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Abstract

Multi-modal ego-centric data from inertial measurement

units (IMU) and first-person videos (FPV) can be effectively

fused to recognise proprioceptive activities. Existing IMU-

based approaches mostly employ cascades of handcrafted

triaxial motion features or deep frameworks trained on lim-

ited data. FPV approaches generally encode scene dynam-

ics with motion and pooled appearance features. In this pa-

per, we propose a multi-modal ego-centric proprioceptive

activity recognition that uses a convolutional neural net-

work (CNN) followed by a long short-term memory (LSTM)

network, transfer learning and a merit-based fusion of IMU

and/or FPV streams. The CNN encodes short-term tempo-

ral dynamics of the ego-motion and the LSTM exploits the

long-term temporal dependency among activities. The merit

of a stream is evaluated with a sparsity measure of its initial

classification output. We validate the proposed framework

on multiple visual and inertial datasets.

1. Introduction

First-person proprioceptive activity recognition classi-

fies the activities of a subject from ego-centric data and may

play a significant role in personalised assistive technolo-

gies [33]. Proprioceptive activities involve full- or upper-

body motion of the subject such as Run, Walk and Go up-

stairs [2]. Inertial measurement units (IMU) and wearable

cameras are common sensors used to collect ego-centric

data. An IMU itself may contain multiple sensors, such

as an accelerometer and a gyroscope. Current approaches

often apply feature-level fusion using concatenation [26],

and it is desirable to effectively integrate different feature

streams and/or modalities.

Motivated by the success of deep learning in computer

vision, convolutional neural networks (CNNs) have been

employed also with inertial data [24, 25] and recursive

neural networks (RNNs), such as long short-term mem-

ory (LSTM) networks, have been used with multi-modal

data as well [22]. However, deep frameworks for ac-

tivity recognition from time-series sensory data are often

built form scratch and trained with a limited amount of

data [22, 24, 25]. In addition, they do not effectively en-

code the intrinsic relationships among triaxial components

of the inertial data [24, 25]. Though IMU and first-person

vision (FPV) modalities are complementary [33], their deep

features have not been integrated yet.

In this paper, we present a deep framework for proprio-

ceptive activity recognition that uses inertial data and first-

person videos. We use cross-domain knowledge transfer

with a CNN-LSTM that exploits the discriminative charac-

teristics of multi-modal feature groups provided by stacked

spectrograms from the inertial data. Our solution enables

us (i) to use 2D convolutions rather than 3D convolutions;

(ii) to use existing image models as feature extractors; and

(iii) to encode the intrinsic relationships among motion

components. To reduce the complexity of the LSTM net-

work and hence the amount of data required for its train-

ing, we integrate information from different streams and/or

modalities using a logistic regression (LR) and a Hoyer-

based sparsity measure [13]. To the best of our knowl-

edge, this is the first work that integrates deep features

extracted from inertial and visual data for the recognition

of proprioceptive activities. The software of the proposed

framework is available at http://www.eecs.qmul.

ac.uk/˜andrea/fpv-imu.html.

The paper is organized as follows. Section 2 reviews re-

lated works that employ deep frameworks on inertial and

FPV data. Section 3 presents the proposed framework. Sec-

tion 4 describes the experimental results and the datasets

used for validation. Finally, conclusions are drawn in

Sec. 5.
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2. Related work

In this section, we review CNNs that learn motion fea-

tures from FPV with 3D and 2D convolutions. We also dis-

cuss LSTM-based temporal dependency encoding as well as

CNN and LSTM networks for inertial-based activity recog-

nition.

Features that encode the temporal dynamics in a video

can be learned with a CNN that uses 3D convolutions [15,

23, 30] or 2D convolutions followed by temporal pool-

ing [10, 16, 18, 27, 28, 31, 32]. The 3D convolutions help

learning spatio-temporal [15, 30] or temporal [23] features

from a volume of data and result in a large number of net-

work parameters. 2D convolutions can instead be applied

on each frame and be followed by a pooling operation to

encode the temporal variation of each feature [16, 27, 32].

FPV-specific deep frameworks are mostly designed for

the recognition of object-interactive activities [20, 28] and

focus on learning local hand-motions and objects using

multi-stream networks. A compact CNN was proposed

in [23] to learn ego-centric motion features using a 3D con-

volution in the first layer followed by subsequent 2D convo-

lution layers, which suppress long-term temporal informa-

tion early in the network.

