to the correct
representation UU? (which respects Grassmann geometry
and is invariant to these inconsistencies) directly is not fea-
sible because the size of UUT is too large (M) and
has rank constraints. This necessitates mapping via the tan-
gent space, discussed next.

Mapping via the Grassmann tangent space -
GrassmannNet-TS: The second framework repre-
sents the output subspaces as points on the Grassmann
manifold and first maps to the Grassmann tangent space and
then computes the required subspace using the Grassmann
exponential map. This circumvents the problem of very
large dimensionality encountered in the first approach since
the tangent vector has a much smaller intrinsic dimension-
ality. This representation has a one-to-one mapping with
the projection matrix representation and thus, is naturally
invariant to the permutations of the PCs and all combina-
tions of sign flips present in the data. And the mapping

we intend to learn becomes feasible in a data-driven
framework. Mathematically, NN: R784%4 — T) Gy 4.

As shown in Section 4, a tangent at some pole p is given
by the matrix X, which in turn is completely specified by
the matrix A € R(784=d)xd 3 myuch smaller matrix. ‘There-
fore, we design a network to map an input face F to the
desired matrix A;. An training pair can be represented as
(FZ, A;) and the let the output of the network be the vec-
torized version of a matrix A; € R(784=)xd The A,’s are
computed using the Grassmann logarithm map in [39]. We
also note that A does not possess any additional structure to
be enforced and thus a neural network can be easily trained
to map to this space using just the Euclidean loss between
A, and the network output A;: Lg = ||A; — A;|[2.

Pole of tangent space: This is a design choice and we
conduct experiments with two different poles: (1) We com-
pute the the illumination subspace of the entire training set.
We will denote these PCs by EX k= 1,2,...,d and the
corresponding matrix representation by U4, , which forms
the pole of the Grassmann tangent space. (2) It is com-
mon practice to use the Fréchet (also known as geometric
or Karcher) mean as the pole of the tangent space. We com-
pute the Fréchet mean of the ground-truth subspaces of the
training set using the iterative algorithm given by Turaga et
al. [42]. We denote this pole as U%, .

During the testing phase, using the output A matrix,
we employ the exponential map for a given pole to find
the corresponding point on the Grassmann manifold. This
framework of first mapping to the Grassmann tangent space
using a network and then to the corresponding subspace
using the Grassmann exponential map is referred to as
GrassmannNet-TS. See supplementary material for details
on visualizing the output Grassmann point.

4.2. Experimental results on F2IS

For the frameworks described in Sections 4.1, we de-
scribe the results on the test set of F2IS here. We com-
pute the distance between predicted and ground-truth sub-
space as the measure to quantify the efficacy of the proposed
frameworks. Various measures exist that quantify this no-
tion based on principal angles between subspaces [18]. We
use the Grassmann geodesic distance. For two subspaces
represented by U; and U, € G, 4, the geodesic distance

1/2
is given by D (U, Us) = (2519?> , where 6;’s

are the principal angles obtained by the SVD of UT U, =
W (cos ®)VT, where cos® = diag(cosfy,...,cosb,).
We use the implementation in [28] for computing the prin-
cipal angles. We report the arithmetic mean of this distance
measure for the entire test set. Note that the maximum value
of Dg(.) is ”T\/E.

The results based on the mean subspace distance on the
test set for the proposed frameworks for different values of

1333

Input Ground-truth PCs Output of baseline n/w Output of GrassmannNet-TS
- -
Ll % [l T
- =¥ . J
D¢g = 1.6694 Dg = 0.7006

RS MENS METE

Dg = 1.2998

Dg =0.7238

Table 1. Test results for two input images using d = 5. We can clearly observe that the GrassmannNet-TS (with pole U$%,.) framework
performs much better than the baseline that attempts to regress directly to the PCs. The numbers below the output images indicate the
subspace distance from the ground truth (lower the better). Note that the outputs need not be exactly the same as the groundtruth PCs since
the quantity of interest is the subspace spanned by the groundtruth PCs. See Supplementary Material for more results.

