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Abstract

This paper presents a computer vision based sensory

substitution device for the visually impaired. Its main objec-

tive is to provide the users with a 3D representation of the

environment around them, conveyed by means of the hear-

ing and tactile senses. One of the biggest challenges for

this system is to ensure pervasiveness, i.e., to be usable in

any indoor or outdoor environments and in any illumination

conditions. This work reveals both the hardware (3D acqui-

sition system) and software (3D processing pipeline) used

for developing this sensory substitution device and provides

insight on its exploitation in various scenarios. Preliminary

experiments with blind users revealed good usability results

and provided valuable feedback for system improvement.

1. Introduction

The development of aids for helping the visually im-

paired to perceive the environment, to orientate and nav-

igate has been the subject of many research works in the

past two decades [20]. The reported efforts to support the

rehabilitation of visually impaired have been directed to-

wards the development of electronic travel aids (ETAs) and

sensory substitution devices (SSDs). An ETA is a form of

assistive technology with the purpose of enhancing mobility

for the blind user [13, 20]. Sensory substitution devices are

designed to convey visual information to the visually im-

paired by substituting visual information into one of their

intact senses [1, 3, 5, 6, 15, 30, 35, 42]. These devices em-

ploy non-invasive human-machine interfaces, which, in the

case of the blind, transform visual information into auditory

or tactile representations using a predetermined transforma-

tion algorithm.

Although environment sensing techniques like sonar or

radar have shown promising results, computer vision meth-

ods have more potential for providing an appropriate rep-

resentation of the environment in real-world settings, which

are noisy and difficult to interpret. Creating such a represen-

tation implies acquiring information and filtering it in order

to provide the user with information that is not confusing

and does not incur a sensory overload [22, 32, 33, 40, 48].

Moreover, as a general trend, higher quality image sens-

ing devices are becoming cheaper, smaller and more widely

available.

Analyzing the state of development for these assistive

systems from the perspective of the end-user, we find that

a plethora of works have been reported in the literature

[4,6,9,10,12,14,16,23,27,28,34,39,41–45,47,49]. How-

ever, there are still some important steps to be taken be-

fore large communities of visually impaired users embrace

this technology. The reasons for not having such consumer

grade systems largely available for the end-user are related

to many factors, such as form factor (wearability), lack of

efficient training programs or general limitations of the vi-

sual rehabilitation itself.

Many computer vision-based assistive systems for the

blind have tackled the problem of environment sensing and

understanding [29], e.g. in the system reported in [31] se-

mantic maps for indoor spaces were used to support high-

level localization, navigation and context awareness. How-

ever, very few of the assistive systems consider the per-

vasiveness aspect [10, 27, 41] and work either in indoor

or outdoor environments. This limitation mainly comes

from the integrated 3D sensors. The infrared-based sen-

sors, e.g., Kinect, do not cope with bright illumination from

the Sun. Stereo sensors provide unreliable depth estima-

tions in the presence of poor artificial lighting or uniformly

colored/textured surfaces specific to indoor environments.

The system described by Kurata et al. [27] obtains posi-

tioning data from several sensing sources such as GPS, Wi-

Fi, PDR (Pedestrian Dead Reckoning), image-based regis-

tration, and active RFID (if the infrastructure is in place),
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and integrates them based on each uncertainty. Road-

network data is also employed for map matching. Obsta-

cle detection is performed using a laser range finder. An

obstacle-map is rendered on a tactile display that is also

used for Braille output.

The VeDi system [10] provides another showcase for

indoor and outdoor navigation by integrating vision-based

with pedestrian localization systems. The authors report

a custom designed system that demonstrates how partially

sighted people could be aided by the technology in per-

forming an ordinary activity, like going to a mall and mov-

ing inside it to find a specific product. Computer vision

techniques for detection, recognition and pose estimation

of specific objects or features in the scene are combined

with a hardware-sensor pedometer. Navigation in the in-

door environment is performed using a Visual Navigator

that searches for specific visual beacons (signs or environ-

mental features).