Rearranging optical flow data into RGB-like images en-

ables the use of 2D convolutions followed by temporal

pooling [18, 31, 32]. This solution reduces the amount of

data required for training as it facilitates transfer learning

from successful image models pre-trained on large image

datasets, e.g. ImageNet [7].

LSTM networks can encode temporal dependencies

among subsequent samples. When an LSTM is preceded

by a CNN, the overall network becomes both spatially and

temporally deep [9, 21, 32]. For this reason existing LSTM

networks therefore generally encode short-term dynamics

only (e.g. 0.64 seconds [9]).

Due to the success of deep networks in computer vi-

sion [8], convolutional and recursive networks have also

been used for time-series inertial data [11, 22, 24, 25]. How-

ever, deep features learned from inertial data do not out-

perform handcrafted (shallow) features yet [22, 25], partly

because of the lack of a large public dataset for training.

The sums of temporal convolutions on the concatenated

spectrograms of multiple axes and streams can be applied to

learn inertial features on low-power devices [24, 25]. While

this approach achieves invariance against changes in place-

ment, orientation and sampling rate of the inertial sensor;

cascading spectrograms limits the potential of learning use-

ful relationships among different motion components [22].

A CNN-LSTM framework can be used to learn features

from raw inertial data with the LSTM accounting for the

temporal dependency [22]. However, this approach results

in more complex network compared to [24, 25].

3. Proposed framework

Let C = {Ac}Cc=1 be a set of C activity classes. Let

In ∈ {Ia,n, Ig,n} be a windowed inertial sample of ac-

celerometer (Ia,n) or gyroscope (Ig,n) data; and Vn ∈
{Vg,n, Vc,n} be a global motion stream extracted from a

first-person video sample, Fn, using the average of grid

optical flow (Vg,n) or the movement of intensity centroid

(Vc,n). Let Sn ⊆ {In, Vn} be multi-modal ego-centric mo-

tion data whose duration is λ ∈ {λi, λv} seconds, where

λi and λv refer to the inertial and visual data, respectively.

We aim to classify each Sn into its activity class, An
c , by

encoding its short-term dynamics and long-term temporal

dependencies with the preceding T ∈ {Ti, Tv} samples:

Sn−1, Sn−2, · · · , Sn−T . Ti and Tv refer to the inertial and

visual data, respectively.

Similarly to [2], we extract short-term motion features

using a pre-trained CNN model from stacked spectrograms

of multiple motion components. Spectrograms for each

motion stream are computed and stacked as a 3-channel

motion representation. We employ a logistic classifier on

each stream and use a sparsity weighted combination of out-

puts from different streams. Finally, we employ an LSTM

framework to encode the long-term temporal dependency

among activities. An output wrapper transforms the hidden

output of the LSTM to an activity prediction vector. The

proposed solution is shown in Fig. 1 and detailed below.

3.1. Multi­stream global motion extraction

We extract from the first-person video sample Fn =
(fn,1, fn,2, · · · , fn,l, · · · fn,L), which contains L frames,

two streams of global motion features, namely the average

of the grid optical flow, Vg,n, and the movement of intensity

centroid, Vc,n.

Let On = (On,1, On,2, · · · , On,l, · · · , On,L−1) be the

optical flow computed between a subsequent pair of frames,

fn,l and fn,l+1, l ∈ [1, L − 1], with the Horn-Schunk

method [12], whose global smoothness assumption fits pro-

prioceptive activities where the ego-motion of the user is

dominant. Let On,l = {Ox
n,l(i) + jOy

n,l(i)}
γ2

i=1
represent

the set of complex optical flow vectors of frame l, where

γ is the number of grid cells in the horizontal, x, and ver-

tical, y, dimensions. The corresponding mean optical flow

components, V x
g,n,l and V x

g,n,l, are computed as1

V x
g,l =

1

γ2

γ2∑

i=1

Ox
l (i) and V y

g,l =
1

γ2

γ2∑

i=1

Oy
l (i). (1)

The final global motion representation from the optical flow

data becomes Vg = (Vg,l)
L−1

l=1
, where Vg,l = [V x

g,l, V
y
g,l].

