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Abstract

In this paper we propose a challenging new computer vi-

sion task of inferring Bread Units (BUs) from food images.

Assessing nutritional information and nutrient volume from

a meal is an important task for diabetes patients. At the

moment, diabetes patients learn the assessment of BUs on a

scale of one to ten, by learning correspondence of BU and

meals from textbooks. We introduce a large scale data set of

around 9k different RGB-D images of 60 western dishes ac-

quired using a Microsoft Kinect v2 sensor. We recruited 20

diabetes patients to give expert assessments of BU values to

each dish based on several images. For this task, we set a

challenging baseline using state-of-the-art CNNs and eval-

uated it against the performance of human annotators. In

our work we present a CNN architecture to infer the depth

from RGB-only food images to be used in BU regression

such that the pipeline can operate on RGB data only and

compare its performance to RGB-D input data. We show

that our inferred depth maps from RGB images can replace

RGB-D input data at high significance for the BU regres-

sion task. In its best configuration, our proposed method

achieves a RMSE of 1.53 BUs using RGB and inferred

depth. Considering the variability among the raters them-

selves of RMSE = 0.89, we can show that our baseline

method with depth prediction can extract reasonable nutri-

tional information from RGB image data only.

∗Authors contributed equally
†Corresponding address: patrick.christ@tum.de

1. Introduction

1.1. Motivation

Diabetes mellitus is one of the most common chronic

diseases worldwide and continues to increase from 285

million today to 439 million diseased people in 2030, as

changing lifestyles lead to reduced physical activity, and

increased obesity [34]. For diabetic patients an accurate

caloric assessment of their nutritional intake is needed to

regulate their dysfunctional blood sugar cycle. Diabetol-

ogists introduced a simplified scheme: the bread units or

carbohydrate units to assess the nutritional intake of a meal.

One bread unit corresponds to a quantity of food contain-

ing 12-15g of digestible i.e. blood-sugar-effective carbohy-

drates present in different forms of sugar or starch [39]. Di-

abetes patients learn the assessment of bread units (BU) by

learning correspondence between BU and meals from text-

books and personal experience. Apart from experience, the

process of estimating one’s personal caloric intake may ad-

ditionally require holistic knowledge about nutrition. Yet

unknown dishes’ BUs may be difficult to estimate, local

customs in food preparation that are not visually apparent,

e.g. preparing spaghetti with butter versus sunflower oil,

may lead to additional uncertainty for experienced diabetes

patients. Furthermore, there is a high uncertainty and dan-

ger of miscalculation for patients new to the disease. Digital

support systems can be a way to provide guidance and help

in those situations. Especially children could benefit signif-

icantly, due to their initially limited knowledge about their

disease and nutritional values of food. Also, around 5%

of pregnancies coincide with a short-term gestational dia-

betes mellitus (GDM) with potential harm for the unborn

baby. With such a sudden onset GDM, affected pregnant

women could also highly benefit from a computer aided di-

abetes assessment system [13]. Even though BU estima-
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tion is a task that is very specific to diabetes, estimating

the amount of carbohydrates and other micro nutrients is

done in many more contexts like sports or weight-loss. A

healthy diet is described not only by the kind of dish and

its ingredients, but also by the amount which is consumed.

In those cases, a digital system which processes meal im-

ages and derives rich information could provide additional

support to reduce the effort of diets and better engage users

in a healthy lifestyle. In this work we want to take a step

towards computer aided nutrition assessment.

1.2. Related Work

Food Computer aided assessment of food and nutritional

information of meals is an uprising research field in the

computer vision community. Previous work can be cate-

gorized into meal classification, segmentation and caloric

assessment. Public datasets so far focused on food clas-

sification such as Food101 [3], PFID [6], UNICT-FD889

[12], VIREO172 [5] and UECFOOD-100 [23]. Meyer et

al. 2015 collected a 3D food dataset for assessing calories,

but did neither publish their 3D data nor food classification

data [25]. In the past, classical hand crafted features have

been extracted to classify meals, ingredients or restaurant-

specific multi-labels [3, 14]. Recently, deep convolutional

neural network based methods are gaining also popularity

in food classification [5, 21]. [7, 14, 25, 5] applied deep

learning based segmentation methods to segment food on

plates to perform higher level vision tasks. High level vi-

sion tasks include calory assessment [42, 25, 28], cooking

recipe retrieval [5] and carbohydrate estimation [29]. Many

of these approaches use structure from motion information

from several images to develop a 3D food model [29, 7, 18].