Sensor fusion has also been exploited in the Navig

project [24]. It uses GPS, two IMUs (Inertial Measurement

Unit), one for body heading and a second one for head ori-

entation, an adapted GIS and a stereo vision module. The

vision module serves two functions: object localization and

user positioning. The system looks for geolocated land-

marks tagged in the GIS. When detected, these visual land-

marks are not rendered to the user but are used to refine the

current GPS position. The position estimate computed by

the vision component is fused with GPS data to improve

positioning. It can also be used in situations where the GPS

positioning is faulty or not available.

While all these systems employ a form of data fusion

from different sources, they only address the navigation

problem and do not focus on the sensory substitution ap-

proach, or do not cope with any kind of environment. The

Sound of Vision (SoV) system tackles the pervasiveness re-

quirement by integrating both an IR-based depth sensor and

a stereo vision system, together with an IMU device for re-

covering the head orientation. The main goal is to provide

depth information in any environment (indoor or outdoor),

in any illumination conditions and without the need for en-

vironment annotation. In this paper we present a prototype

implementation of the SoVconcept, focusing on the com-

puter vision component.

2. The Sound of Vision project

2.1. Description of the project and objectives

The Sound of Vision system is a non-invasive, wear-

able sensory substitution device that assists visually im-

paired people by creating and conveying an auditory and

tactile (haptic) representation of the surrounding environ-

ment. This representation is created based on computer vi-

sion techniques, updated and conveyed to the blind users

Figure 1: Acquisition devices support attached to different

headgear designs. (Left) Rigid acrylic structure resembling

VR headset implementations. (Right) Lightweight head-

gear with elastic strap bands.

continuously and in real time. The objective of the SoV

system is to aid both the perception and the navigation of

visually impaired users in unknown environments. More-

over, the proposed system would provide feedback to the

user in both indoor and outdoor environments and irrespec-

tive of the illumination conditions.

The SoV system aims to aid the perception and mobility

of visually impaired people who rely on assistive devices,

such as the white cane, a guiding person or a guide dog in

their daily lives. Thus, the visually impaired individuals that

can benefit from the SoV system are those in Categories 3,

4 and 5 of visual impairment (according to the definition

adopted by the World Health Organization 1).

The work flow of the system consists in four main steps:

(1) acquisition of 3D information from the environment, (2)

3D reconstruction of the sensed environment and segmen-

tation into objects of interest, (3) audio and haptic modeling

of the processed 3D scene, (4) rendering of audio and haptic

information to the user.

The acquisition of 3D information from the environment

is performed using depth cameras placed onto a rigid struc-

ture, which can be easily attached to various headgear de-

signs (Figure 1). The acquisition system also integrates an

IMU device that allows recovering the orientation of the

head and cameras.

The 3D processing step performs a 3D reconstruction of

the environment and identifies the elements of interest, such

as ground, walls, ceiling, generic obstacles, negative obsta-

cles (e.g., holes in the ground), doors, stairs, signs and texts.

The detected objects are further encoded using custom

audio and haptic models. The system provides both full

scene encodings and tools (modifiers of the main encod-

ings). To open the possibility that the SoV system will

be used by as many user categories as possible, including

those with hearing impairments, the system provides both

uni- and multi-modal encodings for scene description and

is highly customizable. Moreover, the modifiers convey

much simpler information without encoding all objects in

the scene (e.g., flashlight mode, frontal selector, direction

1http://apps.who.int/classifications/icd10/browse/2015/en
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of best navigable space in front of the user). Switching be-

tween the available encoding models and adjusting their au-

dio/haptic options and volumes is easy to perform in real-

time by the user, through a remote control.

Rendering the audio information is performed by means

of several types of headphones: regular on/over head-

phones, in-ear headphones, and custom design multi-

speaker headphones. The main requirement for the audio

rendering unit is to be either open or hear-through, such that

the visually impaired user is still able to perceive the natural

sounds in the environment. Haptic information is conveyed

to the user by means of a custom made belt, placed on the

user’s abdomen.

