
Learning Invariant Riemannian Geometric Representations Using Deep Nets

Suhas Lohit

Arizona State University

slohit@asu.edu

Pavan Turaga

Arizona State University

pturaga@asu.edu

Abstract

Non-Euclidean constraints are inherent in many kinds

of data in computer vision and machine learning, typically

as a result of specific invariance requirements that need to

be respected during high-level inference. Often, these geo-

metric constraints can be expressed in the language of Rie-

mannian geometry, where conventional vector space ma-

chine learning does not apply directly. The central ques-

tion this paper deals with is: How does one train deep neu-

ral nets whose final outputs are elements on a Riemannian

manifold? To answer this, we propose a general frame-

work for manifold-aware training of deep neural networks

– we utilize tangent spaces and exponential maps in or-

der to convert the proposed problem into a form that al-

lows us to bring current advances in deep learning to bear

upon this problem. We describe two specific applications

to demonstrate this approach: prediction of probability dis-

tributions for multi-class image classification, and predic-

tion of illumination-invariant subspaces from a single face-

image via regression on the Grassmannian. These applica-

tions show the generality of the proposed framework, and

result in improved performance over baselines that ignore

the geometry of the output space. In addition to solving this

specific problem, we believe this paper opens new lines of

enquiry centered on the implications of Riemannian geom-

etry on deep architectures.

1. Introduction

Many applications in computer vision employ data that

are naturally represented on manifolds [32]. Shapes that are

invariant to affine transforms [5] and linear dynamical sys-

tems [42] can be represented as points on the Grassmannian.

In diffusion tensor imaging, each ”pixel” of the ”image” is

a symmetric positive definite (SPD) matrix and the space

of SPD matrices forms a manifold [36]. Lie groups like

SO(3) and SE(3) are used to represent human skeletons

[43, 44]. Predicting probability density functions is another

area of interest, applicable to multi-class classification and

bag-of-words models [30], and saliency prediction [25].

Several years of research has presented us with vari-

ous tools for statistics, and thereby machine learning ap-

proaches to be deployed when the objects of interest have

manifold-valued domains (c.f. [40]). In deep learning, it is

usually the case that data samples are viewed as elements

of vector spaces. Any additional structure that the data

may possess is left to be learned through the training exam-

ples. However, recently, there has been interest in employ-

ing deep learning techniques for non-Euclidean inputs as

well: [7] including graph-structured data [8, 20, 34] and 3D

shapes viewed as Riemannian manifolds [33]. Also, deep

networks that preserve the input geometry at each layer have

been studied for inference problems, e.g., for symmetric

positive definite matrices [22], Lie groups [23] and points

on the Stiefel manifold [24]. Another recent work consid-

ers weight matrices which are constrained to be orthogonal,

i.e., points of the Stiefel manifold, and propose a general-

ized version of backpropagation [19]. These works do not

consider output variables with geometric constraints.

In contrast to the above, instead of enforcing geometry

at the inputs, our goal is to design a general framework to

extend neural network architectures where output variables

(or deeper feature maps) lie on manifolds of known geom-

etry, typically due to certain invariance requirements. We

do not assume the inputs themselves have known geometric

structure and employ standard back-propagation for train-

ing. Equivalently, one may consider this approach as trying

to estimate a mapping from an input x ∈ R
N to a manifold-

valued point m ∈ M i.e., f : RN → M, using a neural

network, where m is the desired output.

That is, this paper provides a framework for regression

that is applicable to predicting manifold-valued data and at

the same time is able to leverage the power of neural nets

for feature learning, using standard backpropagation for un-

constrained optimization. In this paper, we focus on two

manifolds that are of wide interest in computer vision – the

hypersphere and the Grassmannian. We describe the appli-

cations next.

Face → Illumination Subspace as regression on the

Grassmannian: The illumination subspace of a human

face is a popular example from computer vision where for

1329

a particular subject, the set of all face images of that sub-

ject under all illumination conditions can be shown to lie

close to a low dimensional subspace [17]. These illumi-

nation subspaces are represented as points on the Grass-

mannian (or Stiefel, depending on application) manifold.

Several applications such as robust face recognition have

been proposed using this approach. In this work, in order to

demonstrate how deep networks can be employed to map to

Grassmannian-valued data, we consider the problem of esti-

mating the illumination subspace from a single input image

of a subject under unknown illumination. We refer to this

application as Face→Illumination Subspace (F2IS).

Multi-class classification as regression on the unit hy-

persphere: Classification problems in deep learning use

the softmax layer to map arbitrary vectors to the space of

probability distributions. However, more formally, proba-

bility distributions can be easily mapped to the unit hyper-

sphere, under a square-root parametrization [38] inspired by

the Fisher-Rao metric used in information geometry. Thus,

multi-class classfication can be posed as regression to a hy-

persphere. Indeed, there has been work recently that con-

sider spherical-loss functions which use the Euclidean loss

on unit-norm output vectors of a network [45, 11]. In this

work, we propose loss-functions for the classification prob-

lem based on the geometry of the sphere.

Main contributions: In this paper, we address the train-

ing of neural networks using standard backpropagation to

output elements that lie on Riemannian manifolds. To this

end, we propose two frameworks in this paper:

(1) We discuss how to map to simpler manifolds like the

hypersphere directly using a combination of geodesic

loss functions as well as differentiable constraint sat-

isfaction layers such as the normalization layer in the

case of the hypersphere.

(2) We also propose a more general framework that is ap-

plicable to Riemannian manifolds that may not have

closed-form expressions for the geodesic distance or

when the constraints are hard to encode as a layer in

the neural network. In this framework, the network

maps to the tangent space of the manifold and then the

exponential map is employed to find the desired point

on the manifold.

