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Abstract

Data representations based on Symmetric Positive Defi-

nite (SPD) matrices are gaining popularity in visual learn-

ing applications. When comparing SPD matrices, measures

based on non-linear geometries often yield beneficial re-

sults. However, a manual selection process is commonly

used to identify the appropriate measure for a visual learn-

ing application. In this paper, we study the problem of clus-

tering SPD matrices while automatically learning a suit-

able measure. We propose a novel formulation that jointly

(i) clusters the input SPD matrices in a K-Means setup

and (ii) learns a suitable non-linear measure for comparing

SPD matrices. For (ii), we capitalize on the recently intro-

duced αβ-logdet divergence, which generalizes a family of

popular similarity measures on SPD matrices. Our formu-

lation is cast in a Riemannian optimization framework and

solved using a conjugate gradient scheme. We present ex-

periments on five computer vision datasets and demonstrate

state-of-the-art performance.

1. Introduction

Unsupervised clustering of data is a fundamental opera-

tion in computer vision applications. Clustering allows ex-

ploratory data analysis in the absence of data annotations

and helps identify basic data patterns that are useful for

higher-level semantic inference. In this paper, we inves-

tigate clustering algorithms for data that are in the form

of SPD matrices. Such structured matrix-valued data de-

scriptors are widely encountered in several computer vi-

sion problems and have been shown to provide signifi-

cant performance advantages over other data descriptors.

This is because of their ability to capture rich second-order

data statistics, which are essential for recognition tasks

(e.g., [7, 16, 20, 37, 38]).

When using SPD matrices in computer vision problems,

one usually faces the difficulty pertinent to selecting an ap-

propriate similarity measure for comparing the input matri-

ces. This is because each element in an SPD matrix (usu-

Figure 1. A schematic illustration of αβ-KMeans. Our scheme

jointly learns a data partitioning (Π) and a distance measure

for comparing SPD matrices based on the αβ-logdet diver-

gence D(α,β)(· ‖ ·). Note that learning the divergence changes

the structure of the data manifold, so that the partitioning (cluster-

ing) is more effective.

ally generated as covariance on data features) encode the

correlations implicit in data and thus is a very structured

object. While one may ignore this structure and assume

an SPD matrix to belong to a Euclidean geometry, it is of-

ten found that using non-linear (often Riemannian) geome-

tries that use the spectral properties1 of these matrices for

similarity computations lead to significantly better applica-

tion performance (e.g., [3, 31]). However, there are several

ways that one could capture the spectral similarity between

two such input matrices. A few popular measures are (i)

the affine-invariant Riemannian metric (AIRM) using the

natural Riemannian geometry [31], (ii) the Jensen-Bregman

logdet divergence using information geometry [9], and (iii)

Burg matrix divergence [22], among several others [11].

Choosing an appropriate measure for a given application is

often based on empirically and is usually a manual process.

1That is, similarities that use the Eigen spectrum of the matrices.
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Recently, Cichocki et al. [11] showed that all the above

similarity measures on SPD matrices can in fact be written

as different parameterizations of the so-called αβ-Logdet

Divergences (ABLD). These divergences directly parame-

terize the generalized eigenspectrum of the input matrices.

It is shown that by choosing different values for the param-

eters α and β, one can enumerate various popular diver-

gences on SPD matrices (see Table 1). Interestingly, even

the natural Riemannian metric (AIRM) can be written as an

asymptotic limit of ABLD at the origin (α→ β → 0). This

unifying result suggests that we could learn to choose an

appropriate similarity measure in a data-driven way. Lever-

aging on this result, we explore schemes for K-Means clus-

tering of SPD matrices, that also learns a suitable similarity

measure by finding appropriate values of α and β. Concep-

tually, we illustrate an outline of the proposed methodology

in Figure 1.

We furnish experiments on several computer vision

datasets to evaluate the advantage of joint clustering and

similarity learning (Section 7.4.3). Our results demonstrate

that learning the measure is beneficial and lead to supe-

rior clustering performance. We also evaluate the quality

of clusters on higher-level tasks such as nearest neighbor

retrieval, and demonstrate better accuracy over alternatives.

