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Abstract

It has been proved that Autism Spectrum Disorders

(ASD) are associated with amplified emotional responses

and poor emotional control. Underlying mechanisms and

characteristics of these difficulties in using, sharing and re-

sponding to emotions are still not understood. This is be-

cause advanced computational approaches for studying de-

tails of facial expressions have been based on the use of

invasive instruments (such markers for motion capture or

Electromyographs) that can affect the behaviors and, above

all, restrict the possibility to implement diagnostic and eval-

uation tools. Recent non-invasive technological frameworks

based on computer vision can be applied to overcome this

knowledge gap and this paper is right aimed at demonstrat-

ing how facial measurements from images can be exploited

to compare how ASD children react to external stimuli with

respect a control set of children. This paper has a double

layer of contribution: on the one hand it aims at propos-

ing the use of a single-camera system for facial expression

analysis and, on the other hand, it presents a study on how

extracted facial data could be used to analyze how the over-

all and local facial dynamics of children with ASD differ

from their typically developing peers. In other words, this

study explores the feasibility of the introduction of numeri-

cal approaches for the diagnosis and evaluation of autistic

spectrum disorders in preschool children.

1. Introduction

Current diagnostic criteria (e.g., ICD-10 and DSM-IV)

list marked impairments in the use of facial expression in

social interaction as evidences of Autistic Spectrum Disor-

ders (ASD). It has been in fact proved that ASD are asso-

ciated with amplified emotional responses and poor emo-

tional control but underlying mechanisms and characteris-

tics of these difficulties in using, sharing and responding to

emotion are still not understood. Emotion regulation (ER)

strategies can be used to understand emotional problems in

ASD. ER is a term generally used to describe a persons abil-

ity to effectively manage and respond to an emotional ex-

perience, and then ER strategies define automatic or inten-

tional modifications of a persons emotional state that pro-

motes adaptive or goal-directed behavior [25]. ER strate-

gies utilize stimuli that resemble real-life situations in order

to elicit real-time emotional activation that provide quantita-

tive and qualitative assessments of individual differences in

emotional reactivity and regulation [32]. Small humanoid

robot with simplified human-like features have been also

used to stimulate the interactions with children[2]. Meth-

ods to study ER are based either on naturalistic observa-

tion of facial and vocal indices or on clinical measurements

e.g., Heart rate variability , respiratory sinus arrhythmia,

and functional magnetic resonance imaging. A systematic

literature review of Emotion Regulation (ER) measurement

in individuals with autism spectrum disorder has been pro-

posed in [33] to identify the various ways and processes of

ER that have been studied in individuals with ASD. The pa-

per highlights the main limitations to assess ER in individ-

uals with ASD: on the one hand, the reliability of clinical

measurements is still under debate whereas, on the other

hand, methods based on observations are affected by diffi-

cult to interpret emotions without defining the context of the

childs baseline behaviors and emotional expressions. A way

to overcome these drawbacks is to get measurements of ap-

pearance cues related to emotions [21]. This is the motiva-

tion of recently computational studies based on motion cap-

ture data that have been carried out bringing to the observa-

tions that High Functioning Autism children have reduced

complexity in the dynamic facial behavior, arising primar-

ily from the eye region [15]. The study made use of thirty

two reflective markers that were affixed to the face of each

participant; the movement of these markers was recorded

by six infrared motion capture cameras at 100 frames per
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second. A few studies [30, 23] involved quantitative meth-

ods to analyze the facial expression using electrophysiolog-

ical sensors like electromyography (EMG). Unfortunately,

markers and sensors are intrusively placed on the facial skin

and may potentially inhibit spontaneous facial expressions.

Recent advances in computer vision and machine learn-

ing brought to more and more affordable solutions for fa-

cial analysis [8, 5] that paved the way for developing non

invasive technological frameworks which can be applied to

extract facial measurements in a non invasive way. This is a

pioneering research area and a very few works can be found

on related topics. In [31] two non-intrusive optical imaging

sensors, e.g., a video camera and a 3D optical camera, have

been employed during a pilot study to capture 2D and 3D

facial images of participants in response to visual stimuli,

respectively. An expression training interface which evalu-

ates the imitation of facial expressions and head movements

has been proposed in [1] and in [12].

This paper is aimed at demonstrating how recent com-

puter vision frameworks can be exploited to compare how

ASD children react to external stimuli with respect a control

set of children.