We extract the centroid stream, Vc, from Fn as follows.

Let H and W be the height and the width in pixels of frame

1For simplicity we drop the subscript n.
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Figure 1: The proposed method for proprioceptive activity recognition from multi-modal ego-centric data (inertial and first-

person vision data). Global motion is encoded from the mean of grid optical flow and the derivative of the intensity centroid.

A set of spectrograms is derived from each motion stream. The spectrogram values are scaled, translated, normalized and

stacked. Then CNN features are given as input to a logistic classifier. The classification outputs of each modality are weighted

based on their sparseness and combined prior to the LSTM, which encodes the temporal dependency among activities.

Finally, an output wrapper with softmax normalization produces the activity prediction vector.

fl. Let Ml
pq , p, q ∈ {0, 1}, be the first-order image moment

of fl, calculated as the weighted average of its intensity val-

ues as

Ml
pq =

H∑

i=1

W∑

j=1

ipjqfl(i, j). (2)

Similarly to [1, 2, 3], we compute the displacement of the

intensity centroid, Vc,l = {V x
c,l, V

y
c,l}, from the first-order

derivative of subsequent centroids as V x
c,l = Cx

l+1
−Cx

l and

V y
c,l = Cy

l+1
− Cy

l , where (Cx
l , C

y
l ) is the centroid location

at l ∈ [1, L− 1], Cx
l = Ml

01/Ml
00 and Cy

l = Ml
10/Ml

00.

Finally, the global motion representation from the displace-

ment of the intensity centroid becomes Vc = (Vc,l)
L−1

l=1
,

where Vc,l = [V x
c,l, V

y
c,l].

3.2. Stacked spectrogram computation

We employ a time-frequency representation (spectro-

gram) to encode the dynamics for each axis of a motion

stream in Sn. The stacking arrangement enables us to en-

code intrinsic relationships among different axial motion

components (Fig. 2). This reduces the effect of different

mounting positions of the wearable sensors.

As In is often triaxial, (x, y, z), whereas Vn has two

components, (x, y), we describe the different stacking ar-

rangements for inertial and visual spectrograms below.

3.2.1 Stacked spectrogram from inertial data

The fast Fourier transform (FFT), F(·), is computed on

each component of the inertial data, In = (Ixn , I
y
n, I

z
n),

to generate the magnitude of a set of spectrograms, Īn =
F(In) = (Īxn , Ī

y
n, Ī

z
n). Similarly to [9], we scale each spec-

trogram component of Īn by α, translate it by τ and apply

normalization to [0,255] as2

J ′
n = α ∗ Īn + τ (3)

J ′′
n = max(J ′

n, 0) (4)

J̄n = min(J ′′
n , 255). (5)

2For simplicity, the x, y and z superscripts will be dropped.

In order to encode high-level CNN features from the

spectrograms with 2D convolutions, we stack the normal-

ized spectrograms in J̄n into a 3-channel motion represen-

tation as Jn = (J̄x
n , J̄

y
n, J̄z

n) ∈ {Ja,n, Jg,n}.

The stacked spectrogram representation of the inertial

data enables us to achieve cross-domain knowledge trans-

fer using pre-trained image models. This avoids the need of

training a dedicated deep network from scratch.

3.2.2 Stacked spectrogram from FPV data

The stacked spectrogram of the motion stream from FPV,

Vn ∈ {Vg,n, Va,n}, is obtained by applying F(·) on V x
n

and on V y
n . To introduce additional discriminative charac-

teristics, we extend Vn by adding the direction component,

V θ
n = arctan(V y

n /V
x
n ), as a third channel to the stack.

Similarly to the inertial spectrograms, we then scale,

translate and normalize3 V̄n = F(V̄ x
n , V̄

y
n , V̄

θ
n ) as

K ′
n = α ∗ V̄n + τ (6)

K ′′
n = max(K ′

n, 0) (7)

K̄n = min(K ′′
n , 255). (8)

The spectrograms of the x, y and θ components are

stacked to obtain a 3-channel motion representation, Kn =
(K̄x

n, K̄
y
n, K̄θ

n) ∈ {Kg,n,Kc,n}.