Input Ground-truth PCs

Output of baseline n/w

Output of GrassmannNet-TS

B =7

Ll ST
i

D¢ = 0.5489
ed =% ST
D¢ = 1.2735 D¢ = 0.6245

Table 2. Test results for two input images using d = 4. As in the case of d = 5, GrassmannNet-TS (with pole U%,.) framework performs
much better than the baseline that attempts to regress directly to the PCs. See Supplementary Material for more results.

Subspace Baseline GrassmannNet-TS
Dim d Pole=U%,_ Pole=U%,
3 0.6613 0.3991 0.3953
4 1.0997 0.5489 0.5913
5 1.4558 0.8694 0.6174

Table 3. Mean geodesic distance between predictions and
ground-truth on the test set using the proposed frameworks.
GrassmannNet-TS expectedly provides excellent results compared
to the baseline framework for all subspace dimensions. Note that
the max D¢ (.) possible for d = 3,4 and 5 are 2.72, 3.14 and 3.51
respectively

the subspace dimension d are presented in Table 3. The
baseline, as expected, performs poorly. This is because
during the training phase, the network received conflicting
ground-truth information because of the permutation and
sign flips inherently present in the data. On the other hand,
GrassmannNet-TS yields excellent performance as it is in-
variant to these transformations by design. We reiterate that
this is possible only in the case of regression directly on the
Grassmann tangent space since mapping to the Grassmann
manifold is infeasible because of the very large number of
variables required to represent the projection matrix. The
outputs of the baseline as well as GrassmannNet-TS using
the Fréchet mean as the pole are also presented visually in

Tables | and 2 for two test images for d = 4, 5 respectively,
and show similar trends. The choice of the pole does not
seem to affect the results significantly except in the case of
d = 5 where the Fréchet mean performs better. Additional
results are shown in the Supplementary Material.

5. Deep regression on the unit hypersphere for
multi-class classification

Reformulating classification as mapping to the unit hy-
persphere: For multi-class classification problems, deep
networks usually output a probability distribution, where
one uses the mode of the distribution to predict the class la-
bel. What ensures that the output elements form a probabil-
ity distribution is the ”softmax layer”. However, by using a
square-root parametrization — replacing each element in the
distribution by its square-root — we can map a probability
distribution to a point on the non-negative orthant of a unit
hypersphere S¢, where C' is now the number of classes.
The square-root parameterization reduces the complicated
Riemannian metric on the space of probability density func-
tions, the Fisher-Rao metric, to the simpler Euclidean inner
product on the tangent space of the unit hypersphere with
closed form expressions for the geodesic distance, exponen-
tial and logarithm maps [38]. In this work, equipped with
the knowledge of differential geometry of the sphere, we

1334

propose different loss functions for the tackling the classifi-
cation problem. We consider two main variants — learning
a network to map to the sphere directly or map to its tan-
gent space. We note that the constraint for a point to be
on a sphere or to be a probability distribution is simple and
can be easily satisfied by using an appropriate normaliza-
tion (dividing by its 2-norm or using softmax). However,
mapping to the tangent space of the sphere provides a novel
perspective to the same problem and is more general since
as we showed earlier, it is necessary for the Grassmannian.

Consider a classification problem with C' classes. For a
given input vector X, let the ground-truth probability distri-
bution over the class labels be c¢,4. The corresponding point
on 8¢ is given by cg, such that cs(i) = +/cpa(i),i =
1...C. The pole ug for constructing the tangent space
TusSC is chosen to be the point on S¢ corresponding to
the uniform distribution upq, uyq(i) = &,i =1...C. Let
¢ be the desired point on Ty, ;S for the input x and is given
by output of the log map £ = exp;sl(cs). Let the output
of the last fully connected layer be denoted by o.

Geometry of the unit hypersphere [2]: The the n-
dimensional unit sphere denoted as S™ and is defined as
S" = {(ml,xg,...,xn+1) S R”+1| E;:_ll l‘? = 1}.
Given any two points x,y € S™, the geodesic distance be-
tween x and y is calculated using d(x,y) = cos™1(x,y).
For a given point x € S", the tangent space of S™ at x
is given by 758" = {¢ € R"| xT¢ = 0}. Since the
Riemannian metric (the inner product on the tangent space)
is the usual Euclidean inner product, the distance function
on the tangent space induced by this inner product is the
Euclidean distance. The exponential map exp : 1xS" —
S™ is computed using the following formula: exp, & =
cos([|¢])x + sin(|\§||)H§TH, where ¢ € Ty S™. For x,y €
8™, the inverse exponential map exp ! : 8" — T, S™ is
given by exp;l(y) = %Px(y —x). Px(v)is
the projection of a vector v . € R™ onto T, S", given by
Py(v) = (I, — xxT)v, I, is the n x n identity matrix.