This paper has a double layer of contribution: on the

one hand it aims at proposing the use of a single-camera

system for facial expression analysis and, on the other hand,

it presents a study on how extracted facial data could be

used to analyze how the overall and local facial dynamics

of children with ASD differ from their typically developing

peers. In other words, this study explores the feasibility of

the introduction of numerical approaches for the diagnosis

and evaluation of autistic spectrum disorders in preschool

children.

To do that, in the paper two small groups of children

(affected by ASD and Typically Developed) were acquired

from a web-cam while watching cartoons properly chosen

to elicit three emotions: happiness, fear and sadness. In

the first experimental phase the facial behavioral complex-

ity was analyzed in order to point out global and local dif-

ferences between groups in the emotional reactions, without

possible biases introduced by the wearable and/or invasive

acquisition tools used so far.

In the second experimental phase an emotional similarity

score was computed. This might be of interest to further

investigate the possibility to determine an objective metric

that can automatically distinguish children belonging to the

two different groups and eventually also give a diagnosis or

assessment score.

The rest of the paper is organized as follows: Section 2

describes computer vision components and computational

strategies involved in the analysis of children’s faces, Sec-

tion 3 reports experimental setup whereas in Section 4 ex-

perimental outcomes are detailed and discussed. Section 5

concludes the paper.

2. Computer Vision Module

Computer Vision module is made up by four main com-

ponents aiming at face detection, facial landmark detection,

multi-face tracking and Facial Action Unit extraction. The

employed framework, inspired by the algorithmic proce-

dure proposed in [5], starts with a face detection step. If

a face is detected it is subsequently analyzed by a Facial

Landmark Detection block. In order to deal with the case in

which more than one person is simultaneously in the scene,

the facial models assigned to any singular face in the scene

are exploited for Multi-face tracking. As a last step, the de-

tected face and landmarks are processed in order to compute

the Facial Action Unit intensities.

2.1. Face Detection

The face detection is performed by making use of His-

togram of Oriented Gradients (HOG) feature combined with

a linear classifier, an image pyramid and a sliding window

detection scheme. This type of object detector is fairly gen-

eral and capable of detecting semi-rigid objects as the hu-

man faces are [18].

2.2. Facial Landmark Detection

Once a face is detected, facial landmarks are detected

by Conditional Local Neural Field (CLNF) as proposed in

[4]. CLNF is an instance of the Constrained Local Models

(CLM) proposed in [9] and consists of two main compo-

nents:

• a Point Distribution Model (PDM) aimed to capture

landmarks shape variations;

• patch experts, improved respect to CLM, in order to

capture appearance variations of each landmark and

suitable for in-the-wild scenarios.

A CLM model can be described by a set of parameters

p = [s,R, q, t] that can be varied in order to acquire various

instances of the model: the scale factor s; object rotation R

(first two rows of a 3D rotation matrix); 2D translation t; a

vector describing non-rigid variation of shape q. The point

distribution model (PDM) is: xi = s · R(x̄i + Φiq) + t.

Here xi = (x, y) denotes the 2D location of the ith feature

point in an image, x̄i = (X,Y, Z) is the mean value of the

ith element of the PDM in the 3D reference frame, and the

vector Φi is the ith eigenvector obtained from the training

set that describes the linear variations of non-rigid shape of

this feature point.

In CLM (and CLNF), the maximum a posterior probabil-

ity (MAP) of the face model parameters p given an initial

location of the parameters determined by a face detection

step is estimated.

The solution in use improves the standard approach by

means of the training of separate sets of point distributions
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and patch expert models for eyes, lips and eyebrows. As a

successive step it fits the landmarks detected with individ-

ual models to a joint PDM. The tracking phase is supported

by a face validation step aimed to avoid face leading or face

drifting over long period of time. To this end the system em-

ploys a Convolutional Neural Network (CNN) that, given a

face aligned using a piece-wise affine warp, predicts the ex-

pected landmark detection error. In this way the models

can be reset when the validation step fails. As a final en-

forcement, a multiple initialization hypotheses (at different

orientations) is employed in order to pick the best converge

likelihood and manage challenging in the wild acquired im-

ages.