The stacked spectrogram representation of the visual

data enables us to obtain high-level global motion features,

mn, using 2D convolutions only. This is particularly useful

in FPV, whose datasets are smaller than traditional vision

datasets, e.g. Sports-1M [16].

3.3. CNN features extraction

We store Jn and Kn as JPEG images and, similarly

to [2], we employ a CNN framework to extract high-level

temporal features, namely ln ∈ {la,n, lg,n} from Jn and

3The normalization enables us to transfer knowledge from image

datasets, e.g. ImageNet [7].
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Figure 2: Stacking of the spectrograms from inertial, In,

and visual, Vn, motion components. The fast Fourier

transform is applied to obtain a time-frequency representa-

tion followed by scaling, translation and normalization that

bound the spectrogram values to [0, 255]. Stacking the spec-

trograms produces a 3-channel representation that enables

transfer learning from image-based models.

mn ∈ {mg,n,mc,n} from Kn. To extract the CNN fea-

tures, we use GoogleNet [29] that was effectively employed

across a range of computer vision problems [8].

3.4. Logistic regression

Each feature stream in ln and mn is separately validated

using a logistic regression to obtain independent classifi-

cation outputs, pn ∈ {pa,n, pg,n} and qn ∈ {qg,n, qc,n},

respectively. The outputs are then weighted by their corre-

sponding discriminative characteristics.

The logistic classification also transforms high-

dimensional features, ln and mn ∈ R
D (where D is the

feature dimension), to pn and qn ∈ R
C , with C << D.

This reduces the complexity of the LSTM network to en-

code the long-term temporal dependency among activities

and therefore the amount of training data required.

3.5. Sparsity weighted combination

To evaluate the decision confidence of each motion

stream we employ a sparsity measure. First, we apply a

sigmoid function, σ(·), to transform the logistic outputs, pn

and qn, respectively, to rn and sn, which are bounded to

(0, 1), as

σ(ξ) =
1

1 + exp(−ξ)
, (9)

where ξ ∈ {pn, qn}. In order to compute the sparseness of

the logistic classification output, we apply the Hoyer mea-

sure [13], ψ(·), which is effective for a fixed dimensional

vector [14] and is defined as

ψ(η) =

√
C − ||η||1

||η||2√
C − 1

, (10)

where η ∈ {rn, sn}, || · ||1 and || · ||2 are ℓ1 and ℓ2 norms,

respectively. The final feature input to the LSTM network,

xn ∈ R
C , is the accumulation of the logistic classifica-

tion vectors of the motion streams, weighted by their cor-

responding sparseness measure as

xn =
∑

η∈{rn,sn}

ηψ(η). (11)

3.6. Long short­term memory (LSTM) network

We apply an LSTM framework to encode the long-term

temporal relationships among activities and to overcome

the vanishing and exploding gradient problems of a vanilla

RNNs. LSTM networks use three additional gates (forget,

input and output) that act as switches for monitoring the

information flow from the current input, xn, and previous

hidden state, hn−1, to the current hidden state, hn, via the

memory cell, cn.

The forget gate, fn, helps to discard less useful informa-

tion from the previous cell state, cn−1, as

fn = σ(Wxfxn +Whfhn−1 + bf ), (12)

where bf is the bias in the forget gate.

The input gate, in, weights the candidate cell informa-

tion, c̄n, to be the current state of the cell, cn, as

in = σ(Wxixn +Whihn−1 + bi), (13)

c̄n = φ(Wxcxn +Whchn−1 + bc), (14)

cn = fn ⊙ cn−1 + in ⊙ c̄n, (15)

where φ(·) represents the tanh activation function, ⊙ is an

element-wise product, bi and bc represent the input gate

and memory cell biases, respectively.

The output gate, on, evaluates the cell information, cn,

to predict hn as

on = σ(Wxoxn +Whohn−1 + bo), (16)

hn = on ⊙ φ(cn), (17)

where bo represents the output gate bias.

The weight parameters Whf , Whi, Whc and Who ∈
R

ν×ν describe the relationship between the previous hid-

den state, hn−1, and the remaining states, fn, in, cn and

on ∈ R
ν , respectively, where ν represents the number of

neurons used in each of the states. The parameters Wxf ,

Wxi, Wxc and Wxo ∈ R
ν×C describe the relationship be-

tween the sparsity weighted input of the LSTM, xn ∈ R
C ,

and the remaining states.