2. Related Work

The αβ-divergence is an information divergence gener-

alizing the α-family divergences [2] (that includes popu-

lar measures such as the KL-divergence, Jensen-Shannon

divergence, and the chi-square divergence) and the β-

family [4] (including the squared Euclidean distance and

the Itakura Saito distance). In contrast to standard measures

(such as the Euclidean distance), both α and β divergences

are seen to provide more robust solutions in the presence

of outliers and additive noise [24]. These divergences have

also been used in machine learning tasks, including but not

limited to non-negative matrix factorization [12, 21, 13],

nearest neighbor embedding [18], and blind-source separa-

tion [26]. The αβ-logdet divergence (ABLD) is a matrix

generalization of the scalar αβ-divergence and compares

SPD matrix valued data points. In this work, we investi-

gate approaches for clustering SPD matrices using ABLD

in a Karcher means setup, however, we also propose to learn

the suitable information divergences by learning appropri-

ate values of α and β together with the clustering objective.

Several unsupervised schemes for clustering SPD ma-

trices have been proposed in the relevant literature. Com-

monly used schemes capitalize on conventional clustering

machinery after being modified towards abiding to the non-

linear geometry of SPD matrices. In this direction, two ex-

tensions of the popular KMeans have been derived admit-

ting the manifold of the SPD matrices. In the first vari-

ant of KMeans, centroids are computed using the Karcher

means algorithm [6] and the affine-invariant Riemannian

metric [31]. Substituting the similarity computation based

on the AIRM by the log-Euclidean metric [3], yields a

second variant of KMeans for SPD matrices termed LE-

KMeans. Using the matrix logarithm operation, which en-

tails a diffeomorphic mapping of an SPD matrix onto its tan-

gent space, allows for distance computations in a Euclidean

manner (as this tangent space is Euclidean). In that way,

centroids are computed by averaging the samples’ vectorial

representations in the tangent space. Additional variants of

KMeans can be derived by capitalizing on the different sim-

ilarity measures for SPD matrices.

A second family of clustering schemes for SPD matri-

ces takes advantage of Euclidean embeddings in the form

of similarity matrices computed using suitable measures. In

that direction, Spectral clustering schemes have been de-

veloped for SPD matrices by computing suitable Mercer

kernels on the data using appropriate distances (e.g., LE).

Sparse subspace clustering schemes have also been derived

for SPD matrices via their embedding into a Reproducing

Kernel Hilbert Space [39, 29]. Such schemes come at the

expense of additional memory requirements involved with

computing the eigen spectrum of the computed kernel.

In addition, non-parametric schemes for clustering SPD

matrices have been derived in the form of dimensional-

ity reduction on Riemannian manifolds [14], using Locally

Linear Embeddings [32], or capitalizing on the Laplacian

eigenmaps [5]. In the family of non-parametric clustering

algorithms, a Bayesian framework for SPD matrices is for-

mulated using the Dirichlet Process [8]. Finally, variants

of the Mean shift clustering algorithm and Kernel Density

Estimation for SPD matrices have also been derived in [36]

and [30] respectively.

Moreover, metric learning schemes have also been pro-

posed for SPD matrices. Learning a manifold to manifold

embedding of large SPD matrices to small SPD spaces is

proposed in [17]. Furthermore, embeddings capitalizing

on the Log-Euclidean metric learning framework have been

also proposed (e.g. [19, 33]). Such metric learning schemes

require labeled data and thus do not share the same objec-

tive as this work, which is to provide inference in an unsu-

pervised setup.

In contrast to all these methods, to the best of our knowl-

edge, it is for the first time that a joint distance learning

and clustering formulation is derived for SPD matrices. We

note that recently, learning αβ-divergence in a discrimina-

tive setup is proposed in [10]. However, differently to that

work, we study the problem of clustering in this paper and

thus our objective is different.

In the sequel, we proceed by introducing the αβ-logdet

divergence and explore its properties in the next section.

Following that, we present our derivation of αβ-KMeans

that achieves the aforementioned objectives.
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(α, β) ABLD Divergence

(α, β)→ 0
∥

∥

∥
LogX− 1

2Y X− 1
2

∥

∥

∥

2

F
Squared Affine Invariant Riemannian Metric [31]

α = β = ± 1
2 4

(

log det X+Y
2 − 1

2 log detXY
)

Jensen-Bregman Logdet Divergence [9]

α = ±1, β → 0 1
2Tr

(

XY
−1
+ Y X

−1
)

− d Jeffreys KL Divergence2 [27]

α = 1, β = 1 Tr
(

XY
−1
)

− log detXY
−1
− d Burg Matrix Divergence [22]

Table 1. ABLD and its connections to popular divergences used in computer vision applications.

