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Abstract

Research on robotic wheelchairs covers a broad range

from complete autonomy to shared autonomy to manual

navigation by a joystick or other means. Shared autonomy

is valuable because it allows the user and the robot to com-

plement each other, to correct each other’s mistakes and

to avoid collisions. In this paper, we present an approach

that can learn to replicate path selection according to the

wheelchair user’s individual, often subjective, criteria in or-

der to reduce the number of times the user has to intervene

during automatic navigation. This is achieved by learning

to rank paths using a support vector machine trained on se-

lections made by the user in a simulator. If the classifier’s

confidence in the top ranked path is high, it is executed with-

out requesting confirmation from the user. Otherwise, the

choice is deferred to the user. Simulations and laboratory

experiments using two path generation strategies demon-

strate the effectiveness of our approach.

1. Introduction

Powered wheelchairs are important transportation tools

for people with certain motor impairments. It is estimated

that on average 1% of the population requires a wheelchair,

regardless of whether they have access to one. According

to the 2010 census, there are 3.6 million wheelchair users in

the US, while approximately 49% of older adults in Cana-

dian institutional settings use a wheelchair [39]. Wheelchair

users in Europe are estimated to be in the 5 million range.

According to Ceres et al. [9], 2 million wheelchair users

in the EU suffer from reduced upper-limb motor control

and have to control their wheelchairs via alternative inter-

faces. Different studies have shown that 10% of wheelchair

users require help while operating their manually-controlled

wheelchairs and around 40% of users had difficulties in

steering and maneuvering tasks using a powered wheelchair

[12]. There is a need to develop technologies to assist these

people. In order to relieve the burden of manual control,

with the advancement of the automatic navigation technol-

ogy, it is possible to achieve automatic navigation indoors

for a powered wheelchair with a computer and a few addi-

tional sensors [9, 14, 20]. In most automatic applications,

an expert system is developed: a wheelchair user only needs

to specify a navigation goal, letting the computer to plan a

path and decide how to reach the destination.

Beyond safety and efficiency, researchers have started

considering subjective criteria, such as comfort, [15, 34, 40,

42] in path planning for robotic wheelchairs. Wheelchair

users, however, do not share the same preferences and the

standard of comfort varies from user to user. Among other

factors, their preferences may differ in terms of speed, ac-

celeration, curvature of the path, distance to obstacles or

people. Therefore, there is a need for an approach that en-

ables shared autonomy and allows robotic wheelchair con-

trol to be individually customized according to these pref-

erences.

This paper presents such an approach that can learn user

preferences through their commands during navigation or

in simulation. When a user specifies a destination, the

wheelchair plans several paths to it, instead of one as in an

fully autonomous wheelchair system. If one among these

paths is clearly better than the others according to the user’s

preferences, the wheelchair automatically executes it with-

out asking her. Otherwise, if the provided paths do not show

significant differences with respect to the user’s preference,

she is asked to make a choice. The objective is to achieve

a trade-off between user satisfaction with the selected paths

and user involvement in navigation. This is achieved via

shared autonomy, with the user in the loop, but not engaged

in mundane operations.

In order to generate several diverse paths for the system

to rank or for the user to select from, two path planning

methods are integrated into the platform. One method uses

the Generalized Voronoi Diagram (GVD) and can gener-

ate homotopically distinct paths for places with loop paths

(e.g. dinning room with a dining table in the center) [4, 25];

the other method iteratively uses an A* planner to generate

both homotopically distinct and equivalent paths. Note that
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comparing these strategies is outside the scope of this paper,

since the criterion for the comparison is not straightforward

to define. Instead, we show that our approach works well

with both planners.

To score the paths during navigation, we define a set of

features and train a Support Vector Machine (SVM) to rank

the paths based on previous user choices. Two experiments,

one in a simulator and one in our laboratory, show that our

software can predict user preferences accurately. In the

physical experiment, users control the wheelchair jointly

with the autonomous navigation system in a studio via a

speech recognition and synthesis interface.

The contributions of this work are:

• an approach for integrating user preferences into a

shared-autonomy wheelchair that can achieve a desir-

able trade-off between adherence to user preferences

and low user involvement in navigation,

• a user interface that facilitates shared autonomy by

only involving the user in hard decisions,

• ease of training a ranking model in terms of annotation

effort, and

• experimental and simulated demonstration of the pro-

posed approach using two path planning strategies.