The used PDM (36 non-rigid and 6 rigid shape parame-

ters) and CNN are both trained on the LFPW [6] and Helen

[19] training sets. On the other hand, the CLNF patch ex-

perts are trained on Multi-PIE [14], LFPW [6] and Helen

[19] training sets. A key point for the robustness of the pro-

posed approach is the use of 28 sets of patch experts trained

at different scales and views that allow to handle different

images resolution of the face under analysis as well as head

rotations and consequent self occlusions.

2.3. Multi-Face Tracker

In order to deal with the case in which more than one

person is simultaneously in the scene, the CLNF models as-

signed to any singular face in the scene are exploited for

Multi-face tracking. This is achieved by performing, every

a certain number of frames, a new face detection procedure

and then by checking if detected bounding boxes overlap

the faces already tracked. For the boxes that do not overlap

any predefined bounding box, a new CLNF model is cre-

ated and used to track the new detected faces. When a new

CLNF model is instantiated, besides information related to

landmarks, bounding boxes and pose, an unique identifier

(UI) for indexing the face tracked is used. CLNF models,

one for each single face, are updated in a parallel fashion

in order to perform multi-face tracking. In case of extreme

pose of the tracked face, CLNF approach is unable to de-

tect the facial landmarks. In this case, tracking is no longer

performed and the tracked face gets out from the tracking

process. In order to be tracked again, we have to wait when

a face detection takes again. In this step, if the face re-

sults in a near frontal face pose it is the detected and track-

ing starts again but assigning a new UI. In order to assign

the same UI, a re-identification process is needed. To such

purpose, a Deep Convolution Neural Network approach has

been employed. In particular, assumed that throughout the

video the same subjects are present and that a variation of

the UIs is due to extreme pose changes, every face is pro-

cessed frame by frame by means of the VGG-Face CNN

[27] where, in order to extract a robust descriptor to be

used for the re-identification task, the last interconnect layer

(FC7) is used as features vector. Hence, face descriptors of

the current frame are compared with the previous frames’

ones by means of minimal Eucledian distance. The small-

est distance is related to descriptors of the same face.

2.4. Action Unit Detection

The reliability of an action unit classifier depends largely

on the employed training data and its ability to estimate fa-

cial expressions of a subject when his neutral one is un-

known. The proposed solution exploits the idea proposed

in [3] where the authors introduce a real-time Facial Action

Unit intensity estimation and occurrence detection system

based on geometry features (shape parameters and land-

mark locations computed by the CLNF) and appearance

(Histograms of Oriented Gradients) . The fist step for a

correct detection of a AU presence and intensity is the map-

ping of the detected face to a common reference frame. To

this end the currently detected landmarks are transformed

to a representation of frontal landmark from a natural ex-

pression (a projection of mean shape from a 3D PDM). The

resulting is a 112 × 112 pixel image of the face with 45

pixel inter-pupilary distance. In order to remove non-facial

information from the image, a masking of the image is per-

formed using a convex hull surrounding the aligned feature

points. The aligned face results in a 112× 112 image ready

for appearance features extraction. In this step, Histograms

of Oriented Gradients (HOGs) are extracted as proposed in

[10]. Blocks of 2×2 cells, of 8×8 pixels are employed and

lead to 12 × 12 blocks of 31 dimensional histograms. The

final vector size is of 4464 elements describing the face sub-

sequently reduced to 1391 elements by means of a Principal

Component Analysis (PCA) approach. The non-rigid shape

parameters and landmark locations in object space inferred

during CLNF model tracking are used as geometry based

features that results in a 227 dimensional vector describing

geometry. The complete features vector is then made up by

the concatenation of the geometry and appearance ones. In

order to account for personal differences the median value

of the features (observed so far in online case and overall

for offline processing) is subtracted from the estimates in

the current frame. The last step for the AU detection and

intensity estimation is obtained, respectively, with a Sup-

port Vector Machines (SVM) and Support Vector Regres-

sion (SVR). In both cases, linear kernels are employed. The

models used in the proposed approach are trained on DISFA

[24], SEMAINE [26] and BP4D [34] datasets. Where the

AU labels overlap across multiple datasets we train on them

jointly.

Inspired by the observation that only a few facial parts

are active in expression disclosure (e.g. around mouth, eye),

previous works discovered the common and specific patches

which are important to discriminate all the expressions and

only a particular expression, respectively [35][11]. In light
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of this, in this study the 18 action units that incorporate the

most significant variations of eye brows, eye lids, cheeks

and lips ensuring the ability to see the expressions of the

main emotional states are computed. The list of recognized

AUs is presented in Table 1.