Food volume estimation [41] and [4] used template

based matching to estimate volumes of food. Especially

[27] obtained very good results in regard to volume estima-

tion using feature matching and pose estimation, however

in order to obtain an absolute scale, a reference object was

needed which had to be placed next to the food item.

Depth prediction Using RGB data as a basis to generate

a corresponding depth image has been researched intensely

whereas the classical approach in this field is merely using

stereo-imagery. Scharstein et al. [33] for example investi-

gated a broad range of existing algorithms based on stereo

matching. These algorithms however rely on stereo cameras

to work. More closely related to our experiments are meth-

ods trying to generate depth information from more loosely

aligned images. Sturm et al. [38] presented an effective way

to obtain proper scaling for consecutive images in order to

calculate 3D structure and motion information - the algo-

rithm thus relies on a sequence of consecutive images. In a

more unconstrained setting, Snavely et al. were [37] using

many unstructured images from popular sites to generate a

3D view. The underlying system in this case is also based

on features and keypoints which are later matched. Ma-

chine learning itself has also already been applied to stereo

imagery and depth estimation as shown in [17]. Also, in

[24] deep neural networks have been trained to be able to

predict disparity by learning binocular filters. These sys-

tems could then be used as support for stereo setups. Very

closely related to depth prediction from single still images

are the works from Eigen et al. [11][10], Laina et al. [20]

or Liu et al. [22] who use neural networks to infer the depth

of still images.

1.3. Contribution

Our contributions in this work are fourfold.

First, we provide and formulate a new computer vision

task of inferring bread units (BU) from RGB or RGB-D data

by publishing 9k RGB-D image pairs rated by 20 experts.

Second, we present an automatic method for BU regres-

sion given RGB-D images using residual neural networks.

Third, we propose a new fully convolutional neural net-

work architecture using skip connections to infer depth

maps from RGB images. The architecture at hand shows

very good convergence behavior and is especially suited for

prediction tasks where small relative errors and local details

are especially important.

Finally, we present an automatic method of regressing

BUs given only RGB images in two steps by 1) predicting

the depth map from the RGB image and 2) predicting the

BUs from the RGB image and the predicted depth map.

2. Dataset

2.1. Data Acquisition

Our hardware setup for data-collection consists of a Mi-

crosoft Kinect v2 sensor which is connected to a laptop via

USB. Since the original Kinect v2 is primarily powered by a

230V power supply, its portability is rather limited. To over-

come this issue, we connected the device to a 12V battery-

pack making it suitable for mobile use. The device captures

depth in a 512x424 pixel frame by default while providing

a 1920x1080 pixel RGB output [1]. We collected a total of

about 9k RGB-D pairs of 60 different western dishes. The

image-streams have been recorded from various angles and

distances to capture a wide range of perspectives for each

dish. Even though version 2 of the Kinect sensor improved

in terms of available ranges, it is still required to maintain

a certain minimum distance to the object of interest to re-

ceive valid depth values from the device. During record-

ing, we projected the incoming depth stream onto the RGB

frame, thus we only provide the projected depth-map in our

dataset. Since valid depth is also only provided within cer-

tain parts of the RGB frame’s spatial dimensions due to the
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Figure 1. RGB frame (left) and registered depth frame (right) of

exemplary classes Apple, Fruit Salad and Ice cream. This figure is

best viewed in color.