3.7. Output projection wrapper

We finally apply an output projection wrapper on the es-

timated hidden state, hn, and generate the activity predic-

tion vector, an ∈ R
C , for Sn using the softmax normaliza-

tion:

an =
exp(Whahn)∑C
c=1

exp(Whahn)
, (18)

where Wha ∈ R
C×ν is the wrapping matrix.

The class with the maximum score in an is the winning

class, An
c .
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4. Experiments

In this section, we present the validation datasets, de-

scribe the setting of inertial and visual parameters, and com-

pare the proposed framework with state-of-the-art methods.

4.1. Datasets and methods under comparison

We use multiple inertial and visual datasets for the

validation (see Table 1). The inertial datasets are Ac-

tiveMiles [24, 25] and WISDM-v2.0 [17, 19].

ActiveMiles [25] is one of the largest public inertial

datasets with 30 hours (h) of labelled accelerometer and gy-

roscope data (4, 390, 726 samples) with different sampling

rates (50-200 Hz) and collected using smartphones. It con-

tains seven activities: Casual Movement, Cycling, No Ac-

tivity (Idle), Public Transport, Running, Standing and Walk-

ing. Ten subjects participated in its collection.

WISDM-v2.0 [17] consists of accelerometer data

(≈ 41.4 h) collected in uncontrolled environments. The

dataset contains 2, 980, 765 samples at 20 Hz, and six activ-

ities: Walking, Jogging, Stairs, Sitting, Standing and Lying

Down. 563 subjects participated in its collection.

The FPV datasets are HUJI [23] and BAR [3].

HUJI [23] is the largest public dataset for FPV activity

recognition and was collected with a head-mounted cam-

era. We utilise a 15-h subset that contains the following

activities: Go upstairs, Run, Walk, Sit/Stand and Static. Ap-

proximately 50% of the subset dataset (17 out of 44 video

sequences) are collected from YouTube videos.

BAR [3] is the first dataset of basketball activities from

FPV (collected with a chest-mounted camera at 30 fps) and

is composed of 11 activities: Bow, Sit-Stand, Left-right turn,

Walk, Jog, Run, Sprint, Pivot, Shoot, Dribble and Defend.

Four subjects participated in its collection and accelerome-

ter data was also collected for three subjects using a back-

mounted inertial unit at 200 Hz.

To evaluate the recognition performance we use accu-

racy, A, precision, P , and recall, R:

A = 100
tp+ tn

tp+ tn+ fp+ fn
, (19)

P = 100
tp

tp+ fp
, (20)

R = 100
tp

tp+ fn
, (21)

where tp is the number of true positives, fp is the number

of false positives, tn is the number of true negatives and fn
is the number of false negatives. A, P and R are first evalu-

ated per each activity and then the class average is reported

as the performance of a system.

We consider six inertial-based approaches, namely

Handcrafted-1 [25], Handcrafted-2 [5], Catal et al. [6], Al-

sheikh et al. [4], Ravi et al. [24] and Ravi et al. [25].

Table 1: Summary of the datasets used for validation (Acc.:

accelerometer; Gyro.: gyroscope; FPV: first-person vision;

✓: availability of a specific modality; NS: not specified; #:

number; h: hour).

Modalities

Inertial Visual

Dataset Acc. Gyro. FPV Activities (#) Subjects (#) Duration (h)

ActiveMiles [25] ✓ ✓ 7 10 30

WISDM-v2.0 [17] ✓ 6 530 41.4

HUJI [23] ✓ 5 NS 15

BAR [3] ✓ ✓ 11 3 1.2

Handcrafted-1 [25] and Catal et al. [6] use low-dimensional

shallow features extracted in the time domain, whereas

Handcrafted-2 [5] includes also frequency-domain features.

Alsheikh et al. [4] and Ravi et al. [24] employed learned

deep features using dedicated networks. Ravi et al. [25] in-

tegrated the deep features in [24] with Handcrafted-1 [25]

features.

4.2. Inertial parameters

We set the parameters similarly to the state-of-the-art

methods [5, 24, 25]. The window length for the inertial data

is λi = 10 s, with no overlap. The dimension of the shal-

low features of Alsheikh et al. [4], Handcrafted-1 [25] and

Handcrafted-2 [5] are 43, 102 and 394, respectively. We set

the scaling factor α = 16 and the translation τ = 128 on

the spectrograms as in [9].

