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Abstract

This work describes a regression model based on Con-

volutional Neural Networks (CNN) and Long-Short Term

Memory (LSTM) networks for tracking objects from monoc-

ular video sequences. The target application being pursued

is Vision-Based Sensor Substitution (VBSS). In particular,

the tool-tip position and velocity in 3D space of a pair of

surgical robotic instruments (SRI) are estimated for three

surgical tasks, namely suturing, needle-passing and knot-

tying. The CNN extracts features from individual video

frames and the LSTM network processes these features over

time and continuously outputs a 12-dimensional vector with

the estimated position and velocity values. A series of

analyses and experiments are carried out in the regression

model to reveal the benefits and drawbacks of different de-

sign choices. First, the impact of the loss function is inves-

tigated by adequately weighing the Root Mean Squared Er-

ror (RMSE) and Gradient Difference Loss (GDL), using the

VGG16 neural network for feature extraction. Second, this

analysis is extended to a Residual Neural Network designed

for feature extraction, which has fewer parameters than the

VGG16 model, resulting in a reduction of ∼96.44 % in the

neural network size. Third, the impact of the number of time

steps used to model the temporal information processed by

the LSTM network is investigated. Finally, the capability

of the regression model to generalize to the data related to

“unseen” surgical tasks (unavailable in the training set) is

evaluated. The aforesaid analyses are experimentally vali-

dated on the public dataset JIGSAWS. These analyses pro-

vide some guidelines for the design of a regression model in

the context of VBSS, specifically when the objective is to es-

timate a set of 1D time series signals from video sequences.

1. Introduction

Embedding sensors in the instruments represents the

most straightforward method for an accurate measurement

of a physical variable, such as position or velocity. Nonethe-

less, for some applications, this approach is easier to imple-

ment in an experimental setup (i.e. in the laboratory) than

in a real world scenario, as in Minimally Invasive Surgery

(MIS). An alternative method, when sensor integration is

not possible, is to rely on a model that implements the con-

cept of Vision-Based Sensor Substitution (VBSS) [1] by

processing video sequences recorded by a camera (monocu-

lar or stereo). In the context of Robotic Assisted Minimally

Invasive Surgery (RAMIS), and specifically in the modeling

of gestures and in skills assessment, this approach can be

beneficial. In RAMIS, Surgical Robotic Instruments (SRI)

mounted at the end-effector of slave robot manipulators, are

teleoperated from a master console by a surgeon or trainee.

The motion of the SRIs’ tool-tip is highly correlated with

surgical gestures (i.e. suturing). Therefore, an important

step to perform surgical gesture classification strictly under
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a vision-based approach relies on the detection and local-

ization of SRIs from video sequences [2]. Subsequently, an

action recognition model can take advantage of this infor-

mation to automatically classify surgical gestures (i.e. su-

turing, knot-tying and needle-passing) from video data, as

described in [1]. Recent advances in Deep Learning (DL)

have shown that complex functions can be learned from data

using a Deep Neural Network (DNN) in a supervised set-

ting. Two of the most successful DNNs applied in the pro-

cessing of data with spatial and temporal structure are Con-

volutional Neural Networks (CNN) and Long-Short Term

Memory (LSTM) networks, respectively. Not only have

CNNs obtained state-of-the-art results in image classifica-

tion [3][4], but they have also shown superior results in

transfer learning tasks. A CNN trained for image classifi-

cation can also be used as an off-the-shelf feature extractor

for a different task, which upon fine-tuning improves gener-

alization performance [5][6]. In a similar note, LSTM net-

works highlight in the processing of sequences of data [7].

Video sequences can be interpreted as containing both spa-

tial and temporal information. Therefore, a model which

processes such data has to integrate both CNNs and LSTM

networks in its design. In the present work, VBSS is inves-

tigated using a regression model that estimates the tool-tip

position and velocity (both in 3D space) of a pair of SRIs

from monocular video sequences. The requirement of pro-

cessing velocity imposes an additional difficulty to the prob-

lem, making more evident the need for a model capable of

processing spatiotemporal information. This complex rela-

tionship between video sequences and tool-tip position and

velocity is learned from data by a regression model consist-

ing of a CNN serially connected with an LSTM network.