5.1. Mapping to the hypersphere directly: SNet-M

In this case, the network directly outputs points on the
sphere and a training pair is represented as (x, cg). We call
this framework Snet-M. At test time, the network outputs a
point on the sphere and the corresponding probability dis-
tribution is computed by squaring the elements of the out-
put. We propose the following loss functions on the sphere.
While training, the loss is averaged over the entire batch.
In this case, we also employ a normalizing layer as the last
layer of the network which guarantees that 6 lies on S¢.

(1) Euclidean loss on S¢ : This simply measures the Eu-
clidean distance between two points on a sphere and
does not take into account the non-linear nature of the
manifold: Lg,, = |lcs — ﬁ“%

euc

(2) Geodesic loss on S : The “true” distance be-
tween the two points on the sphere is given by § =
cos~!{cg, ﬁ> Since minimizing this function di-
rectly leads to numerical difficulties, we instead mini-

mize its surrogate, Ls,,, = 1 — cos 6.

5.2. Mapping to the hypersphere via its tangent
space: SNet-TS

Here, given an input, the algorithm first produces an in-
termediate output on T}, S¢ and then the exponential map
is used to compute the desired point on S¢. The corre-
sponding probability distribution is computed by simply
squaring each element of the vector. We refer to this frame-
work as SNet-TS. A training example, then, is of the form
(x,&), where ¢ is the desired tangent vector. We propose
the following loss functions on T}, S€.

(1) Euclidean loss on TUSSC: Measures the Euclidean
distance between two points on the tangent space of
the sphere : Lz, = || — 6||3. The output, 6, is

however not guaranteed to lie on Ty, S since a point

on TS needs to satisfy the constraint x7¢ = 0.

Therefore, we first project 6 to the Ty, S¢ and then

use the exponential map.

(2) Euclidean + Orthogonal loss on T}, S C: In order to
improve the “tangentness” of the output vector, we add
the inner product loss that encourages the orthogonal-
ity of the output vector relative to the pole, which is
the tangent space constraint: Lt ,, = ||¢ — 6]|3 +
)\(éTus)2.

(3) Projection loss on TUSSC: Since a closed form
expression exists to project an arbitrary vector onto
TusS®, we implement the projection layer as the last
layer that guarantees that the output of the projection
layer lies on T, S¢. We compute the Euclidean loss
between the projected vector and the desired tangent:

Lt,,.; = |les — Pugol[3.

5.3. Experiments with image classification

Image classification problem is a widely studied problem
in computer vision and will serve as an example to demon-
strate training a network to map to points on a unit hyper-
sphere and its tangent space. We now describe the experi-
ments conducted using MNIST and CIFAR-10 datasets. We
train 6 networks with different loss functions. The first net-
work is a baseline using the softmax layer to output a prob-
ability distribution directly and employs the well-known
cross-entropy loss. The next two networks use the SNet-M
framework and Lg,,, and Lg,,, as the loss functions. The
desired outputs in this case lie on S¢ and the network em-
ploys a normalizing layer at the end in order force the output
vector to lie on the S¢. The ground-truth output vectors are

1335

Desired Output of

Test Accuracy

Test Accuracy

Framework 1 vork Lieson Z0ss Funetion 'ViNIST (%) on CIFAR-10 (%)
Baseline Cross Entropy 99.224 (0.0306) 78.685 (0.3493)
Ls.,.,. 99.263 (0.0479) 79.738 (0.4009)
SNet-M s¢ Sgeo 99.293 (0.0343) 80.024 (0.5131)
Lr,,. 99.293 (0.0691) 77.548 (0.5620)
SNet-TS TusS¢ Ly, 99.279 (0.0448) 77.708 (0.3517)
Tpro 99.332 (0.0600) 76.047 (1.6225)