Notations: Following standard notations, we use upper

case for matrices (such as X), lower-bold case for vectors x,

and lower case for scalars x. Further, Sd++ is used to denote

the cone of d × d SPD matrices. We use C to denote a 3D

tensor each slice of which corresponds to an SPD centroid

of size d × d. Further, we use Id to denote the d × d iden-

tity matrix, Log for the matrix logarithm, and diag for the

diagonalization operator. Finally, we use Π = {π1, ..., πk}
to denote a clustering of data into k partitions; πi is the i-th

partition and comprises a subset of the dataset assigned to

this cluster.

3. Background

3.1. αβLog Determinant Divergence

Definition 1 (ABLD [11]) For X,Y ∈ Sd++, the αβ-log-

det divergence is defined as:

D(α,β)(X‖Y )=
1

αβ
log det

(

α(XY −1)β+β(XY −1)−α

α+ β

)

,

(1)

α 6= 0, β 6= 0 and α+ β 6= 0. (2)

As can be easily verified, ABLD can be rewritten to use

only the generalized eigenvalues of X and Y [11]. Let λi

denote the i-th eigenvalue of XY
−1

. Then, (1) in terms of λi

is given by:

D(α,β)(X‖Y)=
1

αβ

d
∑

i=1

log
(

αλ
β
i +βλ−α

i

)

−d log (α+β).

(3)

As pointed out earlier, ABLD unifies several standard

metrics and divergernces on SPD matrices. We explicitly

list some of the popular ones in Table 1 along with the re-

spective values of α and β.

For the sake of completeness of our presentation, we list

below some important theoretical properties of ABLD that

will come handy when deriving optimization algorithms for

clustering in the sequel.

Degeneracy Solutions: As can be observed, for ABLD to

generate non-negative real values (as is required by any dis-

tance metric), αλ
β
i + βλ−α

i > 0 for all i = 1, 2, · · · , d. As

imposing such constraints make our optimization very ex-

pensive, in this paper we use a simplification by learning α

and β of the same sign.

Dual Symmetry: This property allows expressions derived

with respect to α to be used for β with some substitutions.

Specifically,

D(α,β)(X ‖ Y ) = D(β,α)(Y ‖ X). (4)

Smoothness of ABLD: Assuming α, β have the same sign,

ABLD is continuous everywhere, except at the origin. As

noted above, when α = β → 0, ABLD is exactly the AIRM

distance.

With this machinery, we present our αβ-KMeans formu-

lation and optimization schemes.

4. αβ-Kmeans

Let X denote an SPD matrix-valued dataset. That is,

X = {X1,X2, · · · ,XN}, where each Xi ∈ S
d
++. Our

goal is to cluster the data into k clusters, where k is assumed

given. Let Π = {π1, · · · , πk} denote a partitioning of X
where πi is the set of samples assigned to the i-th cluster and

let Ci be the respective cluster centroid. We cast the joint

information divergence learning and clustering problem as:

min
C,Π,α,β>0

f (Π,X ;α, β) +Ω(α, β), (5)

where we envisage learning the cluster assignment of data

points Π, the cluster centroids C, and the divergence scalar

parameters α, β together. There are potentially two vari-

ants of α and β that we could learn, namely (i) by ob-

serving that most of the popular divergences in Table 1

are obtained when α = β, we could assume this, thereby

simplifying our objective, and (ii) we could also assume

α 6= β, which is more general, potentially incorporating

(i). However, we postpone exploring these two possibili-

ties until Section 7 and use the more general assumption

(ii) for our theoretical derivations below. In (5), the func-

tion Ω(α, β) = µ
(

α2 + β2
)

is a regularization term on

the parameters α and β, and µ is a regularization constant.