We carry out experiments for the applications described

above in order to evaluate the proposed frameworks and

show that geometry-aware frameworks result in improved

performance compared to baselines that do not take output

geometry into account.

2. Related work

We will now point to some related work that also exam-

ine the problem of predicting outputs with geometric struc-

ture using neural networks. Byravan and Fox [9] and Clark

et al. [10] design deep networks to output SE(3) trans-

formations. The set of transformations SE(3) is a group

which also possesses manifold structure, i.e., a Lie group.

It is not straightforward to predict elements on SE(3) since

it involves predicting a matrix constrained to be orthogonal.

Instead, the authors map to the Lie algebra se(3) which is

a linear space. We note that the Lie algebra is nothing but

the tangent space of SE(3) at the identity transformation

and can be considered a particular case of the general for-

mulation presented in this paper. Huang et al. [23] use the

logarithm map to map feature maps on SE(3) to se(3) be-

fore using regular layers for action recognition. However,

the logarithm map is implemented within the network, since

for SE(3), this function is simple and differentiable. In

contrast, in this work, we require the network output to be

manifold-valued and thus do not impose any geometry re-

quirements at the input or for the feature maps. This also

means that a suitable loss function needs to be defined, tak-

ing into account, the structure of the manifold of interest.

In a more traditional learning setting, there has been

work using geodesic regression, a generalization of linear

regression, on Riemannian manifolds [15, 14, 37, 21, 26],

where a geodesic curve is computed such that the aver-

age distance (on the manifold) from the data points to the

curve is minimized. This involves computing gradients on

the manifold. Recent work has also included non-linear re-

gression on Riemannian manifolds [4, 3]. Here, the non-

linearity is provided by a pre-defined kernel function and

the mapping algorithm solves an optimization problem it-

eratively. Our work is a non-iterative deep-learning based

approach to the problem described in Banerjee et al. [4]

as regression with the independent variable in R
N and the

dependent variable lying on a manifold M. That is, un-

like these works, the mapping f : RN → M in our case

is a hierarchical non-linear function, learned directly from

data without any hand-crafted feature extraction, and the re-

quired mapping is achieved by a simple feed forward pass

through the trained network.

All neural nets in the paper are trained and tested using

Tensorflow [1], making use of its automatic differentiation

capability. Before we discuss the contributions of this work,

if required, please refer supplementary material for defini-

tions of some important terms from differential geometry.

3. Two approaches for deep manifold-aware

prediction

We propose two ways of predicting manifold-valued data

using neural networks with standard backpropagation. See

1330

Method 1:
Map to manifold

directly

Method 2:
Map via the

tangent space

Neural Network

M

TpM

p

v

q
Expp

-1
Expp

Input Input

Neural Network

Figure 1. This figure illustrates the two approaches presented in

this paper for training neural networks to predict manifold-valued

data. It also explains some basic concepts from differential ge-

ometry visually. M is a manifold, TPM is the tangent space at

p ∈ M. p is called the pole of the tangent space. The curve con-

nected p and q ∈ M is the geodesic curve γ. v is a point on TpM
such that the exponential map expp(v) = γ(1) and the logarithm

map exp−1

p (q) = v.

Figure 1 for visual illustration and important notation.

Mapping to the manifold via geodesic-loss functions:

In this case, the network directly maps input vectors to ele-

ments on the manifold M and is required to learn the man-

ifold constraints from the data. If we represent the neu-

ral network as a mapping NN, we have NN: R
N → M.

Firstly, unlike simple manifolds like the sphere, manifolds

in general do not have a differentiable closed-form expres-

sion, that are also efficiently computable, for the geodesic

distance function that can be used as a loss function for the

neural network. Although one can still resort to using a dif-

ferentiable loss function such as the Euclidean distance, this

approach is not mathematically correct and does not yield

the right estimate for distance on the manifold. Secondly,

the network output has to satisfy the manifold constraints.

In the case of the sphere, it is simple to enforce the unit-

norm constraint at the output layer of the neural network

using a differentiable normalization layer. It is however

less clear how to map to more complicated manifolds such

as the Stiefel and Grassmann manifolds where the points

are usually represented by tall-thin orthonormal matrices.

That is, in addition to the unit-norm constraints, orthogo-

nality constraints between all pairs of columns in the matrix

need to be enforced. The Grassmann manifold, presents a

more difficult challenge, since each point in this space is an

equivalence class of points on the Stiefel manifold that are

orthogonal transforms of each other. As we will see later,

the data representation that respects this equivalence (pro-

jection matrix) does not admit a feasible way for a neural

network to map to this manifold directly.

Mapping via the tangent space – toward a general

framework: This is a more general formulation that is

applicable to all the manifolds of interest. Here, the net-

work first maps to a vector on the tangent space constructed

at a suitable pole p ∈ M, which forms the intermediate

output. Once the network outputs the required tangent, the

exponential map (expp) is employed to find the correspond-

ing point on the manifold. Mathematically, we decompose

the desired function f : RN → M as f = expp ◦ NN and

NN: RN → TpM. Intuitively, since the tangent space is a

vector space that encodes geometric constraints implicitly,

it is attractive here, as neural networks have been shown to

be effective for estimating vector-valued data. We note that

an assumption is implicit in this framework: all the data

points of interest on the manifold are much closer to p than

the cut-locus of the manifold and in this case, the distance

on the tangent space serves as a good approximation to the

geodesic distance. This is the same assumption that goes

into currently successful approaches for statistical comput-

ing methods on manifolds [36]. In practice, we find this

assumption is respected in our applications as well.