smaller size of the obtained depth frame, we center crop the

RGB-D pair at a size of 640x480 pixel. Since we tried to

keep operating the device within a certain maximum dis-

tance, the majority of the depth measurements are between

60-80cm. In some scenes, background structures such as

floors, chairs or adjacent rooms are visible. Since those

pixels exhibit a depth with is mostly larger than 1.2m, they

can easily be masked if necessary. Similar to [35] and [26]

we experienced similar artifacts degrading the quality of the

depths maps such as occlusions from specular or low albedo

surfaces, as well as shadowing caused by the physical align-

ment of infrared emitter and camera. Especially plates,

glasses, cutlery or greasy food show a frequent absence of

valid depth measurements. Since the algorithm presented

in section 3.2.1 has a natural ability to deal with missing

depth values by neglecting them during cost computation,

we did not see the necessity to fill in missing values dur-

ing post-processing. From the incoming stream of data,

we dumped equally spaced RGB-D pairs at a frequency of

about 8-10 frames per second. Due to buffering inconsis-

tencies with the underlying library that we used to interface

the Kinect, the capture frequency may differ slightly from

recording to recording. The dataset may also contain some

slight noise such as blurs from camera movement or par-

tial occlusion through other objects due to the fact that is

has been recorded by a handheld device without a tripod.

However, we removed unusable frames from the data. Ex-

emplary recordings of the dataset can be seen in figure 1.

2.2. Dataset Specifics

Our dataset compromises 60 western dishes with RGB

images and depth-maps (RGB-D) with a total of 8820 im-

ages, i.e. 147 images per dish on average. The 60 western

dishes were chosen in such a way to cover common meal

types. The dataset contains dishes from various categories

like ”Salads”, ”Traditional” or ”Breakfast”. The dishes have

been recorded at various locations around TUM university

campus, cafeteria or at home. The distribution of these cat-

egories in the dataset can be seen in figure 2.

To learn the correspondence from RGB-D to BU, we sur-

veyed 20 long-term diabetic melitus type 1 patients to esti-

mate the bread unit count for our 60 dishes. We showed

them a RGB image of a meal and asked them to estimate

the bread units. The assessment has been conducted via a

proprietary web-application to which images could be up-

loaded and presented to annotators by sending them a link to

the application. Each annotator could then browse through

each of the images individually and assign a single BU

value per dish. We set the maximum precision per rating

to 0.5 BU.

Figure 3 shows the boxplot of the expert BU ratings. The

average BU of our data is 3.49 and the averaged BU STD

is 0.89 with a minimum STD of 0 BUs (all raters rated the

same value) and maximum of STD of 1.99 BU where rater

opinions highly disagreed.

3. BU Prediction

Since the assessment of bread units (BU) strongly de-

pends on the volume of the food, we took the depth informa-

tion of our food dataset into account. We state this problem

in the following way:

BU(V, ρFood) = V · ρFood (1)

With the volume V of the meal and ρFood the bread unit

density. The volume V of a meal can be stated as:

V ≈

∫∫

F

hdσ (2)

Where h is the measured depth value of the meal taken from

top view normalised such that depth values are zero outside

the dish and F is the projected area of the dish. I.e. we

make two assumptions: a) dishes do not overhang b) dishes

have a homogeneous bread unit density.

We present two experiments to regress to bread units

from our dataset. In all experiments we train on the images

of 40 dishes and test on the other 20 dishes of our dataset,

i.e. we evaluate our networks capability of predicting BU of

categories of food it has never seen before. We use 3-fold

cross-validation.
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Figure 2. Distribution of different food categories present in the Diabetes60 dataset.

Figure 3. Boxplots of the Bread Unit (BU) estimates from diabetic

patients for each class id.

In our first experiment we regress the bread units given

the RGB and the corresponding ground-truth depth map

obtained from the Kinect using a state-of-the-art Convolu-

tional Neural Network architecture pretrained on the Food

101 dataset. The architecture of choice is Resnet-50 as pro-

posed in [15]. We selected this type of data for pre-training

since the task domains are similar. In both cases, images

of foods are used for input. To make the network regress

values instead of producing a certain class probability, we

changed the cross-entropy loss to L2. In the second ex-

periment, we trained a fully convolutional neural network

to predict the depth map of a given RGB image to remove

the necessity to have a depth camera. We fine-tuned the

depth prediction model on top of the NYU Depth v2 dataset

[26]. Afterwards, we trained the Resnet-50 with the pre-

dicted depth maps produced by the trained depth predictor.