The SoV software runs on a portable computer carried in

a custom made backpack with cooling facilities.

2.2. Requirements for the computer vision compo­
nent

The main challenging requirements for the SoV system

are: (i) to provide users with real-time feedback regarding

the structure of the environment, (ii) to work in both indoor

and outdoor environments, (iii) irrespective of the illumina-

tion conditions, (iv) to provide an added value compared to

using the white cane, and (v) to be wearable. These gen-

eral requirements translate into technical requirements for

the computer vision components of the SoV device. They

specifically have an important impact on the design of the

3D acquisition system and of the 3D processing pipeline.

While complex 3D processing algorithms need to be em-

ployed for the identification of the elements of interest in the

environment, the system should still provide the user with

real time feedback. To address these conflicting require-

ments, most of the 3D processing tasks are performed on

the GPU. Moreover, the system adapts the detection of el-

ements of interest based on the usage scenario. The most

significant elements required in navigation scenarios are re-

lated to avoidance of obstacles and dangerous situations. In

navigation scenarios, the user experiences a rapid change of

scene structure, and thus a frequent change of elements en-

coded by the system. The aim is to keep the number and

type of elements signaled by the system low enough, such

that the user is able to understand the scene while moving.

Some elements (e.g., doors, texts, signs) are only detected

in scene exploration scenarios for which the encoding mod-

ule of the system performs scanning of the reconstructed

scene. This allows the 3D reconstruction module to perform

complex and more time consuming algorithms for their de-

tection. Furthermore, the detection of some elements (i.e.,

texts, signs, best free space) is explicitly triggered by the

user.

In order to work in both indoor and outdoor environ-

ments, and irrespective of the illumination conditions, the

3D acquisition system employs two different types of depth

sensors. Moreover, different 3D processing approaches are

employed to deal with the specific structure and composi-

tion of indoor and outdoor environments, respectively.

The interplay between the SoV system and other assis-

tive devices, such as the white cane, is envisioned and for-

mulated based on recommendations from users and Orien-

tation and Mobility (O&M) instructors. Thus, we expect

the system to be used together with the white cane. We also

expect that after some amount of training, the users would

feel confident enough to use the SoV system without the

white cane. Under these assumptions, the proposed system

provides the user with both redundant and complementary

information to the white cane. The SoV system is highly

customizable by the user to adapt its output to the require-

ments corresponding to various scenarios of usage: with or

without the white cane, simple/complex environments, var-

ious walking speeds, crowded/uncrowded environments.

3. 3D processing pipeline

3.1. Acquisition system

The acquisition system has a modular design with off-

the-shelf components and employs fusion techniques to pre-

process raw input data. It ensures depth data acquisition

in multiple usage scenarios (e.g. indoor/outdoor, different

lighting conditions).

3.1.1 Hardware

The acquisition devices are placed onto a rigid structure,

which can be easily attached to various headgear designs.

All the devices are connected to the SoV central process-

ing unit via a USB 3.0 hub. These devices are: (1) A

stereo RGB camera (SC) with configurable baseline (LI-

OV580 from Leopard Imaging), used for outdoor image

capture; (2) A Depth-of-Field camera (SS) (Structure Sen-

sor PS1080 from Occipital), used for indoor and low light

image capture; (3) An Inertial Measurement Unit (IMU)

(LPMS-CURS2 from Lp-Research), used for tracking the

head/camera orientation.

3.1.2 Operating modes

The 3D Acquisition system has four operating modes:

Stereo camera input, Structure sensor input, Stereo-

Structure dual input and recording playback. The first three

modes are designed for the real-time use of the SoV system,

whereas the playback mode is implemented for offline use

with evaluation purposes. From a functional software per-

spective, the 3D Acquisition system is based on four distinct

modules – one input module for each acquisition device (i.e.

stereo camera, structure sensor, IMU device) and one main

module for data synchronization, aggregation and prepro-

cessing.
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Stereo mode: The Acquisition module captures Stereo

frames, synchronizes them with the IMU data, rectifies the

left and right images and then applies a stereo correspon-

dence algorithm (Elas [17] or SGBM [21]) in order to com-

pute the disparity map.