4. Deep regression on the Grassmannian for

F2IS

Face → Illumination Subspace: We will now describe

an ill-posed inverse problem from computer vision that

serves as our canonical application to illustrate prediction

on the Grassmann manifold using a neural network. It is

well known that the set of images of a human face in frontal

pose under all illuminations lies close to a low-dimensional

subspace, known as the illumination subspace [17, 13]. If

we compute the eigenvectors of this set of images for dif-

ferent subjects using PCA, we observe that the top 5 princi-

pal components (PCs) capture nearly 90% of the variance.

More importantly, for this paper, an obvious pattern can be

observed between the subject under consideration and the

PCs of the illumination subspace. Firstly, the identity of the

subject can be easily determined from the PCs. Secondly,

as noted by Hallinan [17], we observe that the illumination

patterns of top 5 principal components are the same across

subjects only up to certain permutations and sign flips. 1

Using the terminology in [17], we can interpret the visual-

izations of the top 5 PC’s as a face under the following re-

spective illuminations: frontal lighting, side lighting, light-

ing from above/below, extreme side lighting and lighting

from a corner. The 1st and 2nd PC’s have eigenvalues in

a similar range and sometimes exchange places depending

on the subject. The 3rd PC, corresponding to eigenvalue is

1It is clear that for an eigenvector e, −e is also an eigenvector.

1331

always at the same place. The 4th and 5th PCs have eigen-

values in a similar range and can interchange places for a

few subjects.

The illumination subspace refers to the linear span of

these eigenvectors, and is a point on the Grassmannian.

When we represent the subspace by its projection ma-

trix representation, the representation becomes invari-

ant to both sign flips and permutations (in fact, invariant

to the full set of right orthogonal transforms).

In this paper, as an example of predicting points on

Grassmann manifold, we define the following ill-posed in-

verse problem: given a human face in frontal pose under an

unknown illumination, output the corresponding illumina-

tion subspace. We will refer to this problem as the ”Face

→ Illumination Subspace” problem or F2IS. In our exper-

iments, we consider the illumination subspace to be of di-

mension d = 3, 4,or 5.

Geometry of the Grassmannian: The Grassmann mani-

fold, denoted by Gn,d, is a matrix manifold and is the set

of d-dimensional subspaces in R
n. To represent a point

on Gn,d, we can use an orthonormal matrix, U ∈ R
n×d

(UTU = In), to represent the equivalence class of points in

R
n×d, such that, two points are equivalent if their columns

span the same d-dimensional subspace. That is, Gn,d =
{[U]}, where [U] = {UQ|UTU = I,Q is orthogonal}.

In order to uniquely represent the equivalence class [U] ∈
Gn,d, we use its projection matrix representation P =

UUT ∈ R
n×n, where U is some point in the equiva-

lence class. UUT contains
n(n+1)

2 unique entries as it is

a symmetric matrix. Clearly, for any other point in the

same equivalence class UQ, its projection matrix represen-

tation is (UQ)(UQ)T = UUT , as required. Thus, the

space of all rank d projection matrices of size n × n,

Pn is diffeomorphic to Gn,d. The identity element of

Pn is given by IPn
= diag(Id,0n−d), where 0n−d is

the matrix of zeros of size (n − d) × (n − d). In order

to find the exponential and logarithm maps for Gn,d, we

will view Gn,d as a quotient space of the orthogonal group,

Gn,d = On/(On−d × Od). The Riemannian metric in this

case is the standard inner product [12] and thus, the dis-

tance function induced on the tangent space is the Euclidean

distance function. Using this formulation, given any point

P = UUT ∈ Pn, a geodesic of Pn at IPn
passing through

P at t = 0, is a particular geodesic α(t) of O(n) com-

pletely specified by a skew-symmetric X ∈ R
n×n: α(t) =

expm(tX)IP expm(−tX), where expm(.) is the matrix ex-

ponential and P = α(1), such that X belongs to the set M

given by M =

{[

0d A

−AT 0n−d

]

| A ∈ R
d×(n−d)

}

. X

serves as the tangent vector to Gn,d at the identity and is

completely determined by A. The geodesic between two

points P1,P2 ∈ Pn, is computed by rotating P1 and P2

to IPn
and some P ∈ Pn respectively. The exponential

map, takes as inputs, the pole and the tangent vector and

returns the subspace span(U), represented by some point

UQ. Refer Srivastava and Klassen [39] and Taheri et al.

[41] for algorithms to compute exponential and log maps

for the Grassmannian.

Synthetic dataset for F2IS: We use the Basel Face

Model dataset [35] in order to generate 250 random 3D

models of human faces {Si}, i = 1 . . . 250 (200 for train-

ing and 50 for testing chosen randomly).2 We then gen-

erate a set of 64 faces for each subject where each face is

obtained by varying the direction of the point source illu-

mination for the frontal pose i.e., Si = {Fj
i}, j = 1 . . . 64.

The directions of illumination are the same as the ones used

in the Extended Yale Face Database B [16]. Each face im-

age is converted to grayscale and resized to 28 × 28. Once

we have the 250 sets of faces under the 64 illumination

conditions, we calculate the illumination subspace for each

subject as follows. For each subject, we first subtract the

mean face image of that subject under all illumination con-

ditions and then calculate the principal components (PCs).

For a subject i and an illumination condition j, we will

denote the input face image by F
j
i and the desired d top

PCs by E1
i ,E

2
i , . . . ,E

d
i (note that the PCs do not depend

on the input illumination condition). It is clear that every

Ek
i , k = 1, 2, . . . , d is of size 28× 28 and 〈Ek

i ,E
l
i〉 = 1, if

k = l and 0 otherwise.