The use of this term is seen to be unavoidable for numerical

stability of our descent schemes, while the quadratic prior

choice is seen to provide faster empirical convergence com-

pared to the linear case. Substituting the standard KMeans

formulation and using the αβ-divergence as the similarity

measure, we have the following definition for f in (5):

f (Π,X ;α, β) =
∑

π∈Π

∑

i∈π

(

D(α,β)(Xi ‖ Cπ)
)

. (6)
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5. Efficient Optimization

In this section, we propose efficient ways to solve the

αβ-KMeans objective described in (5). Following the stan-

dard Lloyd’s algorithm for solving KMeans formulation, we

propose to use a block-coordinate descent (BCD) scheme

for optimization, in which each variable is updated alter-

nately while fixing others. As depicted in Algorithm 1, our

BCD has three main sub-problems, namely (i) solving for α

and β, (ii) computing the centroids C, and (iii) computing

the data partition Π. Below, we detail each of these sub-

problems and how we solve each of them.

Input: X , k

C← init(X , k), (α, β)← init(lb, up);
repeat

(α, β)← update αβ(X ,Π, α, β,Cz); // use (13)

Π← update Π(X , α, β,C); // use (7)

for z = 1 to k do
Cz ← update C(X ,Π, α, β,Cz); // use (12)

end

until until convergence;

return C,Π, α, β

Algorithm 1: Overview of Block-Coordinate Descent

for αβ-KMeans.

5.1. Updating Data Partitioning, Π

As is clear, updating Π is the easiest to attempt. That

is, finding the cluster centroid Cπ nearest to a given data

point Xi, which we solve as the following argmin problem,

by assuming the ABLD parameters are fixed at the current

iterate, i.e., αt and βt at t-th BCD iteration. Formally, the

data points in the cluster πz are updated as πz∗ → πz∗ ∪
{Xi}, where

z∗ = argmin
∀z∈{1,2,··· ,k}

D(αt,βt)(Xi ‖ C
t
z). (7)

5.2. Updating Cluster Centroids, C

The sub-problem of computing the centroid Cπ for a

cluster π is given by the following barycenter finding prob-

lem:

C
t
π = min

C∈Sd

++

f(Πt,C;αt, βt) :=
∑

X∈π

D(αt,βt)(X ‖ C).

(8)

Given that this optimization is over all SPD matrices, we

resort to casting it in a Riemannian optimization setup solv-

ing it using a conjugate gradient algorithm on the SPD man-

ifold. With the recent advances in Riemannian optimization

schemes [1], all we need to define to use a Riemannian con-

jugate gradient for solving (8) is to get the expressions for

its Euclidean gradient, which we derive below:

∇Cf := ∇C

(

D(αt,βt)(Xi ‖ C)
)

. (9)

Substituting ABLD in (9) and rearranging the terms, we

have:

∇Cf =
1

αtβt

∇C log det

[

αt

βt

(

Xi
−1
C
)αt+βt

+ Id

]

−
1

βt

C
−1
.

(10)

Let θ = α+ β and r = α
β

. Further, let Zi = Xi
−1

. Then,

the term inside the gradient in (10) simplifies to:

g(C;Z, r, θ) = log det
[

r (ZCz)
θ
+ Id

]

, (11)

and its gradient is given by:

∇Cg=rθC
−1
Z

− 1
2

i

(

Z
1
2

i CZ
1
2

i

)θ
(

Id + r
(

Z
1
2

i CZ
1
2

i

)θ
)−1

Z
1
2

i .

(12)

Substituting (12) in (10) gives the gradient of f with respect

to C.

5.3. Updating the Information Divergence, α and β

For gradients with respect to α, we will use the form

of ABLD given in (3), where λijz is assumed to be the j-

th generalized eigenvalue of Xi and centroid Cπ such that

Xi ∈ π, we get:

∇αf =

d
∑

j=1

∇α

[

1

αβ
log

αλ
β
ijz + βλ−α

ijz

α+ β

]

=
1

α2β

d
∑

j=1

{

αλ
β
ijz − αβλ−α

ijz log λijz

αλ
β
ijz + βλ−α

ijz

−
α

α+ β
− log

αλ
β
ijz + βλ−α

ijz

α+ β

}

. (13)

Using dual symmetry of ABLD allows computing the ex-

pressions for gradients wrt β directly from (13).