2. Related Work

In this section, we review the literature on shared auton-

omy for robotic wheelchairs. We are particularly interested

in frameworks where decisions are made by both the user

and the system, and not so much in fully autonomous navi-

gation or interfaces that provide full control to the user. For

an overview of robotic wheelchair systems we refer readers

to [18, 41].

We begin with methods that combine multiple criteria

for navigation in static scenes. Gulati et al. [15] introduce

a measure of discomfort which is a weighted sum of travel

time and time integrals of the squares of tangential jerk, nor-

mal jerk, angular velocity and angular acceleration. The

method, however, does not consider obstacles, which is a

focus of our paper. Shiomi et al. [40] adjust the speed to

make their autonomous wheelchair match the behavior of

caregivers towards each user. A robotic system following

the user’s preferred speed and uttering prespecified mes-

sages was more acceptable to elderly users.

As described in Section 3, we base one of our path plan-

ning strategies on the approach of Kuderer et al. [25] who

generate a set of homotopically distinct paths on the gener-

alized Voronoi diagram of the obstacles in the scene. Once

paths have been generated, Kuderer et al. compute a cost

for each of them as a weighted sum of features. Compared

to [25], our approach requires a much weaker form of su-

pervision (see Section 4), decides when to engage the user

adaptively and can handle people in the path of the robot.

Research on shared autonomy for wheelchairs is closely

related to ours. Parikh et al. [36, 37] propose a shared con-

trol framework for an intelligent wheelchair that considers

deliberate notion plans, reactive behavior and human user

inputs. Deliberate plans are generated given the current po-

sition and a destination by finding the minimum-length path

(autonomous mode). The user can drive unassisted (man-

ual mode) or aided by reactive controllers which are em-

ployed for obstacle avoidance in semi-autonomous mode.

The PALMA project [9] led to the development of a robotic

platform providing multiple levels of autonomy. It enabled

users, primarily children, to navigate safely by performing

obstacle avoidance automatically, when needed. Five dif-

ferent levels of user intervention are programmed and con-

trolled by discrete commands via buttons. Zeng et al. [46]

developed a collaborative wheelchair which relies on the

user to specify the destination and speed, while the system

is in charge of path planning under these constraints. The

user remains involved and can alter the path to avoid obsta-

cles or enforce her preferences.

Urdiales et al. [43] proposed a shared control approach

for wheelchairs which combines commands generated by

the robot and the user according to the relative efficiency

of each in the task at hand. Efficiency is measured as the

average of smoothness, directness and safety. A similar dy-

namic shared control system for wheelchairs was designed

by Li et al. [29]. The level of assistance is adapted based

on the user’s capabilities and control is determined by opti-

mizing an objective function that considers safety, comfort

and obedience to user’s commands. The work of Carlsson

and Demiris [8] is another example of shared autonomy in

which the user guides the wheelchair while the robot adjusts

the control signals to ensure safety. Goil et al. [13] use ma-

chine learning to blend human and automatic commands in

order to control the angular velocity of a wheelchair during

simulations of assisted doorway navigation.

Shared control of a wheelchair using speech recogni-

tion as the input modality to the robot was addressed by

Boucher et al. [6]. Multiple levels of commands ranging

from turning to parking are supported. After the user se-

lects a destination on the map, a cost function comprising

motion, target reaching and obstacle avoidance components

is minimized. Multiple ways of controlling the wheelchair,

including a joystick in continuous mode, voice commands

and discrete commands via a keyboard, were tested with

users and non-users of powered wheelchairs. Mitchell et al.

[33] adopted a Wizard of Oz design, in which a hidden ex-

perimenter, the wizard, controls the wheelchair as if it were

autonomous, to study shared control policies for users with

cognitive impairments. They observed that autonomy is not

always desirable since it may give the impression of loss of

control to the users. Three policies implementing different

levels of autonomy were tested on scenarios, such as park-
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ing the wheelchair and navigating in tight spaces, while the

wizard ensures collision avoidance.