If we lexicographically order each Ek
i to form a

vector vec(Ek
i) of size 784 × 1 and for each sub-

ject, arrange the Ek
i ’s to form a matrix Ui =

[vec(E1
i) vec(E

2
i) . . . vec(E

d
i)], then the orthonormality

constraint can be rewritten as UT
i Ui = Id, where Id is

the identity matrix of size d× d. As we argued earlier, due

to the nature of the problem, Ui should be represented as a

point on the Grassmann G784,d using the projection matrix

representation. With this notation, the desired mapping is

f : R28×28 → G784,d such that f(Fj
i) = UiQ ∈ [Ui], the

required equivalence class or equivalently, UiU
T
i .

For the inputs F
j
i during training and testing, we do not

use all the illumination directions (j′s). We only use illu-

mination directions that light at least half of the face. This

is because for extreme illumination directions, most of the

image is unlit and does not contain information about the

identity of the subject, which is an important factor for de-

termining the output subspaces. We select the same 33 il-

lumination directions for all subjects to form the inputs for

the network. We randomly split the dataset into 200 subjects

for training and 50 subjects for testing. Therefore there are

33×200 = 6600 and 33×50 = 1650 different input-output

2We use a synthetic dataset because we were unable to find any large

publicly available real database that would enable training of neural net-

works without overfitting.

1332

pairs for training and testing respectively. The 33 illumina-

tion directions used for creating inputs for both the training

and test sets are given in the supplementary and are a sub-

set of the illumination directions used in the Extended Yale

Face Database B [16].

4.1. Proposed frameworks for solving F2IS

We propose two frameworks which employ networks

with nearly the same architecture: The network consists of

3 conv layers and two fc layers. ReLU non-linearity is

employed. Each conv layer produces 16 feature maps. All

the filters in the conv layers are of size 11 × 11. The first

fc layer produces a vector of size 512. Size of the sec-

ond fc layer depends on the framework. Both networks are

trained using the Adam optimizer [27] using a learning rate

of 10−3 for 50000 iterations with a mini-batch size of 30.

Euclidean loss between the desired output and ground truth

is employed in both cases. We show that the choice of rep-

resentation of the desired output is crucial in this applica-

tion. We carry out three sets of experiments using subspace

dimension d = 3, 4 and 5.

Baseline: The first framework is a baseline that attempts

to directly map to the desired PCs represented as a matrix

Ui, given F
j
i , i.e., NN(Fj

i) = Ui. We use the Euclidean loss

function between the ground-truth Ui and the network out-

put Ûi for training: Lb = ||Ui − Ûi||
2
F That is, instead of

regressing to the desired subspace, the network attempts to

map to its basis vectors (PCs). However, the mapping from

F
j
i to Ui is consistent across subjects only up to certain

permutations and sign flips in the PCs. Hence, without

correcting these inconsistencies ad hoc, the problem is ren-

dered too complicated, since during the training phase, the

network receives conflicting ground-truth vectors depend-

ing on the subject. Thus, this framework performs poorly as

expected. It is important to note that mapping to the correct

representation UUT (which respects Grassmann geometry

and is invariant to these inconsistencies) directly is not fea-

sible because the size of UUT is too large (784×785
2) and

has rank constraints. This necessitates mapping via the tan-

gent space, discussed next.

Mapping via the Grassmann tangent space –

GrassmannNet-TS: The second framework repre-

sents the output subspaces as points on the Grassmann

manifold and first maps to the Grassmann tangent space and

then computes the required subspace using the Grassmann

exponential map. This circumvents the problem of very

large dimensionality encountered in the first approach since

the tangent vector has a much smaller intrinsic dimension-

ality. This representation has a one-to-one mapping with

the projection matrix representation and thus, is naturally

invariant to the permutations of the PCs and all combina-

tions of sign flips present in the data. And the mapping

we intend to learn becomes feasible in a data-driven

framework. Mathematically, NN: R784×d → TpG784,d.

As shown in Section 4, a tangent at some pole p is given

by the matrix X, which in turn is completely specified by

the matrix A ∈ R
(784−d)×d, a much smaller matrix. There-

fore, we design a network to map an input face F
j
i to the

desired matrix Ai. An training pair can be represented as

(Fj
i ,Ai) and the let the output of the network be the vec-

torized version of a matrix Âi ∈ R
(784−d)×d. The Ai’s are

computed using the Grassmann logarithm map in [39]. We

also note that A does not possess any additional structure to

be enforced and thus a neural network can be easily trained

to map to this space using just the Euclidean loss between

Ai and the network output Âi: LG = ||Ai − Âi||
2
F .

Pole of tangent space: This is a design choice and we

conduct experiments with two different poles: (1) We com-

pute the the illumination subspace of the entire training set.

We will denote these PCs by Ek
Tr, k = 1, 2, . . . , d and the

corresponding matrix representation by Ud
Tr, which forms

the pole of the Grassmann tangent space. (2) It is com-

mon practice to use the Fréchet (also known as geometric

or Karcher) mean as the pole of the tangent space. We com-

pute the Fréchet mean of the ground-truth subspaces of the

training set using the iterative algorithm given by Turaga et

al. [42]. We denote this pole as Ud
Fr.

During the testing phase, using the output Â matrix,

we employ the exponential map for a given pole to find

the corresponding point on the Grassmann manifold. This

framework of first mapping to the Grassmann tangent space

using a network and then to the corresponding subspace

using the Grassmann exponential map is referred to as

GrassmannNet-TS. See supplementary material for details

on visualizing the output Grassmann point.