6. Computational Complexity

Using Schur decomposition (instead of the expensive

eigenvalue decomposition), gradient computation for each

C takes O(Nd3) flops. Using the gradient formulation

in (13) for α and β, we need O(Ndk +Nd3) flops, similar

in complexity to a Karcher mean algorithm using AIRM as

the similarity measure.
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7. Experiments

In this section, we provide an evaluation of the pro-

posed αβ-KMeans on five recognition datasets. In that di-

rection, we present two sets of experiments evaluating αβ-

KMeans against different KMeans variants for SPD matri-

ces. The first experiment, targets a pure clustering setup,

while the second one uses clustering as a pre-processing

step in a Bag-of-Words setup. The following datasets are

used, namely (i) the KTH-TIPS2 dataset [25], (ii) Bro-

datz textures [28], (iii) the Virus dataset [23], (iv) the My-

ometrium cancer dataset [34, 35], and (v) the Prostate can-

cer dataset [34, 35]. Below, we provide details of all these

datasets and the way SPD descriptors are obtained on them.

Furthermore, we present a sensitivity analysis with respect

to the number of dimensions and number of clusters for the

proposed scheme as well as an empirical convergence anal-

ysis. Note that we explore two variants of ABLD, namely

(i) when α = β and when α 6= β.

7.1. Datasets

KTH-TIPS2 dataset and Brodatz Textures: The KTH-

TIPS-2 dataset [25], is a popular material recognition

database consisting of 4,752 samples depicting 11 materi-

als; TIPS standing for ’Textures under varying Illumination,

Pose and Scale’. Three samples from this database are pre-

sented in Figure 3. Region Covariance Descriptors of size

23 × 23 are computed on the features proposed in Harandi

et al. [15]. As for the Brodatz dataset, we use the relative

pixel coordinates, image intensity, and image gradients to

form 5 × 5 region covariance descriptors from 100 texture

classes. Our dataset consists of 31000 SPD matrices.

(a) (b) (c)
Figure 2. Samples of the VIRUS dataset for classes (a) Ebola, (b) In-

fluenza, and (c) Orf.

(a) (b) (c)
Figure 3. Samples of the KTH-TIPS2 dataset for classes (a) Cork, (b)

Cotton and (c) Lettuce.

Virus Dataset: The VIRUS dataset is a collection of 1500,

Transmission Electron Microscopy (TEM) images belong-

ing to 15 different virus types, which are automatically seg-

mented based on [23]. Three sample images are presented

in Figure 2. The selected descriptors are Region Covari-

ances of size 29 × 29, computed on the features proposed

as suggested in Harandi et al. [15].

Figure 4. Myometrium tissue H&E stained samples. Columns 1-3 corre-

spond to patches depicting benign cases while columns 4-6 correspond to

patches depicting malignant cases.

Cancer Datasets. Apart from these standard SPD datasets,

we also report performances on two cancer recognition

datasets from [34] kindly shared with us by the authors.

We use images from two types of cancers, namely (i) My-

ometrium cancer, consisting of binary classes (tissue is ei-

ther cancerous or not) consisting of about 3320 samples,

and (ii) Prostate cancer, consisting of 3315 samples; we use

covariance-kernel descriptors as described in [34] which are

of size 8× 8. For Myometrium cancer we present a collec-

tion of malignant and benign samples in Figure 4.

7.2. Experimental Setup

We present experiments on the aforementioned bench-

marks and compare against two popular variants of KMeans

for SPD data. In that direction, we establish comparisons

against the Log-Euclidean KMeans, as well as the Karcher

means using AIRM. To evaluate the quality of the derived

partitions of data in clusters, we use the F1-Score (14) that

is a weighted average of precision and recall and ranges be-

tween 0 and 1, with 1 corresponding to the optimal partition

of the data. Furthermore, we present comparisons between

the aforementioned clustering schemes in a Bag-of-Words

recognition setup in terms of F1-Score, as well as accuracy.

The F1 score is defined as:

F1 = 2
precision× recall

precision + recall
. (14)

7.3. Parameter Initialization

In all our experiments, we initialize the centroids using

LE-KMeans. In that direction, we first compute the ma-

trix logarithm of the given samples, then concatenate the

columns of each sample and compute a partitioning of the

vectorial data using Euclidean KMeans. The resulting cen-

troids are then reshaped to their original structure and uti-

lizing the exponential map are projected back to the SPD
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cone. Furthermore, parameters α and β are selected at ran-

dom within the range of zero and ten. Finally, the regular-

ization parameter µ is set to 1.