Next, we review methods that take into account people

in the environment. We also refer readers to a survey for

more information [24]. Sisbot et al. [42] presented a mo-

tion planner that integrates safety and comfort in its cost

function. Safety is a function of distance from humans,

while comfort is represented by a visibility criterion that

keeps the robot in the field of view of people. Navigation

considering people, as well as criteria for static scenes in-

cluding distance traveled and distance from obstacles, are

addressed by Kirby et al. [21]. Their COMPANION frame-

work encodes human-robot social interaction, by respect-

ing personal space and passing on the right, as constraints

in an optimization framework, but the weights of the con-

strains are heuristically set. In recent work, Cosgun et al.

[11] propose a path planning approach that anticipates peo-

ple’s reaction to the robot based on the social force model

[16]. It comprises a static planner that computes the cost of

a path as the weighted average of path length, distance from

people and disturbance of groups of people, as well as a dy-

namic planner that refines parts of the path that are close to

people. Morales et al. [35] address wheelchair navigation

emphasizing comfort for both its passenger and pedestri-

ans. Parameters for both passenger and pedestrian models

are set by the researchers to produce the desirable behav-

ior. The resulting planner was preferable to shortest path

planning in a user study.

3. Planning Multiple Paths

Given a map in the form of an occupancy grid, the cur-

rent position, and the destination, path planning strategies

can generate paths that connect the two positions. There are

several methods for generating paths for autonomous navi-

gation [28]. Most of them, however, present only one path

for execution. Here, we use two planning methods, sepa-

rately, to generate a diverse set of paths aiming to include at

least one that matches the user’s preferences. One method

uses the Generalized Voronoi Diagram (GVD) in order to

generate homotopically distinct paths [25], while the other

applies the A* algorithm iteratively after progressively plac-

ing “virtual obstacles” to block previously discovered paths.

In order to include the path a user would choose or the

system would choose for her, we must generate a number of

“different” paths. A useful definition of when two paths are

different is based on homotopy [4, 25, 32]. For two paths

to be homotopically distinct, there must be one or more ob-

stacles between them, preventing a smooth transformation

from one to the other. This, however, is not the only cri-

terion. Considering Fig. 1(a) for example, the presence of

a table in the center of the room gives rise to two homo-

topy classes of paths that pass on either side of the table. In

the absence of the table in Fig. 1(b), paths cannot be dis-

tinguished based on homotopy, but a wheelchair user may

prefer to navigate close to one of the wall to leave space

for people to walk for example. We present path generation

strategies that cover both cases.

Figure 1. (a) Homotopically distinct paths. (b) Distinct paths in

the same homotopy class.

3.1. Generating Homotopically Distinct Paths Using
GVD Planning

Our strategy for generating homotopically distinct paths

relies on the GVD of the obstacles in the map and follows

the approach of Kuderer et al. [25]. It uses a property of the

GVD, on which any different paths between two vertices are

homotopically distinct. Therefore, the problem of finding

homotopically distinct paths for navigation is converted into

the problem of finding k-shortest paths on a graph.

Figure 2. Planning homotopically distinct paths. (a) Create the

GVD. (b) Add paths between start/end points to the GVD if they

are not on it. (c) Convert the GVD to graph representation. (d)

Find k-shortest paths (two in this example).

Figure 2 illustrates the process, which has four steps.

(a) Create the GVD of the obstacles in the map. The

GVD of a map is a set of free points whose distances to the

nearest two obstacles are equal [10]. It is called “general-

ized” because unlike the regular Voronoi diagram, in which

the input sites are points, the sites of the GVD can be any

continuous shape. The first step for computing the GVD is

a Euclidean distance transform, for which we employ the

implementation of Lau et al. [27]. The output of this trans-

form is a binary occupancy grid Occ with the same size as

the map, indicating whether a cell (x, y) is on the GVD or

not (i.e. Occ(x, y) = true, false).

(b) Add the start and the end point to the GVD, since

in general these points are not on the GVD. To make the
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necessary connections, the closest cells to the start and end

points on the GVD are found. Straight line paths are made

between the start/end point and their respective closest cell.

(c) Convert the GVD into the graph representation G =
(V,E), which makes finding the k-shortest paths simpler.

Therefore, the binary grid Occ is converted into a graph

G. A breadth-first search is used for traversing the grid-

represented GVD so that all vertices and edges can be

found. Vertices are cells with more then two incoming

edges. The cells containing the start and end points are con-

sidered vertices with one edge. The weight of each edge is

the number of connected cells between its two vertices.