4.2. Experimental results on F2IS

For the frameworks described in Sections 4.1, we de-

scribe the results on the test set of F2IS here. We com-

pute the distance between predicted and ground-truth sub-

space as the measure to quantify the efficacy of the proposed

frameworks. Various measures exist that quantify this no-

tion based on principal angles between subspaces [18]. We

use the Grassmann geodesic distance. For two subspaces

represented by U1 and U2 ∈ Gn,d, the geodesic distance

is given by DG(U1,U2) =

(

∑d
i=1 θ

2
i

)1/2

, where θi’s

are the principal angles obtained by the SVD of UT
1 U2 =

W(cosΘ)VT, where cosΘ = diag(cos θ1, . . . , cos θd).
We use the implementation in [28] for computing the prin-

cipal angles. We report the arithmetic mean of this distance

measure for the entire test set. Note that the maximum value

of DG(.) is π
√
d

2 .

The results based on the mean subspace distance on the

test set for the proposed frameworks for different values of

1333

Input Ground-truth PCs Output of baseline n/w Output of GrassmannNet-TS

DG = 1.6694 DG = 0.7006

DG = 1.2998 DG = 0.7238

Table 1. Test results for two input images using d = 5. We can clearly observe that the GrassmannNet-TS (with pole U
d
Fr) framework

performs much better than the baseline that attempts to regress directly to the PCs. The numbers below the output images indicate the

subspace distance from the ground truth (lower the better). Note that the outputs need not be exactly the same as the groundtruth PCs since

the quantity of interest is the subspace spanned by the groundtruth PCs. See Supplementary Material for more results.

Input Ground-truth PCs Output of baseline n/w Output of GrassmannNet-TS

DG = 1.9400 DG = 0.5489

DG = 1.2735 DG = 0.6245

Table 2. Test results for two input images using d = 4. As in the case of d = 5, GrassmannNet-TS (with pole U
d
Fr) framework performs

much better than the baseline that attempts to regress directly to the PCs. See Supplementary Material for more results.

Subspace

Dim d
Baseline

GrassmannNet-TS

Pole = Ud
Tr Pole = Ud

Fr

3 0.6613 0.3991 0.3953

4 1.0997 0.5489 0.5913

5 1.4558 0.8694 0.6174
Table 3. Mean geodesic distance between predictions and

ground-truth on the test set using the proposed frameworks.

GrassmannNet-TS expectedly provides excellent results compared

to the baseline framework for all subspace dimensions. Note that

the max DG(.) possible for d = 3, 4 and 5 are 2.72, 3.14 and 3.51
respectively

the subspace dimension d are presented in Table 3. The

baseline, as expected, performs poorly. This is because

during the training phase, the network received conflicting

ground-truth information because of the permutation and

sign flips inherently present in the data. On the other hand,

GrassmannNet-TS yields excellent performance as it is in-

variant to these transformations by design. We reiterate that

this is possible only in the case of regression directly on the

Grassmann tangent space since mapping to the Grassmann

manifold is infeasible because of the very large number of

variables required to represent the projection matrix. The

outputs of the baseline as well as GrassmannNet-TS using

the Fréchet mean as the pole are also presented visually in

Tables 1 and 2 for two test images for d = 4, 5 respectively,

and show similar trends. The choice of the pole does not

seem to affect the results significantly except in the case of

d = 5 where the Fréchet mean performs better. Additional

results are shown in the Supplementary Material.

5. Deep regression on the unit hypersphere for

multi-class classification

Reformulating classification as mapping to the unit hy-

persphere: For multi-class classification problems, deep

networks usually output a probability distribution, where

one uses the mode of the distribution to predict the class la-

bel. What ensures that the output elements form a probabil-

ity distribution is the ”softmax layer”. However, by using a

square-root parametrization – replacing each element in the

distribution by its square-root – we can map a probability

distribution to a point on the non-negative orthant of a unit

hypersphere SC , where C is now the number of classes.

The square-root parameterization reduces the complicated

Riemannian metric on the space of probability density func-

tions, the Fisher-Rao metric, to the simpler Euclidean inner

product on the tangent space of the unit hypersphere with

closed form expressions for the geodesic distance, exponen-

tial and logarithm maps [38]. In this work, equipped with

the knowledge of differential geometry of the sphere, we

1334

propose different loss functions for the tackling the classifi-

cation problem. We consider two main variants – learning

a network to map to the sphere directly or map to its tan-

gent space. We note that the constraint for a point to be

on a sphere or to be a probability distribution is simple and

can be easily satisfied by using an appropriate normaliza-

tion (dividing by its 2-norm or using softmax). However,

mapping to the tangent space of the sphere provides a novel

perspective to the same problem and is more general since

as we showed earlier, it is necessary for the Grassmannian.

Consider a classification problem with C classes. For a

given input vector x, let the ground-truth probability distri-

bution over the class labels be cpd. The corresponding point

on SC is given by cS , such that cS(i) =
√

cpd(i), i =
1 . . . C. The pole uS for constructing the tangent space

TuS
SC is chosen to be the point on SC corresponding to

the uniform distribution upd,upd(i) =
1
C , i = 1 . . . C. Let

ξ be the desired point on TuS
SC for the input x and is given

by output of the log map ξ = exp−1
uS

(cS). Let the output

of the last fully connected layer be denoted by ô.

Geometry of the unit hypersphere [2]: The the n-

dimensional unit sphere denoted as Sn and is defined as

Sn = {(x1, x2, . . . , xn+1) ∈ R
n+1|

∑n+1
i=1 x2

i = 1}.