We extract the features from the next-to-last layer of the

inception-v3, i.e. ‘pool 3 : 0’, which provides a feature of

D = 2, 048. In order to compare the inception features

with the state-of-the-art methods in ten fold validation as

in [24, 25], we employ a support-vector machine (SVM)

classifier with a polynomial kernel implemented in MAT-

LAB 2014b4. We use the results reported in [25] for the

comparison.

Equal amount of data is preserved for training and testing

(50% each) in ActiveMiles and WISDM-v2.0. We use fixed

train and test sets to reduce the number of iterations that also

increases with the number of epochs in the LSTM. Each ex-

periment is repeated ten times and the average performance

is reported. We use a one-vs-remaining (OVR) validation

for the logistic regression. Due to the limited dataset size,

the LSTM network has only one hidden layer, which con-

tains ν = 128 neurons, and is trained with a batch size of

10, whereas the number of epochs is 100. We set Ti = 10
samples and the learning rate to be 0.01.

4.3. Visual parameters

We set the length of an activity sample for the visual

component as λv = 3 s, i.e. L = 90 frames for 30 fps,

4The full pipeline, which contains the logistic regression, the sparsity

weighted combination and the LSTM, is instead implemented in Python

3.5.
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Table 2: Comparison of the Accuracy, A(%), of state-of-

the-art approaches and the proposed inception features in

the inertial datasets. An SVM is employed with a one-vs-

remaining strategy in a ten-fold validation as in [24, 25].

(‘Prop. Inception’: concatenation of inception features from

the accelerometer and gyroscope data in ActiveMiles and

only the inception features from the accelerometer data in

WISDM-v2.0; ‘Prop. Inception+Handcrafted-2’: concate-

nation of ‘Prop. Inception’ and Handcrafted-2 features.)

ActiveMiles [25] WISDM-v2.0 [17]

Handcrafted-1 [25] 95.0 92.5

Handcrafted-2 [5] 98.1 97.6

Ctal et al. [6] 91.7 89.8

Alsheikh et al. [4] 84.5 82.5

Ravi et al. [24] 95.1 88.5

Ravi et al. [25] 95.7 92.7

Prop. Inception 98.8 97.3

Prop. Inception+Handcrafted-2 98.4 97.9

with 50% overlap. We resize the videos to a resolution of

320× 240 and set the number of grid cells to γ = 100.

The FFT, scaling, translation and normalization of the

spectrograms as well as the inception feature extraction are

performed similarly to what discussed above for the inertial

spectrograms. In the HUJI dataset, we employ a 50% de-

composition for train and test sets. In the BAR dataset, the

sequences from two subjects are used for training, while

the remaining are used for testing. The LSTM has Tv = 20
samples for the HUJI dataset to compensate for the shorter

window length compared to the inertial datasets. For the

BAR dataset, we set Tv = Ti = 5 since the dataset is small

and there are no significantly long temporal dependencies

among samples. All other parameters of the pipeline are the

same as those of the inertial pipeline.

4.4. Discussion

Table 2 and 3 compare the performance of the inception

features with that of state-of-the-art methods validated on

the inertial datasets, without employing the sparsity weight-

ing and the LSTM-based temporal encoding.

Table 2 shows that the overall accuracy, A, of the pro-

posed inception features outperforms existing inertial-based

deep frameworks [4, 24, 25]. Unlike [25], the inception fea-

tures improve the performance without the concatenation of

the shallow features. In addition, Handcrafted-1 [25] is out-

performed by Handcrafted-2 [5], which additionally con-

sists of frequency-domain features.

Table 3 provides per-class recall values, R, between the

baseline deep framework [25] and the proposed CNN fea-

tures, extracted from a pre-trained inception-v3 model. The

proposed features achieve equivalent performance with the

baseline containing both deep and shallow features [25].

Particularly, the concatenation of the inception features

from accelerometer and gyroscope data in ActiveMiles im-

proved the performance of all the activities. The equivalent

Table 3: Comparison of the Recall, R(%), of inception fea-

tures and the baseline [25] (‘Prop. Acc.’: inception features

from accelerometer data; ‘Prop. Gyro.’: inception features

from gyroscope data; ‘Prop. Acc.+Gyro.’: concatenation of

the inception features from the accelerometer and the gyro-

scope data).