During test time we only provided RGB to regress the bread

units. To obtain ground-truth values for the bread units,

we averaged the individual ratings per dish. An overview

of our conducted experiments is shown in figure 4. All

our experiments were conducted on an Ubuntu workstation

equipped with a 12GB NVIDIA TITAN X GPU. The neural

networks were assembled using the Deep Learning frame-

work Lasagne[8]. In our setup, we downsample all frames

by a factor of 2 within the dataset, yielding spatial dimen-

sions of 320x240. For our networks’ inputs, we chose im-

ages of 304x228 in size, such that there is space for random

cropping to further augment the data. In addition to random

cropping we use random horizontal flips for augmentation.

We also normalize all inputs xi,c with c being the 4 chan-

nels via simple precomputed statistics as seen in equation

3

x∗

i,c =
xi,c − µi,c

σc

(3)

with µi,c being the pixel- and channel-wise mean for

each pixel i and each channel c. σc denotes the standard-
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Figure 4. Pipelines of the conducted experiments. 1) BU predic-

tion from RGB-D images, 2) BU prediction from RGB images

with intermediate RGB-D prediction using the RGB-D Depth Net-

work.

deviation for each channel c, both computed for the dataset

we use for training.

3.1. BU Prediction from RGB and measured depth

We model bread unit estimation by using the depth infor-

mation as an additional channel to our CNN architecture.

In this experiment, we used a pre-trained the Resnet-50

model on RGB data but tried to preserve the filter learned

on the color input channels. We thus initialized that part of

the weight tensor corresponding to the RGB input with the

weights from the pre-trained network, whereas the part of

the filters operating on the depth input channel was initial-

ized with random values following the initialization scheme

in [16].

In order to train the residual network for direct bread-unit

regression, we replaced the last softmax-layer with a single

neuron (ReLU activation) and corresponding L2 loss. Ini-

tial experiments on training the network from scratch led

to bad convergence behaviour and overall bad performance.

Instead, initializing the weights of neural networks from re-

lated tasks often not only promotes convergence but can

also lead to higher absolute performance [40]. Therefore,

we pre-trained the Resnet-50 model to classify food images

first. The Food101 dataset [3] features around 101k im-

ages of western foods of various categories. The network

achieved a top-1 accuracy of around 70% ([3]: 50.7%). In

all BU regression experiments, we used a starting learning

rate of 10−3 and trained the network for 40 epochs using

SGD with momentum and reduced the learning rate once

we observed plateaus. Momentum was set to 0.95, whereas

we used a weight-decay factor of 10−4.

3.2. BU Prediction from RGB and Inferred Depth

The availability of depth information can provide an ad-

ditional channel to derive features from, its availability is

often lower compared to RGB data. Even though there are

handheld devices such as Google’s Tango [2] that allow for

mobile depth perception, the vast majority of todays’ mo-

bile devices are solely equipped with a single RGB camera.

This motivates the use of a model to predict the correspond-

ing depth map to a given input image such that only a single

RGB image is required to regress the amount of bread units

for a given dish.

3.2.1 Inferring Depth from RGB

In a real-life scenario, a diabetes patient is more likely to

have access to a camera equipped device such as a smart-

phone compared to a device equipped with a structured light

sensor or a stereo camera setup. We thus want to incorporate

a model into our pipeline that estimates the depth of a given

scene using only RGB data from a single image. However,

mapping from RGB input values to depth is a physically

ill-posed problem and with only a single image, this ambi-

guity cannot be removed. In practice, it is however possible

to find a model that can predict depth with reasonable ac-

curacy. The reason is the fact that, apart from unlikely ex-

tremes, objects often tend to have similar dimensions in the

context of particular scenes, rendering neural networks ca-

pable of finding good generalizations to map from an image

to its corresponding depth.