Table 4. Avg test accuracy (std. dev.) over 10 runs using different loss functions on S and T, S ©, compared to the cross entropy loss.

obtained by using the square-root parametrization. The fi-
nal 3 networks employ the SNet-TS framework and L7,
Lr,.,, and L, . as the loss functions. The desired output
vector, in this case, should lie on T, S C. The required log-
arithm and exponential maps are computed using the Man-
ifold Optimization toolbox [6]. We note that the purpose of
the experiments is to show that for some chosen network ar-
chitecture, the proposed loss functions that are inspired by
the geometry of the hypersphere, perform comparably with

the cross-entropy loss function.

MNIST: The MNIST dataset [31] consists a total of
60000 images of hand-written digits (0-9). Each image is of
size 28 x 28 and is in grayscale. The task is to classify each
image into one of the 10 classes (0-9). The dataset is split
into training and testing sets with 50000 and 10000 images
respectively. We use the LeNet-5 architecture as the neural
network [31]. The network consists of 2 convolutional and
max-pooling (conv) layers followed by 2 fully-connected
(fc) layers. ReLU non-linearity is employed. The filters
are of size 5 x 5. The first and second conv layers produce
32 and 64 feature maps respectively. The first and second fc
layers output 1024 and 10 elements respectively. The net-
works are trained for 50000 iterations with a batch size of
100 using Adam optimizer [27] with learning rate of 10~3.

CIFAR-10: The CIFAR-10 dataset [29] consists a total of
60000 RGB natural images. Each image is of size 32 x 32.
The task is to classify each image into one of the 10 classes
(Airplane, Automobile, Bird, Cat, Deer, Dog, Frog, Horse,
Ship, Truck). The dataset is split into training and testing
sets with 50000 and 10000 images respectively. The net-
work consists of 2 conv layers with max-pooling and lo-
cal response normalization followed by 2 fc layers. ReLU
non-linearity is employed. Each input image is mean sub-
tracted and divided by its standard deviation. Data augmen-
tation using 10 24 x 24 random crops per input image is
employed to reduce overfitting. At test time, the central
24 x 24 region is used as the input to the network, after per-
forming the same normalization as the training inputs. The
networks are trained for 500000 iterations with a batch size
of 100 using Adam optimizer with learning rate of 1073,
For each dataset, we fix the network architecture and
train the 6 versions of the network with different loss func-

tion as described above. We use A = 1 for Ly ,,. The
image recognition accuracies obtained on the test set (aver-
aged over 10 runs) are shown in Table 4.

The results indeed show that some of the proposed loss
functions tend to perform better than cross entropy. For
both datasets and especially CIFAR-10, SNet-M yields bet-
ter performance than cross entropy and within this frame-
work, geodesic loss performs better compared to Euclidean
loss. SNet-TS shows improvements in accuracy in the case
of MNIST, albeit with higher variance in the accuracy.

6. Conclusion

In this paper, we have studied the problem of learning in-
variant representations, which are at the heart of many com-
puter vision problems, where invariance to physical factors
such as illumination, pose, etc often lead to representations
with non-Euclidean geometric properties. We have shown
how deep learning architectures can be effectively extended
to such non-linear target domains, exploiting the knowledge
of data geometry. Through two specific examples — pre-
dicting illumination invariant representations which lie on
the Grassmannian, and multi-class classification by map-
ping to a scale-invariant unit hypersphere representation —
we have demonstrated how the power of deep networks can
be leveraged and enhanced by making informed choices
about the loss function while also enforcing the required
output geometric constraints exactly. Extensions to other
geometrically constrained representations, such as symmet-
ric positive-definite matrices are evident. On the theoretical
side, extending the current framework to applications where
data points may have wider spread from their centroid, and
to non-differentiable manifolds which arise in vision remain
interesting avenues for the future.

Acknowledgements

This work was supported in part by ARO grant number
WO11INF-17-1-0293 and NSF CAREER award 1451263.
We thank Qiao Wang and Rushil Anirudh for helpful dis-
cussions.