(d) Apply Dijisktra’s algorithm to find k-shortest paths

on the graph G. These k different paths are homotopically

distinct because they correspond to different paths on the

grid-represented GVD. For a map that contains n obstacles,

the complexity of this algorithm is O(k(nlogn)) [25].

3.2. Path Planning using the Iterative A* Algorithm

In an empty room, or a corridor, homotopically distinct

paths are unlikely to exist. However, wheelchair users may

still have a preference among paths in the same homotopy

class. Some may prefer to navigate near the wall, while oth-

ers may prefer the center. Therefore, we propose a different

method to generate multiple paths in such environments.

Figure 3. (a) Generate shortest-distance path. (b) Place virtual ob-

stacle with pre-defined size. (c) Keep planning and placing obsta-

cles until no new path can be planned. (d) Retrieve all generated

paths.

Iterative A* is illustrated in Fig. 3 and works as follows.

(a) Use the A* algorithm to find the optimal path. The

ROS move-base package is used for this purpose.

(b) Place a “virtual obstacle” blocking the most recently

generated path. This is implemented by labeling as occu-

pied the cells of the occupancy grid that are within a certain

distance of the generated paths. The size of the virtual ob-

stacle is pre-defined and depends on the size of the room

and the grid cells. The first and last segments of the path

are left free of virtual obstacles to allow the discovery of

additional paths.

(c) Generate the next path using the A* algorithm on the

modified map and return to step (b) until virtual obstacles

block all possible paths.

4. Learning Users’ Preferences

We provide a simple user interface (UI) that allows the

user to click on a path in the simulator to indicate her pref-

erence, or to select a path by saying the name of a color

that has been assigned to it in a display mounted on the

wheelchair. In either case, when a user picks a path among

multiple options, she performs a ranking action. In order

to enable our software to mimic the user making a choice,

a pairwise learning-to-rank model using a Support Vector

Machine (SVM) is trained [17]. Training data are collected

by recording a number of user selections and deriving rank-

ing constraints from them. Specifically, given a user choice,

we learn that the selected path should be ranked higher than

any of the other available paths in that map. We learn noth-

ing about the relative ranks of the other paths though.

We define a scenario as a map with a specified start point

and destination. Annotation efforts are minimal since the

user only needs to click once, to select a path, for every

scenario in the simulator. (We are aware that clicking in

the simulator is different than being in the wheelchair, but

training can be augmented with real data. We evaluate the

effectiveness of training on the simulator in Section 5.)

As a form of representing the paths, we define a set of

features which are presented below, starting with static en-

vironments and continuing with environments that contain

people who must be taken into account by the planner.

4.1. Feature Vector for Paths in Static Environments

A user may consider several criteria in order to select a

path. We form a feature vector that captures relevant prop-

erties of a path. In a static environment, for a path X that

consists of poses x, the feature vector f(X) has four di-

mensions:

f(X) = [l , ln , d̄ , dmin , δsum ]
T

(1)

(a) Path length: the shortest path is preferable among

otherwise equivalent choices, while length and duration are

always important features. The length is approximated as

the sum of the lengths of the segments connecting succes-

sive poses.

l =
∑

l(xi , xi+1 ) (2)

(b) Narrow passage length: in each path, there are seg-

ments that are close to obstacles on both sides. These seg-

ments are called “narrow passages”, in which the proba-

bility of wheelchair collision is larger than in open area.

The narrow passage segments are segments between poses

in Xn which is a subset of the path X , such that d(xi) < dn
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and d(xi+1) < dn where dn is a pre-set constant, with the

default dn = 0.5m.

ln =
∑

l(xi , xi+1 ), {xi, xi+1} ∈ Xn (3)

This feature allows the system to learn the preferred

trade-off between overall path length and tolerance of nar-

row passages. Users may prefer longer, wider paths up to a

certain increase of overall path length.

(c) Average distance to obstacles: the distance from

each pose xi to its nearest obstacle can be estimated on the

map. The average of these distances is a global feature rep-

resenting comfort and likelihood of collisions. Similar fea-

tures have been considered in the literature [6, 21, 43]

d̄ =

∑

||d(xi)||

N
(4)

(d) Minimum distance to obstacle: the minimum among

all distances from each pose to the respective closest obsta-

cle.

dmin = min||d(xi)|| (5)

(e) Sum of turning angles: the angle between two con-

secutive poses reflects the angular velocity and accelera-

tion of the wheelchair as the local plan is followed. There-

fore, the sum of turning angles is a proxy for user comfort

[15, 38, 43].