Architecture Several works like [10] [11] [32] [22] [20]

have already addressed this issue using Deep Neural Net-

works. In our work, we used an architecture closely related

to the one proposed in [20] and performed a set alterations.

This architecture has proven to be superior to architectures

based on convolutions and fully connected layers such as

AlexNet- [19] or VGG-based networks [36] because it is

solely composed of convolutional layers while still being

able to obtain a receptive field large enough to grasp the

whole scene. We made small changes however by incor-

porating skip connections as proposed in [30]. The pur-

pose of those connections is to provide features of small

scales to the later expansive path of the network to pre-

serve local details of the food items. In addition, works

like [9] have shown that this approach can ease training

and improve overall results. We observed low convergence

rates when training an architecture without skip connections

completely from scratch as proposed in [20]. With skip con-

nections however, the model converged reliably fast, which

allowed end-to-end training in all training cases. To im-

plement that, we also altered the expanding path such that

the spatial dimensions of the feature maps match those in

the contracting path. This allows for concatenating the ac-

tivations without cropping. The overall architecture for the

depth prediction model is shown in figure 5. Please note that

in convolution (symbol: *), no reduction of spatial dimen-

sions takes place. Each orange-colored arrow represents

a sequence of residual blocks, the length of the sequence

is depicted by the number on the left side of each arrow.

The first block in the sequence does always have a short-

cut with a projection convolution in place. As in Resnet-50,

we use bottleneck blocks. See [15] for details. Our upsam-

pling blocks are conventional residual blocks with projec-

tion shortcuts that receive up-scaled versions of the previous

feature map with a scaling factor of 2 and use convolutional
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Figure 5. RGB-D Depth Network Architecture with skip connections: The network has an encoding and decoding pathway. Skip connec-

tions introduced by [30] allow spatial information exchange and promote convergence.

filters in sizes from 4x4 to 5x5 such that the spatial dimen-

sions of the output feature maps match those obtained in

the corresponding contractive counterpart to ease concate-

nation.

Loss Function We use the reverse-Huber loss function for

depth prediction as introduced in [20]. This function is ex-

pressed in equation 4 with d = D −D∗, where D and D∗

denote the prediction and ground-truth depth maps:

B(d) =

{

|d| , |d| ≤ c
x2

+c2

2c
, |d| > c

(4)

and c being 1

5
maxi(|di|) for the pixel-wise residuals di.

Pre-training We pre-trained the model on the NYU

Depth v2 dataset for indoor scene segmentation [35] to start

off with a better weight configuration. In contrast to [20],

[10] or [11] we did not initialize the contractive part of the

network with weights. We leave two-staged pre-training

open for future work (training the contractive part on a clas-

sification task first, then finetuning on NYU Depth v2, then

finetuning on the target dataset).

We extracted equally spaced frames from the raw dataset to

obtain a total number of around 26k RGB-D pairs which we

globally shuffled afterwards. To actually verify whether the

network generalizes, we used the official train/test split of

the dataset. To make the data fit the network’s inputs, we

downsampled the frames by a factor of two using nearest-

neighbour interpolation. It is important not to use a higher

order interpolation method as they tend to interpolate be-

tween valid and invalid pixels. Augmentation was per-

formed on-the-fly during training. The following methods

were used to augment the data following values in [10]:

• Random rotation Rotating image and ground-truth

in-plane for a random angle α ∈ [−5, 5]

• Zooming Zooming the image and randomly select a

part of it. The zooming factor was drawn per image

within a range of [1, 1.5].

• Random cropping Similar to [19] we randomly crop

images and ground-truth toward the desired network

input size

• Horizontal flips Images and ground-truth are flipped

horizontally with a probability of p = 0.5.

• Random RGB scaling Input images are randomly

scaled with a pixel value β ∈ [0.9, 1.1]3

• Exposure We made small changes in exposure to sim-

ulate various lighting conditions for the RGB input.

For pre-training we used a starting learning rate of 10−2.