Structure mode: The Acquisition module captures Struc-

ture frames (depth frames) and synchronizes them with the

IMU data.

Dual mode: The Acquisition module captures Stereo

frames, synchronizes them with the IMU data, rectifies the

left and right images and then optionally runs a mapping

procedure between RGB and depth frames or disparity and

depth frames.

3.1.3 Sensor fusion

For the dual acquisition mode (i.e. projection of the depth

output of the Structure sensor onto the RGB data from the

Stereo camera) both devices must be calibrated together.

The calibration process is performed with a custom devel-

oped calibration tool. It estimates the geometric distortions

introduced by the cameras as well as the extrinsic param-

eters describing the transformation between each pair of

cameras (left + right, left + IR, right + IR), where by IR we

denote the infra-red sensor of the Structure Sensor device.

A “loose” synchronization is performed on the data from

the three devices, captured on separate application threads.

To this end we take into account the switching jitter of the

acquisition threads occurring due to the load of the system

and the OSs task switching mechanics. Experiments show

that on a Windows 7 system with modest resources the jitter

with both negative/positive values does not exceed 25% of

the capture period at 30 fps and cancels itself after 10-15

frames. All captured data is timestamped (based on one of

the system’s steady clocks) and then a matching process is

run based on the acquisition mode used.

The fusion between the output of the two imaging de-

vices is necessary for the myriad of processing algorithms

employed by the SoV system. The module implements two

types of remapping: depth onto RGB and depth onto dis-

parity. The remapping is performed based on the intrinsic

and extrinsic parameters of the left RGB and IR sensors.

The depth image and the left rectified image can be fused

together in the following way: (1) Recalculate the disparity

values from stereo into depth values; (2) For each element in

the depth map check if it is valid (has nonzero depth value).

For valid elements, substitute an element in the disparity

map from the stereo camera with the respective element

from the reprojected depth map from the Structure Sensor.

Valid elements from the Structure Sensor depth map have

precedence over the corresponding elements in the stereo

camera depth map.

3.2. Main processing pipeline

The main steps in the 3D processing pipeline are illus-

trated in Figure 2. The 3D processing module exploits dif-

ferent combinations of sensor data (Table 1) to maximize

the system usability in different situations and still provide

environmental information in conditions atypical to stan-

dalone sensors.

3.2.1 Indoor environments

The main indoor processing pipeline obtains depth images

from the Structure Sensor and information about the cam-

era rotation from the IMU. A point cloud is obtained from

the depth map and the camera’s intrinsic parameters. Most

of the man-made objects from indoor environments, such

as tables and chairs, have planar surfaces. This led to the

idea of segmenting the 3D acquired point cloud into planar

regions, which have similar normal vectors throughout all

their contained points. After the segmentation, the obtained

surfaces are merged into objects, based on the information

from the IMU and on inter-frame consistency.

The 3D Reconstruction stage consists of point cloud con-

struction, edge detection, normal estimation and filtering.

The 3D points from the point cloud have a one to one corre-

spondence with the pixels in the depth map. Therefore, the

normal vector is estimated as cross product over tangential

vectors from the vicinity of the current point in image space.

A rejection filter is next applied on the normal candidates,

based on the deviation from an average normal computed

inside a certain neighborhood. The final normal vector is

obtained as a Gaussian weighted sum of the remaining nor-

mals from the neighboring window [36].

During the segmentation, a region growing step connects

the pixels with similar properties in a scan-line traversal.

For the current pixel, the regions containing its upper-left,

upper, upper-right and left neighbors are inspected. A sim-

ilarity cost is computed for the current pixel, with each of

these regions, based on the difference in depth and normal.

Next, a region merging step connects surfaces with similar

statistics. Two regions are connected if they have approx-

imately the same orientation, and the same distance from

the camera to the theoretical planes containing the surfaces.

The reasons behind introducing these similarity measures

are explained in more detail in [36].