1.1. Related Works

A regression model based on DNNs for processing video

data should take into account its spatiotemporal structure.

In domains such as action recognition, this is essential. For

instance, a two stream CNN that processes RGB frames

(spatial information) and a RGB representation of the opti-

cal flow (temporal information) is presented in [8]. In con-

trast, a 3D CNN designed with 3D filters (of size 3× 3× 3)

was designed for learning spatiotemporal features directly

from RGB frames in [9]. The first model that integrates 3D

CNN connected in series with an LSTM network was pro-

posed in [10]. However, this model was validated only in

a small dataset. More recently, different DNNs based on

CNNs and LSTM networks have been designed and evalu-

ated in larger and more complex datasets for action recog-

nition, as described in [11] and [12].

DNNs have been applied to regression tasks in differ-

ent domains. Human pose estimation from images has been

investigated in [13]. In this work, a CNN was trained to

regress upper joints’ position using the standard L2 loss.

A different approach is described in [14], by integrating a

cascade of multiple CNNs in a single model. This model

predicts an initial human pose from a full image and sub-

sequently refines joint predictions by using higher resolu-

tion sub-images. The same application has been addressed

in [15], with a robust function that avoids the influence of

outliers during the training process. Nevertheless, [13]-[15]

only consider the processing of spatial information (i.e. im-

ages), discarding the processing of temporal information.

In contrast, the spatiotemporal structure of video data was

taken into account in [16] by using a recurrent convolutional

neural network. In this work, the authors address the prob-

lem of continuous shoulder pain intensity estimation from

video sequences of human face expressions. Likewise, due

to the sequential nature of video and audio data, [17] pro-

posed a CNN connected in series with an LSTM network to

estimate sound from silent video sequences.

In the medical domain, applications of DNNs to regres-

sion tasks are less common. In this regard, [1] introduces

a CNN architecture for learning SRIs’ position in 3D space

from monocular video sequences. The estimated position

values are subsequently used to feed an action recogni-

tion model based on a Latent Convolutional Skip Chain

Conditional Random Field (LC-SC-CRF). Recently, [2] ad-

dressed the detection and localization of SRIs with a Re-

gion Proposal Network (RPN). This neural network oper-

ates based on a multi-modal framework, using two sepa-

rate CNN streams for processing raw and optical flow video

frames (both represented in RGB color space). Further-

more, the authors in [2] pointed out that a DNN approach is

superior to the conventional hand-crafted feature based ap-

proaches in terms of precision and real-time requirements.

However, the models described in [1] and [2], do not ad-

dress the estimation of the tool-tip velocity in 3D space for

each SRI. Moreover, the LSTM network is not considered

in the regression model design.

1.2. Contributions

In the present work, a regression model that implements

the concept of VBSS is investigated. This model estimates

the tool-tip position and velocity of a pair of SRIs. These

variables are computed in the 3D space from only monocu-

lar video sequences describing the motion of two SRIs. The

position and velocity data are estimated for three surgical

tasks, namely suturing, needle-passing and knot-tying. Al-

though the present work is focused on the aforesaid applica-

tion, it can be useful to address similar problems formulated

in the context of regression. The contributions are listed as

follows:

• In the context of RAMIS, [1] and [2] only address the

SRIs’ tool-tip position and consider feed-forward neu-

ral network architectures (i.e. CNN and RPN) in their

proposed regression models. In the present work, the
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estimation of the tool-tip velocity is included, and a

CNN (for FE) in addition to an LSTM network are

taken into account in the regression model. Therefore,

each estimated variable is considered a 1D time series

instead of a single real value.