Given any two points x,y ∈ Sn, the geodesic distance be-

tween x and y is calculated using d(x,y) = cos−1〈x,y〉.
For a given point x ∈ Sn, the tangent space of Sn at x

is given by TxS
n = {ξ ∈ R

n| xT ξ = 0}. Since the

Riemannian metric (the inner product on the tangent space)

is the usual Euclidean inner product, the distance function

on the tangent space induced by this inner product is the

Euclidean distance. The exponential map exp : TxS
n →

Sn is computed using the following formula: expx ξ =
cos(||ξ||)x + sin(||ξ||) ξ

||ξ|| , where ξ ∈ TxS
n. For x,y ∈

Sn, the inverse exponential map exp−1 : Sn → TxS
n is

given by exp−1
x (y) = d(x,y)

||Px(y−x)||Px(y − x). Px(v) is

the projection of a vector v ∈ R
n onto TxS

n, given by

Px(v) = (In − xxT)v, In is the n× n identity matrix.

5.1. Mapping to the hypersphere directly: SNet­M

In this case, the network directly outputs points on the

sphere and a training pair is represented as (x, cS). We call

this framework Snet-M. At test time, the network outputs a

point on the sphere and the corresponding probability dis-

tribution is computed by squaring the elements of the out-

put. We propose the following loss functions on the sphere.

While training, the loss is averaged over the entire batch.

In this case, we also employ a normalizing layer as the last

layer of the network which guarantees that ô lies on SC .

(1) Euclidean loss on SC : This simply measures the Eu-

clidean distance between two points on a sphere and

does not take into account the non-linear nature of the

manifold: LSeuc
= ||cS − ô

||ô||2 ||
2
2.

(2) Geodesic loss on SC : The “true” distance be-

tween the two points on the sphere is given by θ =
cos−1〈cS ,

ô
||ô||2 〉. Since minimizing this function di-

rectly leads to numerical difficulties, we instead mini-

mize its surrogate, LSgeo
= 1− cos θ.

5.2. Mapping to the hypersphere via its tangent
space: SNet­TS

Here, given an input, the algorithm first produces an in-

termediate output on TuS
SC and then the exponential map

is used to compute the desired point on SC . The corre-

sponding probability distribution is computed by simply

squaring each element of the vector. We refer to this frame-

work as SNet-TS. A training example, then, is of the form

(x, ξ), where ξ is the desired tangent vector. We propose

the following loss functions on TuS
SC .

(1) Euclidean loss on TuS
SC : Measures the Euclidean

distance between two points on the tangent space of

the sphere : LTeuc
= ||ξ − ô||22. The output, ô, is

however not guaranteed to lie on TuS
SC since a point

on TuS
SC needs to satisfy the constraint xT ξ = 0.

Therefore, we first project ô to the TuS
SC and then

use the exponential map.

(2) Euclidean + Orthogonal loss on TuS
SC : In order to

improve the ”tangentness” of the output vector, we add

the inner product loss that encourages the orthogonal-

ity of the output vector relative to the pole, which is

the tangent space constraint: LTorth
= ||ξ − ô||22 +

λ(ôTuS)
2.

(3) Projection loss on TuS
SC : Since a closed form

expression exists to project an arbitrary vector onto

TuS
SC , we implement the projection layer as the last

layer that guarantees that the output of the projection

layer lies on TuS
SC . We compute the Euclidean loss

between the projected vector and the desired tangent:

LTproj
= ||cS − PuS

ô||22.

5.3. Experiments with image classification

Image classification problem is a widely studied problem

in computer vision and will serve as an example to demon-

strate training a network to map to points on a unit hyper-

sphere and its tangent space. We now describe the experi-

ments conducted using MNIST and CIFAR-10 datasets. We

train 6 networks with different loss functions. The first net-

work is a baseline using the softmax layer to output a prob-

ability distribution directly and employs the well-known

cross-entropy loss. The next two networks use the SNet-M

framework and LSeuc
and LSgeo

as the loss functions. The

desired outputs in this case lie on SC and the network em-

ploys a normalizing layer at the end in order force the output

vector to lie on the SC . The ground-truth output vectors are

1335

Framework
Desired Output of

Network Lies on
Loss Function

Test Accuracy

on MNIST (%)

Test Accuracy

on CIFAR-10 (%)

Baseline Cross Entropy 99.224 (0.0306) 78.685 (0.3493)

SNet-M SC LSeuc
99.263 (0.0479) 79.738 (0.4009)

LSgeo
99.293 (0.0343) 80.024 (0.5131)

SNet-TS TuS
SC

LTeuc
99.293 (0.0691) 77.548 (0.5620)

LTorth
99.279 (0.0448) 77.708 (0.3517)

LTproj
99.332 (0.0600) 76.047 (1.6225)

Table 4. Avg test accuracy (std. dev.) over 10 runs using different loss functions on SC and TuS
SC , compared to the cross entropy loss.

obtained by using the square-root parametrization. The fi-

nal 3 networks employ the SNet-TS framework and LTeuc
,

LTorth
and LTproj

as the loss functions. The desired output

vector, in this case, should lie on TuS
SC . The required log-

arithm and exponential maps are computed using the Man-

ifold Optimization toolbox [6]. We note that the purpose of

the experiments is to show that for some chosen network ar-

chitecture, the proposed loss functions that are inspired by

the geometry of the hypersphere, perform comparably with

the cross-entropy loss function.

MNIST: The MNIST dataset [31] consists a total of

60000 images of hand-written digits (0-9). Each image is of

size 28× 28 and is in grayscale. The task is to classify each

image into one of the 10 classes (0-9). The dataset is split

into training and testing sets with 50000 and 10000 images

respectively. We use the LeNet-5 architecture as the neural

network [31]. The network consists of 2 convolutional and

max-pooling (conv) layers followed by 2 fully-connected

(fc) layers. ReLU non-linearity is employed. The filters

are of size 5× 5. The first and second conv layers produce

32 and 64 feature maps respectively. The first and second fc

layers output 1024 and 10 elements respectively. The net-

works are trained for 50000 iterations with a batch size of

100 using Adam optimizer [27] with learning rate of 10−3.