The ground detection is a very important step in this

pipeline, because most of obstacle detection heuristics de-

pend on a good estimation of the ground equation. A ground

surface is horizontal in world coordinates, therefore its nor-

mal is approximately [0, 1, 0]. Also, the distance between

the camera and the hypothetical plane containing such a

surface is larger than the distance between the camera and

other horizontal surfaces. The algorithm also uses inter-

frame consistency in order to relax conditions for surfaces
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Figure 2: Main processing steps of the proposed system. The functionality and implementation of each step depends on the

type of sensed environment (indoor vs. outdoor) and lighting conditions.

Table 1: The use of the data provided by the 3D acquisition module in different environments and illumination conditions

Input

Environment Lighting conditions Structure

sensor

Stereo cam-

era

Main approach

Indoor
Normal light Depth Map Left color

map

Detect planar surfaces in the depth map and combine

them into objects: detection of doors, texts,signs is per-

formed on the color map

Low light to com-

plete darkness

Depth map - Detect planar surfaces and combine them into objects

Outdoor
Normal light - Left and right

color maps

Detect objects based on disparity map histogram seg-

mentation: estimate camera movement based on stereo

pairs to perform object tracking

Low light to com-

plete darkness

Depth map - Detect objects based on depth map histogram segmen-

tation; object tracking is not performed

that were already labeled as ground in previous frames [37].

Other heuristics are applied based on the previously de-

tected ground region, in order to remove false positives from

the ceiling surface candidates. The walls are large surfaces

perpendicular to the ground. Similar to the heuristics for the

ground, the wall detection algorithm employs inter-frame

consistency in order to relax the conditions for surfaces that

have been labeled as walls in previous frames. The remain-

ing surfaces are merged into generic objects based on adja-

cency [37].

Since an indoor environment can contain many objects,

the user might get disoriented if all these objects would

be encoded. Therefore, in a configuration step, the user

chooses how many objects should be encoded and how to

choose the most relevant ones, based on the size, depth

and deviation from the view direction. The size of an ob-

ject S is determined as a product of its width and height.

The deviation from the view direction of an object, D is

computed in image space as the difference between the X
coordinate of the image center and the average X coordi-

nate of the object. For each object, an importance cost

is computed as a weighted sum of costs given by the ob-

ject’s size, depth and deviation from the view direction:

C = Csize + Cdepth + Cdev . Csize = S/Smax, Cdepth =

Z/Zmin and Cdev = D/Dmin, where Smax is the size of

the biggest object, Z and Zmin represent the depth of the

current object, respectively the depth of the closest object

to the camera and Dmin is the deviation of the object lo-

cated closest to the image center along the X direction. The

objects with the biggest importance cost are sent to the en-

coding.

3.2.2 Outdoor environments

The outdoor processing pipeline exploits data from both the

stereo camera and the IMU sensor for a 3D reconstruction

approach where a global 3D model is built. The reconstruc-

tion of a global 3D model is necessary as it allows coping

with the high amount of errors in the estimation of depth

from disparity. The global 3D model is built using state of

the art algorithms for disparity computation [17] and cam-

era motion estimation [26]. The approach of independently

segmenting each frame in the presence of these errors can

lead to erroneous object detection and thus to unreliable

functioning of the system. However, this approach is more

reliable in low light conditions where the depth from the

Structure Sensor is used as input.

A very important step in the detection of objects in the
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environment is represented by the correct estimation of the

ground surface. The ground surface is detected by first es-

timating the equation of a plane that approximates this sur-

face [19]. Second, all the 3D points in the global model

that fit this plane equation within a threshold are consid-

ered part of the ground surface. The threshold was empir-

ically selected with a value of 15 cm, which accounts for

both the usual slight unevenness of the real ground surfaces

and for 3D point estimation errors. Moreover, uneven sur-

faces within this oscillation of level generally do not pose

threats to the safety of VIP’s mobility, especially when us-

ing the white cane.