In total, we extracted only abound 26k frames from NYU

Depth v2 on which we trained the network for 80 epochs

using SGD with momentum. We decreased the learning rate

following a step-wise policy with a step-width of 20 epochs.

The learning rate was decreased by a factor of γ = 0.5 per

step.

Fine-tuning We fine-tuned our network on the data we

collected. For training we split the 60 scenes into a training

and test set using a split-factor of 0.75 resulting in about 7k

frames for training and around 2k frames for test. We made

sure that all frames belonging to a certain dish would end

up either in the training set or in the test set. To further aug-

ment the data, we used the same processing pipeline as for

the pre-training step. We trained the network for 40 epochs

following a step-wise policy, starting with a learning rate of

10−3, a step-width of 20 epochs while reducing the learn-

ing rate by a factor of γ = 0.1. Additionally, we mask

out values larger than 1.2m, since those distances primar-

ily belong to backgrounds in the image. Our experiments

revealed also that the inclusion of masks yielded smoother

gradients in the estimated depth maps.
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RMSE (lin) RMSE (log) rel δ1 = 1.25 δ2 = 1.252 δ3 = 1.253

Our network 0.119 0.161 0.129 0.781 0.995 0.999

Table 1. Quantitative results for depth regression on 3D food data.

For training and test we masked out all depth values larger than

1.2m in order to ignore the surfaces belonging to background.

4. Results

4.1. Depth Prediction

Our proposed depth architecture achieves state-of-the-

art RMSE of 0.651m ([10]: 0.753m and 0.641m, [11]:

0.877m) on NYU Depth v2 when training completely from

scratch. Since we were primarily interested in using those

weights as a starting point for regressing the depth of food

images, we did not extensively fine-tune the hyper parame-

ters for this learning task or pre-trained the contractive stem

on a large dataset like Imagenet [31].

Qualitative results of our model trained on the newly

recorded food data are shown in figure 6. The results show

that the model is able to grasp fine, local details, as seen in

the example of the peaches in the bowl of fruits. We hypoth-

esise that the skip-connections not only helped to make the

model converge when pre-training, but also support to pre-

dict local structures, especially, when looking at the overall

range of values. Local food structure is mostly in the range

of only 1-2 centimeters whereas the overall depth ranges

from about 60cm to partially up to over 1.2m. This is a

result of the data being recorded handheld. A similar re-

finement effect has been reported by Eigen et al. in [11, 10]

by using refinement stages in later stages of the network to

improve the prediction. In contrast to [25], the depth maps

for for food images predicted by our model feature fine de-

tails. Even though their model also has refinement stages,

the resulting depth maps from our model are with spatial

dimensions of 152x114 fairly large.

Furthermore, by masking out invalid depth values during

loss-computation, the model also becomes inherently ro-

bust to deal with missing/invalid pixel-data from the Kinect.

This makes inpainting or other filling techniques unneces-

sary, even though data recorded with the Kinect v2 is al-

ready less prone to contain large amounts of invalid pix-

els compared to earlier versions of the device. Quantita-

tive metrics for our dataset are shown in table 1. The linear

RMSE is 0.119 with a relative error of 0.129. These met-

rics set the baseline for the depth prediction task of our new

dataset.

4.2. BU Prediction

Table 2 shows the results of the BU prediction. The CNN

trained on RBG-D data yields an RMSE of 1.46. Trained

end-to-end just on RBG with inferred depth achieved a

RMSE of 1.53. Those results were obtained using 3-fold

Figure 6. Qualitative results of the model on dishes of the cat-

egories snack, sweets and fruit. RGB input (left), ground-truth

depth (middle) and predicted depth (right) are shown. The dishes

shown above are part of our test-set, images are scaled individu-

ally. This figure is best viewed in color.

Approach Root Mean Square Error (RMSE)

RGB-D Ground truth 1.46

RGB-D Predicted Depth 1.53

Table 2. Bread unit inference using Convolutional Neural Net-

works and Fully Convolutional Neural Networks.

cross-validation. Figure 7 shows the box plot of predic-

tions from RBG with inferred depth for all 60 dishes in our

dataset. Our methods achieves for many dishes reasonable

predictions within the spread of human expert ratings.