δsum =
∑

|δ(xi+1)− δ(xi)| (6)

4.2. Feature Vector for Paths in Environments with
People

The wheelchair should consider people as dynamic ob-

stacles in the scene and treat them differently than static ob-

stacles [11, 21, 24, 35, 42]. The SPENCER people detector

is used for people detection[30, 31]. Wheelchair users may

show different preferences if people are on or near a path.

The feature vector here, in addition to the features for static

scenes, contains two more features which capture the dis-

tances from a path to people. This feature vector has seven

dimensions:

f(X) = [l , ln , d̄ , dmin , δsum , d̄p , dp min ]
T

(7)

The two additional features are defined as follows.

(f) Average distance to people: like the sum of distance

to obstacles, distances of all poses to their respective nearest

people are averaged.

d̄p =

∑

||dp(xi)||

N
(8)

(g) Minimum distance to people: is defined similarly to

the minimum distance to obstacles.

dp min = min(dp(xi)) (9)

4.3. Support Vector Pairwise Ranking

Given a set of paths from the starting point to the destina-

tion, we need to rank them in order of user preference. Our

system does not classify paths as acceptable or unaccept-

able, but chooses one of the available options. Since during

training the user only selects the best path in each scenario,

we only have pairwise constraints between the selected path

and all other paths, but we do not know which paths would

have been the user’s second or third choice. Therefore, we

formulate the problem as ordinal regression using a Support

Vector Machine (SVM) following the approach of Herbrich

et al. [17] with pairwise constraints, instead of adopting a

listwise approach [7]. The process is the same for static and

dynamic environments.

Because the feature vector is heterogeneous, all features

are normalized to have zero mean and variance equal to one.

Normalized feature vectors are denoted by f̂(X). To gen-

erate the training set, we form pairs of preferred and not-

preferred paths (from the same scenario) and define prefer-

ence vectors by subtracting the corresponding feature vec-

tors. Half of the preference vectors are derived by subtract-

ing a not-preferred path from the preferred one and the other

half are derived by subtracting the feature vectors the other

way. A preference vector pij = f̂(Xi)−f̂(Xj) is labeled

as follows:

y(pij) =

{

+1 if user prefers path Xi to Xj

−1 if user prefers path Xj to Xi.
(10)

We then train a linear SVM on the preference vectors

which learns to predict whether the minuend or the subtra-

hend is the preferred path, and produces a positive or nega-

tive prediction, respectively.

During testing, the linearity of the SVM allows us to

compute the inner product of the SVM weight vector w

and f̂(X) before the subtraction. Therefore, we compute a

score for each path

S(X) = wT f̂(X) (11)

and select the one with the maximum score.

Selecting the path with the maximum score corresponds

to fully autonomous navigation. Our goal, however, is to

keep the user in the loop to make the harder choices. Our

system decides to involve the user when the top two scores

are close to each other, where closeness is defined as the

difference of the scores. (User selections in these situations

can be used to refine the SVM, but we have not pursued this

yet.)
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Figure 4. Examples of path selection by subjects. (The destination is on the right of the map in these examples.) The preferred paths are

denoted by solid red curves while the ones not chosen by dotted blue ones. Top: selections by subject 1. Bottom: selections by subject 2.

Notice the different choices in the presence of people.

5. Experimental Results

In order to validate the accuracy of our approach in rank-

ing paths according to user preferences we conducted sim-

ulations and experiments with two users who have differ-

ent preferences. We chose this design to closely model the

preferences of individual users as opposed to the “average”

preference of the crowd [19]. To enable fast and diverse

training, we developed a ROS-based simulator that inte-

grates our path planner. We also performed experiments

with a powered wheelchair and the same two users.

5.1. Data Collection in the Simulator

We generated four maps in the simulator that resemble

the complexity of the space we use in our physical experi-

ments. Some of the maps can be seen in Fig. 4. They con-

tain furniture, such as a bed, a desk, a dining table, a sofa,

etc. Some of these maps were intentionally made to have

two or more homotopically distinct paths, while some maps

only allow one homotopy class of paths. During training,

each subject generates a number of scenarios by specifying

a start and end point on the map. The system, then, invokes

one of the planners to generate a set of plans and asks the

user to select the one that he prefers.