7.4. Sensitivity Analysis

In this section, we present the sensitivity of our algo-

rithm to different attributes of the input dataset. We provide

plots illustrating the responsiveness of the proposed scheme

against the following, namely (i) dimensionality of the in-

put matrices and (ii) number of clusters and (iii) elapsed for

the relevant updates. The synthetic datasets are generated

using the code from [8]. This code generates Wishart SPD

matrix clusters for k arbitrarily parameterized Wishart dis-

tributions.

7.4.1 Dimensionality

Towards assessing the performance of αβ-KMeans for

SPD matrices of varying dimensionality, we generate syn-

thetic SPD datasets of dimensionality d, where d ∈
{5, 15, 30, 50, 75, 100} corresponding to k = 15 clusters

and using fifty samples per class. Figure 5 (a) summarizes

the computed F1-scores averaged across ten runs. We can

clearly see that αβ-KMeans is not impacted by the increas-

ing dimensions of the input matrices, while both variants

consistently outperform the baseline of LE-KMeans. Fig-

ure 5 (b) present the time takes for a single iteration of each

optimization component of αβ-KMeans.

7.4.2 Number of Clusters

Similarly, in this section we extract valuable conclusions re-

garding the performance of αβ-KMeans against an increas-

ing number of clusters in a simulated dataset. We test the

robustness of the αβ-KMeans algorithm for a cluster num-

ber k, such that k ∈ {2, 5, 10, 20, 50, 100} keeping the di-

mension of the SPD matrices fixed to d = 10 and using

twenty five samples per class. Figure 6 (a) summarizes the

F1-Score of αβ-KMeans averaged across ten runs for an in-

creasing number of clusters. We can infer that both variants

are negatively affected by large increases in the number of

clusters in the dataset, nevertheless, the performance is con-

sistently higher than that of the LE-KMeans baseline. In

addition, there is an increasing overall trend in the time re-

quired for all components of αβ-KMeans, while the results

of having to iterate through the different clusters as depicted

in Figure 6 (b).

7.4.3 Empirical Convergence Analysis

In this section we empirically study the convergence of αβ-

KMeans. We select to present this analysis on the My-

ometrium cancer dataset nevertheless, the results remain

consistent among the different datasets. Figure 7 illustrates

(a)

(b)

Figure 5. Sensitivity of αβ-KMeans against an increasing dimen-

sionality in the range [5, 100]. (a) The blue and red lines corre-

spond to αβ-KMeans with α = β and α 6= β respectively, while

the black line corresponds to LE-KMeans. (b) Time required for

each iteration of updating parameters αβ (blue line) and centroids

(green line).

the convergence of the BCD scheme discussed in Section 4

for αβ-KMeans with α = β. Even though the objective is

non-convex, it is apparent that the empirical convergence is

satisfactory. We run the scheme until more than 99.9% of

the clustering assignments remain unchanged between two

successive clustering steps.

7.5. Experiments on Real Data

7.5.1 Comparisons to Variants of KMeans

Comparisons are first established against two popular vari-

ants of KMeans for SPD matrices; LE-KMeans and Karcher

Means. Table 2 summarizes the experiments evaluating the

performance of the αβ-KMeans in a pure clustering setup.

The first and second columns correspond to the F1-Score

achieved by LE-KMeans and Karcher Means respectively.

The two proposed variants of αβ-KMeans are depicted in

columns three (α = β) and four (α 6= β). For each dataset,

we average our results across ten different runs to alleviate

the effect of initializations. We can clearly see that the two

variants of αβ-KMeans consistently outperform the com-

peting schemes underlying the merits of learning the mea-

sure while clustering the data.
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(a)

(b)

Figure 6. Sensitivity of αβ-KMeans against an increasing number

of clusters in the range [5, 100]. The blue and red lines corre-

spond to αβ-KMeans with α = β and α 6= β respectively, while

the black line corresponds to LE-KMeans. (b) Time required for

each iteration of updating parameters αβ (blue line) and centroids

(green line).