Moreover, existing AU predictors tend to under- or over-

estimate AU values for specific person. To avoid this pre-

diction errors, the lowest nth percentile (learned on valida-

tion data) of the predictions on a specific person has been

subtracted from all of the predictions.

2.5. Data Analysis Module

To objectively quantify AU signaling over time, the

Shannon entropy, which measures the complexity (i.e., av-

erage uncertainty) of a signal is used. The Shannon entropy

is calculated for each AU across time as suggested in [16].

Each AU is treated as a random variable X that takes on

only finitely many values and then its Shannon entropy is

defined by the formula

H(X) = −
∑

i

p(xi)log(p(xi))

with the convention that 0log 1
0 = 0.

The p(xi) is the probability to have xi in the stream of

observed values and it is computed by an initial discretiza-

tion of observed action unit values in N bins and then by es-

timating the associated Probability Density Function. This

is done for each AU and child in each time interval related

to the same stimulus.

This way the complexity of the child’s reaction to the

given stimulus can be computed.

Behavioral Similarity among ASD and TD group is es-

timated by using an initial alignment by Dynamic Time

Warping [17].

Let XN be the set of discrete-time time series taking val-

ues in an arbitrary space X. Taking two time series u =
(u1, , un) and v = (v1, , vm) of lengths n and m respec-

tively, an alignment π has length p and pn + m1 since the

two series have n+m points and they are matched at least

at one point of time. An alignment π is a pair of increasing

integral vectors (π1, π2) of length p such that 1 = π1(1) ≤
... ≤ π1(p) = n and 1 = π2(1) ≤ ≤ π2(p) = m, with

unitary increments and no simultaneous repetitions. Coor-

dinates of π are also known as warping functions.

Now, let |π| denote the length of alignment π. The cost

can be defined by means of a local divergence that measures

the discrepancy between any two points ui and vj of vectors

u and v:

Du,v(π) =

|π|∑

i

φ(uπ1(i), vπ2(i))

Table 1. Action Units computed by the framework
AU Full Name Example

AU1 Inner brow raiser

AU2 Outer brow raiser

AU4 Brow lowerer

AU5 Upper lid raiser

AU6 Cheek raiser

AU7 Lid tightener

AU9 Nose wrinkler

AU10 Upper lip raiser

AU12 Lip corner puller

AU14 Dimpler

AU15 Lip corner depressor

AU17 Chin raiser

AU20 Lip stretched

AU23 Lip tightener

AU25 Lips part

AU26 Jaw drop

AU28 Lip suck

AU45 Blink

were φ(x, y) = The Global Alignment (GA) kernel is

defined as the sum of exponentiated and sign changed costs

of the individual alignments:
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kGA(u, v) =
∑

eDu,v(π)

were the sum takes over the set of all alignments between

two time series of length n and m. In the following the local

kernel eφσ is used where

φσ(x, y) =
1

2σ2
‖x− y‖

2
+ log(2− e

−
‖x−y‖2

2σ2 )

Finally a distance metric is obtained from the above kernel

by using the standard transformation described in the fol-

lowing equation:

d(u, v) = kGA(u, u) + kGA(v, v)2kGA(u, v)

3. Experimental Setup

Five children with ASD, aged 48-65 months (average

65.38, standard deviation 15.86), were enrolled in the study.

ASD children were tested at the clinical facilities within the

National Research Council of Italy (CNR), Messina, Italy.

ASD diagnosis was made according to the DSM-5 crite-

ria 1 [29] by an experienced multidisciplinary team includ-

ing two child psychiatrists and 2 developmental psycholo-

gists. The Autism Diagnostic Observation Schedule - Sec-

ond Edition (ADOS-2) [22] was used as part of the diag-

nostic assessment. The Griffiths Mental Development Scale

(GMDS) was used to assess the Developmental Quotient

(DQ) [13]. Developmental Quotient for the involved ASD

children was 92, 78, 71, 68 and 42 respectively. The Typi-

cally Developed (TD) control group comprised five children

with age and gender corresponding to the above mentioned

ASD group. Parents (or Guardian) signed an informed con-

sent form for agreeing with the children participation in this

research study.

Each children (TD and ASD) was asked to watch, to-

gether with parents and therapists, a sequence of 9 videos

taken from famous cartoons. The sequence alternates

videos eliciting emotions of happiness, fear and sadness.