ActiveMiles [25]

Casual Cycling Idle Transport Running Standing Walking

Ravi et al. [25] 96.1 96.6 96.5 95.2 98.8 73.0 96.5

Prop. Acc. 88.7 94.4 96.7 94.7 98.8 46.7 94. 8

Prop. Gyro. 92.3 90.7 80.6 89.8 97.5 15.8 91.9

Prop. Acc.+Gyro. 98.2 94.5 97.1 96.8 99.4 54.2 95.8

WISDM-v2.0 [17]

Walking Jogging Stairs Sitting Standing Lying

Ravi et al. [25] 97.2 97.7 77.0 89.3 82.1 85.8

Prop. Acc. 96.1 97.1 66.6 89.6 80.1 88.5

Table 4: Comparison of different fusion strategies on the in-

ertial datasets. (‘-’: not available; C-LSTM: concatenation

of feature groups followed by LSTM only; C-LR-LSTM:

concatenation of feature groups followed by logistic regres-

sion and LSTM; LR-C-LSTM: concatenation of LR ouputs

of the feature groups prior to the LSTM; LR-S-LSTM: ac-

cumulation of LR ouputs of the feature groups prior to the

LSTM).

ActiveMiles [25] WISDM-v2.0 [17]

P(%) R(%) P(%) R(%)
Inception-Acc. 41.6 33.0 65.6 58.0

Individual Inception-Gyro. 40.2 29.9 - -

Handcraft-Acc. [5] 42.1 35.9 65.3 56.0

Handcraft-Gyro. [5] 44.5 37.2 - -

C-LSTM 54.0 43.6 64.3 56.2

Fusion C-LR-LSTM 52.5 33.4 61.5 56.2

LR-C-LSTM 61.4 53.5 66.2 57.8

LR-S-LSTM 61.6 55.2 72.7 58.4

performance between the proposed and the baseline features

in Table 3 suggests that it is possible to avoid the extensive

training of dedicated inertial deep networks by using effec-

tive cross-domain knowledge transfer from vision research.

The significant superiority of the proposed features in their

overall accuracy (Table 2) over the recall values (Table 3) is

partly due to the OVR strategy adopted, in which the true

negative rate is expectedly higher.

Table 4 and 5 assess different strategies of multi-stream

information fusion in the inertial and visual datasets, re-

spectively. The top of Table 4 (Individual) evaluates the

individual classification outputs of feature groups from the

ActiveMiles and the WISDM-v2.0 datasets using a logis-

tic regression (LR). The bottom of Table 4 (Fusion) val-

idates the performance improvements when feature-level

and decision-level fusion strategies are applied on informa-

tion from different modalities and/or streams. C-LSTM and

C-LR-LSTM do not include any merit-based weighting of

the feature groups. As a result, the performance improve-

ments are not significant. LR-C-LSTM and LR-S-LSTM

significantly improve the performance compared to using

individual feature groups. The accumulation of the LR out-
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Table 5: Comparison of different fusion strategies on the

FPV datasets. (‘-’: not available; C-LSTM: concatenation

of feature groups followed by LSTM only; C-LR-LSTM:

concatenation of feature groups followed by logistic regres-

sion and LSTM; LR-C-LSTM: concatenation of LR ouputs

of the feature groups prior to the LSTM; LR-S-LSTM: ac-

cumulation of LR ouputs of the feature groups prior to the

LSTM).

HUJI [23] BAR [3]

P(%) R(%) P(%) R(%)
Inception-Grid 57.4 55.4 45.5 48.6

Individual Inception-Centroid 62.1 67.0 37.4 39.0

Inception-Inertial - - 79.0 71.1

Handcrafted-2 [5] - - 76.1 76.3

C-LSTM 72.1 78.1 75.6 74.9

Fusion C-LR-LSTM 70.7 74.6 47.2 49.0

LR-C-LSTM 71.6 73.6 83.7 75.0

LR-S-LSTM 72.3 75.4 83.1 76.3

puts in LR-S-LSTM reduces the input dimension of the

LSTM and therefore reduces the size of the weight param-

eters, Wxo,Wxi,Wxf and Wxc. Generally, the temporal

encoding using the LSTM improves the precision and re-

call by at least 15% in ActiveMiles. The improvement in

WISDM-v2.0 is not significant compared to ActiveMiles.