Figure 7. Convergence plot of the objective function 5 for the my-

ometrium cancer dataset and α = β. Cyan line segments corre-

spond to iterations of updating the divergence parameters, blue

segments correspond to updating the clustering assignment and

magenta segments correspond to iterations of updating the cen-

troids.

7.5.2 Bag-of-Words Nearest Neighbor Retrieval

An additional set of experiments was conducted towards

evaluating the quality of the proposed clustering scheme in a

Bag-of-Words (BoW), one-nearest-neighbor retrieval setup.

In particular, we compute an over-partitioning of the sam-

ple space given each of the variants of KMeans such that

the number of clusters is 5-10X the real number of clus-

Dataset — Method LE Karcher αβ-E αβ-NE

VIRUS 0.248 0.254 0.252 0.257

BRODATZ 0.353 0.366 0.378 0.381

KTH TIPS 0.379 0.400 0.429 0.419

Prostate Cancer 0.578 0.594 0.679 0.660

Myometrium Cancer 0.737 0.661 0.778 0.779

Table 2. F1-Score based comparisons against different KMeans

variants.

ters. We provide our results in a 5-fold validation format,

of which 4 folds are used to compute the centroids of the

over-partitioned space. Each centroid is assigned the most

frequent label of the samples assigned to its cluster. For

each sample in the unseen fold, we identify its nearest cen-

troid in terms of the selected (or computed) measure and

assign its label to the sample.

Table 3 aggregates our results for the 5 considered

datasets averaged across the 5 folds. For each scheme, we

provide an evaluation both in terms of F1-Score (14) and ac-

curacy (ACC). We can see that for all datasets the two αβ-

KMeans variants exceeded the performance of commonly

used alternatives, once again stressing the merits of learn-

ing the appropriate measure in tandem with the clustering

objective.

LE Karcher αβ-E αβ-NE

Dataset ACC F1 ACC F1 ACC F1 ACC F1

VIRUS 55.87 0.378 56.40 0.388 58.40 0.406 53.80 0.357

BRODATZ 67.70 0.536 68.39 0.547 68.57 0.553 68.97 0.555

KTH TIPS 77.76 0.649 78.66 0.657 81.02 0.693 80.89 0.683

Prostate 79.61 0.679 80.78 0.691 81.12 0.698 80.94 0.695

Myometrium 87.92 0.792 88.10 0.795 88.31 0.796 89.10 0.811

Table 3. F1-Score and accuracy based comparisons for the BoW

experimental setup.

8. Discussion

In this section, we discuss some of our observations

when optimizing our objective. We found that it is essen-

tial to use a regularizer on α and β; in the absence of which,

the optimization was seen to diverge, the parameters taking

very large values leading to irrecoverable numerical defi-

ciencies. As noted earlier, we found quadratic regularizers

on α, β yielded good results. Exploring other forms, such as

polynomials on α and β, or robust priors such as the Huber

loss, is left as future work.

An analysis of the variations in similarity using αβ-

logdet divergence is investigated for the Virus and texture

datasets in [10]. A similar observation was made on the

clustering objective. For our experiments on real data, we

found beneficial small additive perturbations on the diag-

onal of the SPD matrices. On all our datasets, we found

each block of updates using RCG converged in a about 5-

10 steps. Surprisingly, the proposed BCD scheme is seen
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to converge much faster for the α 6= β-case in compari-

son to α = β, when centroids are initialized using the LE-

KMeans rather than randomly selecting samples from each

dataset. This faster convergence is perhaps because of the

more degrees of parameter freedom and the conditioning of

the matrices.

9. Conclusions

In this work, we proposed a clustering formulation that

amalgamates the problems of clustering SPD matrices and

divergence learning. To achieve this, we derived and effi-

ciently solved a clustering algorithm, termed αβ-KMeans,

which is tasked with learning of αβ-logdet divergences

while clustering the data. We devised an optimization

scheme for efficiently solving the formulated objective, us-

ing Riemannian optimization. Finally, a diverse set of ex-

periments was conducted on five recognition benchmarks

underlining the advantages of the proposed method. Our

experiments clearly demonstrated that learning the informa-

tion divergence and clustering jointly led to superior accu-

racy in comparison to using a standard divergence on SPD

matrices.
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