CIFAR-10: The CIFAR-10 dataset [29] consists a total of

60000 RGB natural images. Each image is of size 32× 32.

The task is to classify each image into one of the 10 classes

(Airplane, Automobile, Bird, Cat, Deer, Dog, Frog, Horse,

Ship, Truck). The dataset is split into training and testing

sets with 50000 and 10000 images respectively. The net-

work consists of 2 conv layers with max-pooling and lo-

cal response normalization followed by 2 fc layers. ReLU

non-linearity is employed. Each input image is mean sub-

tracted and divided by its standard deviation. Data augmen-

tation using 10 24 × 24 random crops per input image is

employed to reduce overfitting. At test time, the central

24× 24 region is used as the input to the network, after per-

forming the same normalization as the training inputs. The

networks are trained for 500000 iterations with a batch size

of 100 using Adam optimizer with learning rate of 10−3.

For each dataset, we fix the network architecture and

train the 6 versions of the network with different loss func-

tion as described above. We use λ = 1 for LTorth
. The

image recognition accuracies obtained on the test set (aver-

aged over 10 runs) are shown in Table 4.

The results indeed show that some of the proposed loss

functions tend to perform better than cross entropy. For

both datasets and especially CIFAR-10, SNet-M yields bet-

ter performance than cross entropy and within this frame-

work, geodesic loss performs better compared to Euclidean

loss. SNet-TS shows improvements in accuracy in the case

of MNIST, albeit with higher variance in the accuracy.

6. Conclusion

In this paper, we have studied the problem of learning in-

variant representations, which are at the heart of many com-

puter vision problems, where invariance to physical factors

such as illumination, pose, etc often lead to representations

with non-Euclidean geometric properties. We have shown

how deep learning architectures can be effectively extended

to such non-linear target domains, exploiting the knowledge

of data geometry. Through two specific examples – pre-

dicting illumination invariant representations which lie on

the Grassmannian, and multi-class classification by map-

ping to a scale-invariant unit hypersphere representation –

we have demonstrated how the power of deep networks can

be leveraged and enhanced by making informed choices

about the loss function while also enforcing the required

output geometric constraints exactly. Extensions to other

geometrically constrained representations, such as symmet-

ric positive-definite matrices are evident. On the theoretical

side, extending the current framework to applications where

data points may have wider spread from their centroid, and

to non-differentiable manifolds which arise in vision remain

interesting avenues for the future.

Acknowledgements

This work was supported in part by ARO grant number

W911NF-17-1-0293 and NSF CAREER award 1451263.

We thank Qiao Wang and Rushil Anirudh for helpful dis-

cussions.

1336

References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghe-

mawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,

R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,

R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,

J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,

V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-

den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Tensor-

Flow: Large-scale machine learning on heterogeneous sys-

tems, 2015. Software available from tensorflow.org.

[2] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization al-

gorithms on matrix manifolds. Princeton University Press,

2009.

[3] M. Banerjee, R. Chakraborty, E. Ofori, M. S. Okun, D. E.

Viallancourt, and B. C. Vemuri. A nonlinear regression tech-

nique for manifold valued data with applications to medical

image analysis. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, June 2016.

[4] M. Banerjee, R. Chakraborty, E. Ofori, D. Vaillancourt, and

B. C. Vemuri. Nonlinear regression on riemannian manifolds

and its applications to neuro-image analysis. In International

Conference on Medical Image Computing and Computer-

Assisted Intervention, pages 719–727. Springer, 2015.

[5] E. Begelfor and M. Werman. Affine invariance revisited.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, volume 2, pages 2087–2094. IEEE,

2006.

[6] N. Boumal, B. Mishra, P.-A. Absil, R. Sepulchre, et al.

Manopt, a matlab toolbox for optimization on manifolds.

Journal of Machine Learning Research, 15(1):1455–1459,

2014.

[7] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Van-

dergheynst. Geometric deep learning: going beyond eu-

clidean data. IEEE Signal Processing Magazine, 2017.

[8] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral

networks and locally connected networks on graphs. Inter-

national Conference on Learning Representations, 2014.

[9] A. Byravan and D. Fox. Se3-nets: Learning rigid body mo-

tion using deep neural networks. IEEE International Confer-

ence on Robotics and Automation, 2016.

[10] R. Clark, S. Wang, H. Wen, A. Markham, and N. Trigoni.

Vinet: Visual-inertial odometry as a sequence-to-sequence

learning problem. AAAI Conference on Artificial Intelli-

gence, 2017.

[11] A. de Brébisson and P. Vincent. An exploration of softmax

alternatives belonging to the spherical loss family. Interna-

tional Conference on Learning Representations, 2016.

[12] A. Edelman, T. A. Arias, and S. T. Smith. The geometry of

algorithms with orthogonality constraints. SIAM journal on

Matrix Analysis and Applications, 20(2):303–353, 1998.

[13] R. Epstein, P. W. Hallinan, and A. L. Yuille. 5±2 eigenim-

ages suffice: an empirical investigation of low-dimensional

lighting models. In Proceedings of the Workshop on Physics-

Based Modeling in Computer Vision, page 108. IEEE, 1995.

[14] P. T. Fletcher. Geodesic regression and the theory of least

squares on Riemannian manifolds. International Journal of

Computer Vision, 105(2):171–185, 2013.

[15] T. Fletcher. Geodesic regression on Riemannian mani-

folds. In Proceedings of the Third International Workshop

on Mathematical Foundations of Computational Anatomy-

Geometrical and Statistical Methods for Modelling Biologi-

cal Shape Variability, pages 75–86, 2011.