When training the CNN to predict bread-units, the net-

work converged quite quickly as very common in fine-

tuning scenarios. This still holds when we use 4 input

channels instead of 3 as we preserve the filters operating

on color input by transplanting the weights. Providing pre-

dicted depth expectedly yields worse results compared to

ground-truth depth input even though the margin of error is

relatively small. The high accuracy of the predicted depth

maps helped to obtain very close results. To further inves-

tigate this relation we calculated a Wilcoxon signed-rank

test to determine whether RGB-D with ground truth or pre-

diction do lead to the same RMSE. We found that the two

approaches do produce the same output distribution with a

p-value of 1.52× 10−12. We can conclude, that our method

with predicted depth does convey the same results.
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Figure 7. Box plot of ratings and the predictions given by the CNN

using RGB and inferred depth. The BU ground truth by the expert

annotators is shown in blue boxes and the average predicted BU in

shown as a red dot.

5. Discussion and Conclusion

In this work we proposed a new computer vision task

of inferring bread units from food image data. We col-

lected RGB-D images of 60 western dishes and surveyed

20 experts to assess the bread unit count of the dishes. We

demonstrated two methods of inferring bread units from

RGB-D and RGB with a inferred depth map of a fully con-

volutional depth regression network. The high inter-rater

RMSE of 0.89 shows that the task at hand is in fact very

hard to solve, even to long-term Diabetes patients. Com-

pared to human raters, our implemented methods perform

automatic BU estimation at a RMSE of 1.53 for RGB +

inferred depth, which sets a baseline for this task on our

proposed dataset. For most dishes, our method yields rea-

sonable BU estimates, i.e. within the standard deviation of

human expert raters. However, there are also dishes with

faulty BU inference outside this range, in particular pizza

salami, spaghetti and salads. This highlights the challeng-

ing nature of our proposed learning task for state of the art

computer vision methods.

We tried to accomplish a similar goal as [25, 4, 37, 29]

in an end-to-end fashion. Calorie and bread unit assess-

ment are closely related tasks and both rely on depth or

volume of a meal, besides contextual and semantic infor-

mation. We addressed the contextual and semantic infor-

mation using state of the art residual neural network archi-

tectures as proposed by [15]. In our approach, to incorpo-

rate the depth and volumetric information, we neither relied

on structure from motion information such as [29, 7, 18]

nor on a reference object [27]. State of the art depth net-

work architectures as proposed by [11, 20] did not converge

on our dataset without pre-training. The relative error of

our proposed depth network architecture on Diabetes60 is

0.129. Unfortunately the food depth data of [25] was not

published. They reported a relative error of 0.18 on their

food data [25]. Comparing their qualitative depth predic-

tions (see figure 6c in [25]), our RBG depth network could

reconstruct finer details of the food as shown in figure 6.

Our proposed depth prediction architecture may also be use-

ful to other high-dimensional regression tasks where pre-

trained weights are not available or there is a strong focus

on local details. We hope that by publishing our dataset

along with baseline methods and results, we provide a start-

ing point for researchers to tackle the same or comparable

problems, either in a similar end-to-end fashion or by split-

ting the task into several sub-tasks and solving them inde-

pendently. The depth values at hand may also be useful for

people working on 3D reconstruction and modeling of food

items which may or may not be part of a pipeline achiev-

ing a different end goal. Public RBG-D datasets are rare

and we hope to foster computer vision research in this field

with our dataset contribution. Advancements in the fields of

automated assessment of food intake could become highly

valuable for diabetes patients or generally everyone keen

on keeping track of her or his nutrition. Right now, all our

models require fairly recent desktop GPUs to operate. Once

deep learning becomes more adopted by smartphones or

other portable devices, those models could operate on de-

vice and thus provide faster feedback. In addition, location

services could be integrated tightly into the estimation pro-

cess to leverage local information obtained from restaurants

or food courts.
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