In order to evaluate our approach in the presence of peo-

ple, another dataset was collected and annotated in the sim-

ulator. These data demonstrate more clearly the differences

between individual users, since one of our subjects had a

strong preference for avoiding people.

5.2. Results in Simulated Maps

Two subjects were asked to select one path in scenarios

generated in the maps of Fig. 4. Both planners were used;

the GVD planner was only applied in maps with homotopi-

cally distinct paths, while the iterative A* method was ap-

plied in all maps.

The feature vectors of all generated paths, the start and

end points and the user selections were recorded to form

two datasets: one with and one without people. 36 sce-

narios were generated by each subject for each planner for

static scenes and 36 more for each planner in the presence

of people. Figure 4 shows examples of selected paths by

both subjects in two of the maps. Each subset of the data

(same subject, planner and static/dynamic condition) was

randomly split into a training and test set, comprising two

thirds and one third of the scenarios, respectively. A total of

eight SVMs are trained as in Section 4.3.

To achieve the appropriate level of user involvement we

define confidence as the difference of the top two path

scores and threshold it to determine if the system should

decide autonomously or not. Figure 5 shows the ROC of

system accuracy and system decision rate (the fraction of

times the system decides autonomously) as a function of

this threshold. For clarity, we show ROCs for static and dy-

namic scenes, averaging over planners. As can be observed,

accuracy is in the order of 85-90% when the system makes

all decisions and quickly rises as the user is called upon to

make the hardest decisions. We chose a threshold of 0.2 on

the difference of SVM scores, defined in (11), as the oper-

ating point for the remainder of the paper.

Figure 5. Relationship between system accuracy vs. system deci-

sion rate. Left: static scenes; right: dynamics scenes. (36 scenar-

ios per planner per user)

Table 1 shows the average results for static scenes after

randomly splitting the datasets 20 times, keeping the thresh-

old at 0.2. Accuracy is never below 75%; around 10% of

the decisions are deferred to the user; and at most 12.09%

of paths were incorrectly selected by the system. Table 2
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GVD Path Planner Iterative A* Path Planner

Preferred

Path Picked

Not Preferred

Path Picked

Ask subject

to Decide

Preferred

Path Picked

Not Preferred

Path Picked

Ask subject

to Decide

subject 1 91.85% 2.46% 5.69% 76.39% 12.09% 11.52%

subject 2 79.61% 10.79% 9.60% 81.88% 11.12% 7.00%
Table 1. Accuracy in simulator for both subjects in static scenes. (36 scenarios per planner per user)

GVD Path Planner Iterative A* Path Planner

Preferred

Path Picked

Not Preferred

Path Picked

Ask subject

to Decide

Preferred

Path Picked

Not Preferred

Path Picked

Ask subject

to Decide

subject 1 93.90% 2.19% 3.92% 79.93% 14.40% 5.67%

subject 2 84.95% 6.71% 8.33% 97.33% 0.59% 2.08%
Table 2. Accuracy in simulator for both subjects in dynamic scenes. (36 scenarios per planner per user)

shows similar results on dynamic scenes under the same

conditions. The overall accuracy and decision rate are simi-

lar to those in static scenes. It is worth pointing out that the

consistent choices made by subject 2, who said “I always

pick the path that was away from the person, especially for

open spaces,” make predictions for his preferences using the

iterative A* method easy.

5.3. Results on Robotic Wheelchair

We also tested our approach in real scenes using a robotic

wheelchair. We modified a commercially available powered

wheelchair so that it can be controlled by a computer, by

connecting the latter to the joystick interface, and added a

Microsoft Kinect, which provides RGB-D images for local-

ization and obstacle avoidance. A microphone is used to

receive voice commands and a tablet, mounted in front of

the subject, displays the map and messages to the user (see

Fig. 6).

Figure 6. Setup of robotic wheelchair

The ROS move-base package is used for path planning

and navigation. Given a, potentially partial, map, the move-

base package can plan a path and execute it taking into ac-

count the robot’s physical properties. For the experiments

shown here, we replaced the global planning component of

the ROS move-base package with the path-planning meth-

ods presented in Section 3. After a path is selected auto-

matically or by the user, it is sent to the local planner for

execution.