1336

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, 1. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-
den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Tensor-
Flow: Large-scale machine learning on heterogeneous sys-
tems, 2015. Software available from tensorflow.org.

P--A. Absil, R. Mahony, and R. Sepulchre. Optimization al-
gorithms on matrix manifolds. Princeton University Press,
2009.

M. Banerjee, R. Chakraborty, E. Ofori, M. S. Okun, D. E.
Viallancourt, and B. C. Vemuri. A nonlinear regression tech-
nique for manifold valued data with applications to medical
image analysis. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, June 2016.

M. Banerjee, R. Chakraborty, E. Ofori, D. Vaillancourt, and
B. C. Vemuri. Nonlinear regression on riemannian manifolds
and its applications to neuro-image analysis. In International
Conference on Medical Image Computing and Computer-
Assisted Intervention, pages 719-727. Springer, 2015.

E. Begelfor and M. Werman. Affine invariance revisited.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, volume 2, pages 2087-2094. IEEE,
2006.

N. Boumal, B. Mishra, P.-A. Absil, R. Sepulchre, et al.
Manopt, a matlab toolbox for optimization on manifolds.
Journal of Machine Learning Research, 15(1):1455-1459,
2014.

M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Van-
dergheynst. Geometric deep learning: going beyond eu-
clidean data. IEEE Signal Processing Magazine, 2017.

J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral
networks and locally connected networks on graphs. Inter-
national Conference on Learning Representations, 2014.

A. Byravan and D. Fox. Se3-nets: Learning rigid body mo-
tion using deep neural networks. IEEE International Confer-
ence on Robotics and Automation, 2016.

R. Clark, S. Wang, H. Wen, A. Markham, and N. Trigoni.
Vinet: Visual-inertial odometry as a sequence-to-sequence
learning problem. AAAI Conference on Artificial Intelli-
gence, 2017.

A. de Brébisson and P. Vincent. An exploration of softmax
alternatives belonging to the spherical loss family. Interna-
tional Conference on Learning Representations, 2016.

A. Edelman, T. A. Arias, and S. T. Smith. The geometry of
algorithms with orthogonality constraints. SIAM journal on
Matrix Analysis and Applications, 20(2):303-353, 1998.

R. Epstein, P. W. Hallinan, and A. L. Yuille. 542 eigenim-
ages suffice: an empirical investigation of low-dimensional
lighting models. In Proceedings of the Workshop on Physics-
Based Modeling in Computer Vision, page 108. IEEE, 1995.

(14]

(15]

[16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

1337

P. T. Fletcher. Geodesic regression and the theory of least
squares on Riemannian manifolds. International Journal of
Computer Vision, 105(2):171-185, 2013.

T. Fletcher. Geodesic regression on Riemannian mani-
folds. In Proceedings of the Third International Workshop
on Mathematical Foundations of Computational Anatomy-
Geometrical and Statistical Methods for Modelling Biologi-
cal Shape Variability, pages 75-86, 2011.

A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman.
From few to many: Illumination cone models for face recog-
nition under variable lighting and pose. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 23(6):643—
660, 2001.

P. W. Hallinan. A low-dimensional representation of human
faces for arbitrary lighting conditions. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 1994.

J. Hamm and D. D. Lee. Grassmann discriminant analysis:
a unifying view on subspace-based learning. In Proceedings
of the International Conference on Machine Learning, pages
376-383. ACM, 2008.

M. Harandi and B. Fernando. Generalized
backpropagation,\’{E} tude de cas: Orthogonality. arXiv
preprint arXiv:1611.05927, 2016.

M. Henaff, J. Bruna, and Y. LeCun.
tional networks on graph-structured data.
arXiv:1506.05163, 2015.

Y. Hong, R. Kwitt, N. Singh, B. Davis, N. Vasconcelos, and
M. Niethammer. Geodesic regression on the Grassmannian.
In European Conference on Computer Vision, pages 632—
646. Springer, 2014.

Z. Huang and L. Van Gool. A Riemannian network for SPD
matrix learning. AAAI Conference on Artificial Intelligence,
2017.

Z.Huang, C. Wan, T. Probst, and L. Van Gool. Deep learning
on Lie groups for skeleton-based action recognition. Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2016.