Videos were supplied in a Lab able to simulate a child

home environment while embodying disappearing technol-

ogy to ecologically quantify physiological and behavioural

variables, coach parents and apply personalized treatment.

The videos ran on a monitor TV and a web cam positioned

on top of the monitor was used to acquire faces of persons

watching. The duration of each video is a priory known and

this makes possible to directly label the acquired data with

the corresponding ideal emotional state that should have

been elicited by each video.

4. Experimental Results

The first experimental phase was aimed at analyzing the

complexity of emotional reaction to external stimuli for

Table 2. Computed entropy score (global and local scores)

Happiness Fear Sadness

ASD TD ASD TD ASD TD

Upper 1572 2070 1409 1690 1481 1767

face

Lower 1889 2204 1665 1887 1743 1861

face

Overall 1776 2156 1574 1819 1644 1827

both ASD and TD groups. To do that each of the facial ac-

tion units extracted as described in subsection 2.4 was han-

dled as a dynamic mono dimensional signal and its entropy

H was computed as described in Section 2.5.

The overall facial complexity was computed by averag-

ing all the obtained entropy values whereas two local en-

tropy scores were computed by averaging the entropy com-

puted action unit belonging to the upper (eye region) and

lower (mouth region) parts of the face. This choice was

made according to the clinical evidence that the considered

emotions are usually expressed by changing eyes and mouth

configuration [28] .

Computed entropy scores are reported in Table 2:

columns report, for each elicited emotion, the entropy

scores for ASD and TD groups whereas rows refer to the

considered facial region or to the global (overall) facial en-

tropy. The entropy values computed on the overall action

units are very interesting. It is in fact evident that, inde-

pendently from the elicited emotion, TD children exhibited

more facial behavioral complexity. In particular eye and

mouth regions contributed to this differential whereas cheek

dynamics was comparable (fear) or even higher (happiness

and sadness) in the ASD group. These results are broadly

consistent with those expected taking into account both

clinical studies or experimental evidences derived trough

invasive methods for data acquisition [7] . This way the

outcomes of the proposed non-invasive approach pone a in-

teresting perspective to make possible the analysis of facial

dynamics by using just computer vision based algorithms.

In the second experimental phase the similarity between

emotional behaviors of children under investigation was

computed by the approach based on Dynamic Time Warp-

ing described in Section 2.5.

Numerical results of this experimental phase are in table

3. In particular the computed values derived by using the

introduced similarity metric are reported. Each value cor-

responds to the average of the ones relative to an elicited

emotion (indicated in the first row in the heading) for cou-

ples of children selected in the given groups (pointed out

in the second row of the heading ) and considered for up-

per, lower and overall face part (as described in the leftmost

column).

It is evident that the introduced metric highlights that
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facial behaviors are more similar when children belong to

the TD group than in the case in which the children belong

to different groups. This is true for both upper and lower

face part and, of course, it is even more emphasized when

the overall face is taken under consideration. It is also in-

teresting to observe as lower face seems more significant

than upper face to distinguish between TD and ASD chil-

dren. This means that, trough deeper experimental investi-

gations, the introduced approach could bring to affordable

non-invasive measurement for the diagnosis and assessment

of autism spectrum disorders.

5. Conclusions

In the paper two small groups of children (affected by

ASD and Typically Developed) were acquired from a web-

cam while watching cartoons properly chosen to elicit three

emotions: happiness, fear and sadness. The main aim of

the paper was to demonstrate if computer vision based ap-

proaches for facial feature analysis could help to under-

stand emotional behaviors in children with the interesting

perspective of introducing a computational approach for di-

agnosis and assessment of autism spectrum disorders. Two

experimental phases were carried out. In the first experi-

mental phase the facial behavioral complexity was analyzed

in order to point out global and local differences between

groups in the emotional reactions, without possible biases

introduced by the wearable and/or invasive acquisition tools

used so far. In the second experimental phase an emotional

similarity score was computed trying to find out if it might

be of interest to further investigate to determine an objective

metric that can automatically distinguish children belong-

ing to the two different groups and eventually also give a

diagnosis or assessment score. Future works will deal with

a more systematic analysis of data by further campaigns of

data acquisition comprising a more numerous set of ASD

and TD. Also additional facial cues such as gaze will be

considered [20]. Moreover, parent-child interaction will be

analyzed.
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