Other ROS packages used here include: RTAB-map

which is used for mapping and localization [26] and the

upper-body detector from the SPENCER project which is

used to detect people [30, 31]. Both localization and peo-

ple detection rely entirely on the Microsoft Kinect for input.

The CMU Sphinx library [44] is used for voice recognition.

Figure 7. Experiment in studio. (a): Studio for navigation, (b):

paths between kitchen and study, (c): map of studio, (d): paths

displayed on tablet

A studio, shown in Fig.7, is used for testing. Inside the

studio, there is a bed, a study area, a dining table, a chat-

ting area, and a kitchen. The dining table is at the center

of the room allowing the wheelchair to pass on either side.

Therefore, there are two homotopically distinct paths be-

tween any two locations. In some cases, such as between

the kitchen and bed, the top two paths have similar feature

vectors, while in other cases, such as the bed and the study

area, the feature vectors differ considerably.

A voice recognition interface is used for hands-free con-

trol of the wheelchair by defining words or phrases as com-

mands. In addition to the commands, the subject only needs

to say the color of a path to select it when needed. A typical

1496



Figure 8. Photographs from experiments in studio with subject 2. Top: static scene. Bottom: dynamic scene. The system chose different

paths due to the presence of people in the second scenario, even though they do not block the left path.

interaction of the user with the wheelchair looks as follows:

1. The subject says “attention” to start.

2. The system responds with “ok, where do you want to

go”.

3. The subject says the name of one of the pre-specified

locations (e.g. “kitchen”, “study”).

4. The system acknowledges receiving the location and

searches for paths using one of the planners.

5. The system plans paths. If there is more than one

path, the system evaluates the paths and decides whether to

defer to the subject or not based on the difference of path

scores.

6. If the system decides to engage the subject, it displays

the paths on the tablet and asks the subject to choose the

path he prefers. The subject responds by the color of the

path (e.g. “red”, “green”).

7. The wheelchair executes the path selected by the sub-

ject or automatically.

8. The system goes back to idle state and the subject can

say “attention” to restart the process.

One of the purposes of experimenting in a real environ-

ment is to test whether the learning-to-rank model trained

on simulated data would transfer well to a robot. Prelimi-

nary observations support this hypothesis for both planners.

Moreover, the difference in user preferences shown in the

simulator has been maintained when the subjects operate

the wheelchair and is manifested by the different paths cho-

sen, especially in the vicinity of people. Photographs from

one of the runs are shown in Fig. 8.

6. Conclusions and Future Work

This paper presents an approach for shared autonomy fo-

cusing on a robotic wheelchair that can learn user prefer-

ences and integrate them in path planning. Given a naviga-

tion goal, our approach generates multiple paths, using one

of two available planners, and attempts to select the path

that the user would have chosen. The selection is made by

an SVM that has been trained to rank paths according to

objective criteria, such as length, as well as more subjective

criteria, such as distance to people and obstacles. Train-

ing the SVM does not require substantial annotation efforts

since it can be done with one click per scenario in a simula-

tor - much faster than actually navigating the wheelchair.

Unlike other research efforts that adjust the level of au-

tonomy of robotic wheelchairs according to the user’s capa-

bilities [9, 29, 33, 40, 43], we target users without serious

cognitive impairments. Our aim is to provide them with a

user interface that alleviates the burden of navigation while

adhering very closely to what the user would have done if

she were driving. Our experiments in a simulator and using

a powered wheelchair are encouraging that this goal can be

attained. User studies at a much larger scale are our highest

priority for future work.

Currently, our system only learns from a single click

of the user who selects a path among a few options. We

plan to record richer inputs while the user is navigating

the wheelchair manually, using the joystick or another in-

put mechanism. We can then apply learning from demon-

stration techniques [1, 3, 5] to capture user preferences and

habits more faithfully. In the shorter term, it is straightfor-

ward to periodically retrain the system using data recorded

during everyday operation when the user is engaged by the

system. Finally, we plan to provide more sophisticated in-

teraction capabilities with people in the scene by anticipat-

ing their behavior [2, 11, 22, 23, 45].
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