This is partly due to fewer motion streams in WISDM-v2.0,

which does not contain gyroscope data.

The trend is similar in Table 5, where the fusion of fea-

ture groups improves performance in the FPV datasets. Due

to the larger size of the HUJI dataset, C-LSTM achieves

the highest performance, while the proposed LR-S-LSTM

leads to 18% and 12% precision and recall improvements,

respectively, compared to the best individual performance,

i.e. Inception-Centroid. Since the BAR dataset is very

small, the performance improvement due to the LSTM-

based temporal encoding is not significant. However, the

CNN features extracted from the stacked spectrograms of

the accelerometer data perform equivalently to the hand-

crafted inertial features, and better than the CNN features

from the grid optical flow and the centroid displacement.

This shows the advantage of cross-domain knowledge trans-

fer for human activity recognition when there are multi-

modal information sources.

Figure 3 compares the LSTM-based long-term temporal

encoding with C-LR outputs. C-LR uses feature concatena-

tion followed by logistic regression. The results show that

the LSTM improves the performance across all the datasets

consistently. Particularly, the improvement is significant in

the inertial datasets (Fig. 3a and 3b) partly because the iner-

tial pipeline takes advantages of both handcrafted and CNN

features. By exploiting long-term temporal dependencies,

the LSTM reduces the number of false positives and hence

increases the precision.

Finally, Table 6 compares different weighting strategies

and the sigmoid activation prior to sparsity computation.

The performance improves using the proposed weighting

(a) ActiveMiles [25] (b) WISDM-v2.0 [17]

(c) HUJI [23] (d) BAR [3]

Figure 3: The LSTM-based long-term temporal encoding

with accumulation of the LR ouputs of the feature groups

prior to the LSTM (LR-S-LSTM) outperforms the concate-

nation of the features followed by a logistic regression (C-

LR).

Table 6: Comparison of sparsity weighting strategies on

four datasets. (NSW: accumulation of LR outputs without

sparsity weighting; SWNS: sparsity weighted without a sig-

moid smoothing; LR-S-LSTM: sigmoid applied on the LR

outputs followed by accumulation.)

ActiveMiles [25] WISDM-v2.0 [17] HUJI [23] BAR [3]

P(%) R(%) P(%) R(%) P(%) R(%) P(%) R(%)
NSW 62.5 65.8 70.4 58.4 71.4 74.4 77.6 72.5

SWNS 60.5 60.9 68.6 58.5 71.9 75.5 73.9 70.4

LR-S-LSTM 61.6 55.2 72.7 58.4 72.3 75.4 83.1 76.3

strategy (LR-S-LSTM) in the multi-modal dataset, BAR,

where the inertial and visual features have different dis-

criminative characteristics. The weighting however tends to

suppress discriminative characteristics in ActiveMiles [25],

which contains equivalent discriminative characteristics

among its streams. Moreover, the importance of the sig-

moid smoothing is shown across the datasets as the per-

formance of SWNS (sparsity weighted without sigmoid

smoothing) is in general inferior to that of LR-S-LSTM.

The comparison of existing video-based methods with the

proposed framework is presented in [2].

5. Conclusion

We proposed a multi-modal proprioceptive activity

recognition framework that integrates temporal features

from first-person videos and ego-centric inertial data. We
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used stacked spectrograms to exploit successful CNN-based

image models via cross-domain knowledge transfer. More-

over, we proposed a sparsity weighted accumulation of in-

formation from different motion streams and/or modalities

using logistic regression. This approach helps reducing

the dimensions of the input to the LSTM network, which

encodes long-term temporal dependency among activities,

thus reducing the network complexity. The proposed frame-

work was validated on multiple inertial and visual datasets:

state-of-the-art performance is achieved on inertial datasets

using only CNN features without explicitly training a dedi-

cated network and without fusing handcrafted features.

As future work, we plan to apply problem-specific data

augmentation techniques and re-train the last layer of the

CNN with the spectrograms.
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