[16] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman.

From few to many: Illumination cone models for face recog-

nition under variable lighting and pose. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 23(6):643–

660, 2001.

[17] P. W. Hallinan. A low-dimensional representation of human

faces for arbitrary lighting conditions. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, 1994.

[18] J. Hamm and D. D. Lee. Grassmann discriminant analysis:

a unifying view on subspace-based learning. In Proceedings

of the International Conference on Machine Learning, pages

376–383. ACM, 2008.

[19] M. Harandi and B. Fernando. Generalized

backpropagation,\’{E} tude de cas: Orthogonality. arXiv

preprint arXiv:1611.05927, 2016.

[20] M. Henaff, J. Bruna, and Y. LeCun. Deep convolu-

tional networks on graph-structured data. arXiv preprint

arXiv:1506.05163, 2015.

[21] Y. Hong, R. Kwitt, N. Singh, B. Davis, N. Vasconcelos, and

M. Niethammer. Geodesic regression on the Grassmannian.

In European Conference on Computer Vision, pages 632–

646. Springer, 2014.

[22] Z. Huang and L. Van Gool. A Riemannian network for SPD

matrix learning. AAAI Conference on Artificial Intelligence,

2017.

[23] Z. Huang, C. Wan, T. Probst, and L. Van Gool. Deep learning

on Lie groups for skeleton-based action recognition. Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2016.

[24] Z. Huang, J. Wu, and L. Van Gool. Building deep networks

on Grassmann manifolds. arXiv preprint arXiv:1611.05742,

2016.

[25] S. Jetley, N. Murray, and E. Vig. End-to-end saliency map-

ping via probability distribution prediction. In 2016 IEEE

Conference on Computer Vision and Pattern Recognition,

pages 5753–5761, 2016.

[26] H. J. Kim, N. Adluru, M. D. Collins, M. K. Chung, B. B.

Bendlin, S. C. Johnson, R. J. Davidson, and V. Singh. Multi-

variate general linear models (mglm) on Riemannian man-

ifolds with applications to statistical analysis of diffusion

weighted images. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 2705–

2712, 2014.

[27] D. Kingma and J. Ba. Adam: A method for stochastic opti-

mization. International Conference on Learning Represen-

tations, 2015.

[28] A. V. Knyazev and M. E. Argentati. Principal angles between

subspaces in an a-based scalar product: algorithms and per-

1337

turbation estimates. SIAM Journal on Scientific Computing,

23(6):2008–2040, 2002.

[29] A. Krizhevsky. Learning multiple layers of features from

tiny images. Technical Report, 2009.

[30] J. D. Lafferty and G. Lebanon. Diffusion kernels on sta-

tistical manifolds. Journal of Machine Learning Research,

6:129–163, 2005.

[31] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, 1998.

[32] Y. M. Lui. Advances in matrix manifolds for computer vi-

sion. Image and Vision Computing, 30(6):380–388, 2012.

[33] J. Masci, D. Boscaini, M. Bronstein, and P. Vandergheynst.

Geodesic convolutional neural networks on Riemannian

manifolds. In Proceedings of the IEEE International Con-

ference on Computer Vision workshops, pages 37–45, 2015.

[34] M. Niepert, M. Ahmed, and K. Kutzkov. Learning convo-

lutional neural networks for graphs. In Proceedings of the

International Conference on Machine Learning, 2016.

[35] P. Paysan, R. Knothe, B. Amberg, S. Romdhani, and T. Vet-

ter. A 3d face model for pose and illumination invariant face

recognition. In Sixth IEEE International Conference on Ad-

vanced video and signal based surveillance, pages 296–301.

IEEE, 2009.

[36] X. Pennec, P. Fillard, and N. Ayache. A Riemannian frame-

work for tensor computing. International Journal of Com-

puter Vision, 66(1):41–66, 2006.

[37] X. Shi, M. Styner, J. Lieberman, J. G. Ibrahim, W. Lin,

and H. Zhu. Intrinsic regression models for manifold-valued

data. In International Conference on Medical Image Com-

puting and Computer-Assisted Intervention, pages 192–199.

Springer, 2009.

[38] A. Srivastava, I. Jermyn, and S. Joshi. Riemannian analysis

of probability density functions with applications in vision.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 1–8. IEEE, 2007.

[39] A. Srivastava and E. Klassen. Bayesian and geometric sub-

space tracking. Advances in Applied Probability, 36(01):43–

56, 2004.

[40] A. Srivastava and P. Turaga. Riemannian computing in com-

puter vision. Springer International Publishing, 1 2015.

[41] S. Taheri, P. Turaga, and R. Chellappa. Towards view-

invariant expression analysis using analytic shape manifolds.

In IEEE International Conference on Automatic Face &

Gesture Recognition and Workshops, pages 306–313. IEEE,

2011.

[42] P. Turaga, A. Veeraraghavan, A. Srivastava, and R. Chel-

lappa. Statistical computations on Grassmann and Stiefel

manifolds for image and video-based recognition. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

33(11):2273–2286, 2011.

[43] R. Vemulapalli, F. Arrate, and R. Chellappa. Human action

recognition by representing 3D skeletons as points in a Lie

group. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 588–595, 2014.

[44] R. Vemulapalli and R. Chellapa. Rolling rotations for rec-

ognizing human actions from 3D skeletal data. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 4471–4479, 2016.

[45] P. Vincent, A. de Brébisson, and X. Bouthillier. Efficient

exact gradient update for training deep networks with very

large sparse targets. In Advances in Neural Information Pro-

cessing Systems, pages 1108–1116, 2015.

1338