The global 3D model is consistent along the time line of

the system use. Consistency is achieved by incrementally

adding the 3D representations of the individual frames in

the stereo stream to this 3D model. A confidence measure

is associated to each 3D point forming the global model.

This confidence linearly depends on the number of frames

in which the points could be tracked, i.e., the point was in

the sensor’s field of view and the disparity computation al-

gorithm could provide a 3D measurement for it. While in-

troducing the confidence measure for the 3D points greatly

improves the accuracy of the estimation of static regions in

the environment, it also intrinsically excludes the dynamic

objects. To overcome this difficulty, we employ the use of

fusion maps and color difference maps between the current

frame and the previous global 3D model to determine 3D

measurements corresponding to dynamic objects. To refine

the dynamics estimation we correct both the false negative

dynamic 3D points and the false positives ones using a sta-

tistical approach. We exploit a superpixel segmentation [2]

of the color image and mark the superpixels as dynamic or

static based on the votes of their corresponding 3D points.

In our approach, the 3D global model is segmented

into objects after excluding the regions corresponding to

the ground surface [7]. Objects are tracked between

frames based on labels assigned to the 3D points in each

frame. This ensures their temporal consistent identification

throughout the stream. Moreover, the ground information is

exploited for computing the best free space in front of the

user and for the detection of negative obstacles on the path-

way. The superpixels segmentation is used for refining the

object segmentation as the superpixels are computed such as

their boundaries generally do not cross object boundaries.

In low light outdoor scenarios, where the stereo sensor

cannot be used, the system acquires depth information us-

ing the Structure Sensor. In these scenarios, the global 3D

model approach is not used as we find that camera motion

estimation algorithms that exploit only depth information

do not provide the required reliability. The segmentation

of outdoor depth images from the structure sensor is per-

formed in a similar manner as in the case of stereo data,

except for the exploitation of color information.

3.2.3 Detection of special objects in the environment

Negative obstacles can be represented by holes in the

ground, potholes or any large difference of height between

two ground surfaces (e.g., edge of a railway station plat-

form, stairs down). The SoV system detects their presence

based on empirical assumptions regarding their image char-

acteristics. The reliability of this approach is improved by

employing a tracking mechanism in order to validate the

identified candidates [19].

Doors detection algorithm is working on color image, depth

map and identified ground plane equation as input data. The

method relies on detection of lines which are matched with

a proposed geometric model of doors. Detecting and track-

ing the door handles allows us to reliably localize them,

even if they are only partially visible in the scene [46].

Stairs. The indoor stairs detection algorithm clusters

patches that have the normal vectors oriented vertically in

world space. It also applies several filters to eliminate false

positives, based on edges, surface rotation and distance to

the camera, as suggested in [11].

Sign detection is carried out by means of a supervised

classifier trained using sets of annotated images contain-

ing signs for exit, toilet, bus stop, pedestrian crossing. The

classifier is an SVM (Support Vector Machine) which uses

an fHOG-based approach for feature identification [25]. It

was also trained to identify semaphores and differentiate be-

tween red and green light state.

Text detection is performed by integrating the Class-

Specific Extremal Regions (CSER) [8, 38] method for text

candidates localization together with a proven, reliable,

and open-source Tesseract OCR library [18] developed by

Google.

3.2.4 Computing the properties of detected objects and

impact on user’s perception

The list of objects and their properties is used by the au-

dio and haptic encoders. With these encodings, the user

receives information regarding the localization of objects,

their size and type, as well as their elevation. A first round

of usability experiments have been performed with 12 visu-

ally impaired and 12 sighted persons, using the system in

custom generated virtual environments, of increasing com-

plexity, and with a separation between the system’s audio

and haptic encodings. The conclusions of these experiments

pointed out that, while the users could easily perceive dif-

ferent widths/heights of objects when presented with a static

image, it is difficult for them to get accustomed with these

measures variating when rotating the head. Such variations

can be perceived when the width and height of objects are

computed based on the projection of the objects onto the

camera image plane (Figure 3). Moreover, in ego-dynamic

testing scenarios, we found out that passing between two
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obstacles can pose difficulties when the user is only in-

formed about the position and width of the two objects. This

task requires that the user calculates the navigable space be-

tween the obstacles based on their properties. We addressed

these limitations by:

(1) Increasing the usability of object properties for nav-

igability and scene perception of the visually impaired.