Z. Huang, J. Wu, and L. Van Gool. Building deep networks
on Grassmann manifolds. arXiv preprint arXiv:1611.05742,
2016.

S. Jetley, N. Murray, and E. Vig. End-to-end saliency map-
ping via probability distribution prediction. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition,
pages 5753-5761, 2016.

H. J. Kim, N. Adluru, M. D. Collins, M. K. Chung, B. B.
Bendlin, S. C. Johnson, R. J. Davidson, and V. Singh. Multi-
variate general linear models (mglm) on Riemannian man-
ifolds with applications to statistical analysis of diffusion
weighted images. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2705—
2712, 2014.

D. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. International Conference on Learning Represen-
tations, 2015.

A. V. Knyazev and M. E. Argentati. Principal angles between
subspaces in an a-based scalar product: algorithms and per-

Deep convolu-
arXiv preprint

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

turbation estimates. SIAM Journal on Scientific Computing,
23(6):2008-2040, 2002.

A. Krizhevsky. Learning multiple layers of features from
tiny images. Technical Report, 2009.

J. D. Lafferty and G. Lebanon. Diffusion kernels on sta-
tistical manifolds. Journal of Machine Learning Research,
6:129-163, 2005.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278-2324, 1998.

Y. M. Lui. Advances in matrix manifolds for computer vi-
sion. Image and Vision Computing, 30(6):380-388, 2012.

J. Masci, D. Boscaini, M. Bronstein, and P. Vandergheynst.
Geodesic convolutional neural networks on Riemannian
manifolds. In Proceedings of the IEEE International Con-
ference on Computer Vision workshops, pages 37-45, 2015.
M. Niepert, M. Ahmed, and K. Kutzkov. Learning convo-
lutional neural networks for graphs. In Proceedings of the
International Conference on Machine Learning, 2016.

P. Paysan, R. Knothe, B. Amberg, S. Romdhani, and T. Vet-
ter. A 3d face model for pose and illumination invariant face
recognition. In Sixth IEEE International Conference on Ad-
vanced video and signal based surveillance, pages 296-301.
IEEE, 2009.

X. Pennec, P. Fillard, and N. Ayache. A Riemannian frame-
work for tensor computing. International Journal of Com-
puter Vision, 66(1):41-66, 2006.

X. Shi, M. Styner, J. Lieberman, J. G. Ibrahim, W. Lin,
and H. Zhu. Intrinsic regression models for manifold-valued
data. In International Conference on Medical Image Com-
puting and Computer-Assisted Intervention, pages 192—199.
Springer, 2009.

(38]

(39]

(40]

[41]

(42]

(43]

(44]

(45]

1338

A. Srivastava, I. Jermyn, and S. Joshi. Riemannian analysis
of probability density functions with applications in vision.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1-8. IEEE, 2007.

A. Srivastava and E. Klassen. Bayesian and geometric sub-
space tracking. Advances in Applied Probability, 36(01):43—
56, 2004.

A. Srivastava and P. Turaga. Riemannian computing in com-
puter vision. Springer International Publishing, 1 2015.

S. Taheri, P. Turaga, and R. Chellappa. Towards view-
invariant expression analysis using analytic shape manifolds.
In IEEE International Conference on Automatic Face &
Gesture Recognition and Workshops, pages 306-313. IEEE,
2011.

P. Turaga, A. Veeraraghavan, A. Srivastava, and R. Chel-
lappa. Statistical computations on Grassmann and Stiefel
manifolds for image and video-based recognition. [EEE
Transactions on Pattern Analysis and Machine Intelligence,
33(11):2273-2286, 2011.

R. Vemulapalli, F. Arrate, and R. Chellappa. Human action
recognition by representing 3D skeletons as points in a Lie
group. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 588-595, 2014.

R. Vemulapalli and R. Chellapa. Rolling rotations for rec-
ognizing human actions from 3D skeletal data. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4471-4479, 2016.

P. Vincent, A. de Brébisson, and X. Bouthillier. Efficient
exact gradient update for training deep networks with very
large sparse targets. In Advances in Neural Information Pro-
cessing Systems, pages 1108-1116, 2015.