Their perception is different from the perception of these

properties by a sighted person. A sighted person interprets

the width, height and length of a car the same way, irre-

spective of how he/she looks at it. Moreover, the perception

of a sighted person depends on the orientation of the object

with respect to his/her position and not to the head orienta-

tion. We adopt a definition that allows the user to interpret

these properties with respect to the navigable space around

him/her: the width of an object is considered to be the hori-

zontal dimension of the space occupied by the object if the

user was heading towards the center of the object, while the

height is computed as the vertical one. The vertical and hor-

izontal axes are defined with respect to the orientation of the

ground. Figure 3 illustrates the computed width of an ob-

ject using both methods, with two head orientations for the

same user position.

(2) Conveying information regarding the best navigable

space in front of the user. This information indicates the di-

rection (azimuth) the user can navigate to and the depth of

the free space in that direction (in meters). The radial slice

of best free space is chosen to be the closest to the camera

heading direction, in case multiple ones are detected. More-

over, a minimum width of free space is considered (0.9m),

equivalent to a standard door opening. The slices of naviga-

ble space are computed based on radially sampling the de-

tected ground surface and obstacles (hanging, on the ground

and negative ones).

4. Evaluation

4.1. Technical performance

The evaluation of system accuracy is performed auto-

matically, using a custom developed application. The main

objective is to evaluate the output of the system from the

user’s perspective, i.e., with respect to the number, type,

position and size of the encoded objects. To this end, we

evaluate the segmentation performed by the system against

up to 40 manually annotated ground truth (GT) images –

RGB frames for outdoor and depth maps for indoor environ-

ment. For the evaluation of object size, we use the bound-

ing boxes of the object projection onto the image plane, as

the GT for the actual system output cannot be obtained.

The evaluation is performed for 5 and 10 meters distance

ranges, in indoor and outdoor scenarios. The correspon-

dence (Figure 4) between objects in the GT image and those

in the output image is established using a similarity met-

Field of view 

width in  

image plane 

Field of view 

width in  

image plane 

Figure 3: Computing the width of an object based on its pro-

jection on the camera plane (red) and custom plane (blue).

The width computed with the proposed method (blue) is

constant when variating the camera orientation from the

same user position.

Figure 4: Example correspondence between objects within

the ground truth (left) and the detection results (right) in the

indoor (top) and outdoor (bottom) environments.

ric based on the Jaccard similarity coefficient (JC). JC is

defined as
area(RGT∩RD)
area(RGT∪RD) , where RD is the rectangular re-

gion of the detection result and RGT denotes the ground

truth. An object is considered detected properly (true posi-

tive) if the JC is larger than or equal to 50% (a score larger

than 50% is normally considered as a “good”). The sen-

sitivity (TPR = TP/(TP + FN)), positive predictive

value (PPV = TP/(TP + FP )) and accuracy (ACC =
(TP + TN)/(TP + FP + FN + TN)) of the system are

presented in Table 2, where TP denotes true positive, FP –

false positive, FN – false negative and TN – true negative

detections, respectively. When checking whether the cor-

respondence between objects is right, parameters such as

width, height and distance between centers of rectangular

regions are taken into account. The error in computing the

width/height of objects is evaluated as a ratio of the differ-

ence between GT and computed values and of GT, only for

the TP detections. The center deviation is also computed in

image space using the average Euclidean distance between

GT center and computed center. Ground surface detection

is evaluated pixel wise.

Within the main problems of the outdoor pipeline are

clustering of several objects into a single one and the fact

that lower parts of objects are sometimes considered as
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Table 2: Evaluation of the system performance

Environment

Element

TPR PPV ACC

Ground Surface 0.98 0.90 0.89
Obstacles 0.97 0.78 0.76

width error: 0.13m

height error: 0.17m

center deviation: 16px

ground surface. Since our automatic evaluation procedure

does not currently support splits and merges, those results

may be wrongly marked as improper. Indoor pipeline, on

the other hand, is characterized by over-segmentation of

walls. In both pipelines we achieved very good results of

ground surface detection despite a slight over-segmentation.

It is very important as audio and haptic encoding of the

scene (where ground is removed as safe) and object detec-

tion based on remaining object regions heavily rely on cor-

rect identification of ground surface.

The reconstruction and segmentation runs at approx.

15 fps for indoor environments and at approx. 10 fps for

the outdoor pipeline, including the computation of negative

obstacles and best free space. The times were measured on

a consumer laptop (Intel Core i7-4720HQ Processor with

a GTX 970M GPU). Stairs and door detection run at 10 fps,

while signs detection runs at 20 fps. Text detection can

be very time consuming, depending on scene complexity.

Thus, it is not run in real time, but only when triggered by

the user and associated with the scene scanning mode. If

the module doesn’t return a result within the system’s scan-

ning time (1.5 s), the system reports a failure in detecting

any text in the environment.

4.2. Preliminary usability assessment

Preliminary usability experiments with the developed

system have been carried out in two rounds of experiments.

First experiments were conducted with 12 visually impaired

participants (VIP) and 12 sighted persons. The tests were

run with custom Virtual Environments (VE). The main ob-

jective was to assess the usability of several audio and hap-

tic encodings. The results helped us improve both the en-

codings and the computation of object properties. The sec-

ond round of tests were performed with 19 VIPs with the

involvement of O&M instructors. The experiments were

designed with increasing difficulty and were interspersed

with training. There were two stages of the experiment,

first in VE, followed by Real World (RW) setups. The tests

involved both ego-static and ego-dynamic scenarios. The

RW tests consisted in modeled indoor environments with

cardboard boxes in random locations playing the role of ob-

stacles. Besides the collected psychophysics measurements

(e.g., accuracy, response times), we received rich feedback

from the participants for further improvement of the pro-

totype, both by means of validated questionnaires and per-

sonal interviews. An extensive report on the results of these

usability experiments is not in the scope of the paper. How-

ever, there are a few conclusions worth mentioning with re-

spect to the 3D acquisition and processing components of

the system: (i) a more pleasant and comfortable headgear

design should be devised for the final system implementa-

tion, (ii) RW tests were in general more difficult than the

VE tests, however, provided satisfactory results as partici-

pants were in general able to complete the task objectives,

(iii) while a 15fps update to the user is not in the standard

understanding of real time operation in the computer ani-

mation field, it did not pose any problems to the real time

perception of the environment in navigation scenarios, (iv)

users are able to cope with regions of walls reported by

the system as generic obstacles, even in scene exploration

mode.

5. Conclusions

The Sound of Vision system is a complex sensory sub-

stitution device that heavily relies on computer vision tech-

niques to convey environment information to visually im-

paired users. The objective of this paper was to provide an

overview of the entire computer vision based system, em-

phasizing on how the conflicting user requirements (real

time feedback, complex environments and lighting condi-

tions) are addressed. The preliminary evaluation of the

system was performed with respect to the accuracy of the

produced output in normal functioning mode, considering

the main categories of elements (ground, walls and generic

objects). Additional components integrated in the 3D pro-

cessing pipeline have been reported and evaluated individu-

ally. Further work will address more in depth evaluation and

improvement, specifically with respect to system usability

given its accuracy. That is, we are interested in evaluating

how the system’s FP and FN rates affect the user perception

of the scene with respect to navigability and scene under-

standing. Preliminary experiments with visually impaired

users have shown that, with a relatively small amount of

training, they are able to use the system for scene under-

standing and obstacle avoidance. Further experimentation

will be performed aiming at more detailed user feedback

in more complex environments. For example, such exper-

iments would confirm/infirm our supposition that under-

segmentation would be preferred for areas with clustered

objects, especially for mobility scenarios.
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