• Four analyses were made in the regression model to

reveal the best design practices, as well as its short-

comings:

(i) The impact of using different loss functions in

the regression model that consist of a fine-tuned

VGG16 neural network [4] (pre-trained on 1.2

million images from ImageNet dataset [18]) for

feature extraction (FE), serially connected with

an LSTM network. The loss functions consid-

ered are the Root Mean Squared Error (RMSE)

and Gradient Difference Loss (GDL).

(ii) A Residual Neural Network (ResNet) is designed

for FE to counteract the intense computational

cost of using the VGG16 model, resulting in

a reduction in the total number of parameters

used. Subsequently, the ResNet is connected

in series with an LSTM network, and evaluated

with respect to the regression model that uses the

VGG16 neural network for FE.

(iii) The quality of the estimated signals is evaluated,

by varying the number of time steps in the LSTM

network, which takes as input feature vectors

computed from the fine-tuned VGG16 model.

This analysis provides hints about the trade-off

between model complexity and the quality of the

estimated signals.

(iv) The capability of the regression model to gener-

alize to “unseen” tasks is evaluated. This analy-

sis is carried out by training the regression model

(consisting of the VGG16 and LSTM networks)

only on data related to suturing tasks (the “seen”

task), and then evaluating its performance on

needle-passing and knot-tying tasks.

2. A Regression Model Based on CNN+LSTM

The regression model investigated in this work consists

of a CNN connected in series with an LSTM network. The

CNN computes feature vectors Φ, from input video frames

X . Afterward, the LSTM network processes Φ, and mod-

els their temporal information to produce the final output,

Y . Such architecture is applied in the estimation of the

tool-tip position and velocity in 3D space of two surgical

robotic instruments (SRI), given as input only monocular

video sequences. This architecture is illustrated in Figure 1,

with a description of X , Y and Φ in Table 1, and was val-

idated with analysis and experiments in the public dataset

Figure 1. Regression model for the estimation of the position and

velocity in 3D space for each surgical robotic instrument (SRI).

X ∈ ℜ
H×W×C

H , W , C: Image height, width and channels, respectively.

Φ ∈ ℜ
NFV

NFV : Size of the feature vectors.

Y = [xl, yl, zl, vlx, v
l
y, v

l
z, x

r, yr, zr, vrx, v
r
y, v

r
z ] ∈ ℜ

12

(xk, yk, zk): Tool-tip position (in 3D space) for the SRI k.

(vkx, v
k
y , v

k
z ): Tool-tip velocity (in 3D space) for the SRI k.

k ∈ [l, r]: l and r stand for left and right SRIs, respectively.

Table 1. Description of variables X , Y and Φ in the regression

model.

JHU-ISI Gesture and Skill Assessment Working Set (JIG-

SAWS) [19] [20]. This dataset provides video sequences

related to three different surgical tasks executed with a pair

of SRIs. The surgical tasks are suturing (ST), knot-tying

(KT) and needle-passing (NP). In addition, kinematic data

(tool-tip position/velocity in 3D space) is available at each

time instant for each SRI.

As Figure 1 shows, pre-processing operations are ap-

plied on the raw video frames. A mean frame was re-

moved from each video and subsequently, three consecu-

tive RGB frames, each one converted to grayscale, were

concatenated resulting in a space-time image representa-

tion. Since the mean frame removal suppresses the static

background present in video sequences [13], the space-time

image representation corresponds to temporal derivatives as

described in [17]. These preprocessing steps prevent the

CNN from overfitting. Although these operations were per-

formed off-line, they can be easily extended to real-time

scenarios. A sample of raw frames and their correspond-

ing processed versions for each surgical task are presented

in Figure 2. Two CNNs were studied as feature extractors,

namely the VGG16 neural network and a smaller network

with residual layers (ResNet). The LSTM used in all the

experiments is the variant with Coupled Input-Forget Gates

(CIFG), which has been studied in [21] and suggested as
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Figure 2. Sample of raw (top row) and processed (bottom row)

frames for each surgical task.

an alternative model with fewer parameters than the Vanilla

LSTM network with added peephole connections. The op-

timization of the whole regression model was performed in

two stages. First, the CNN was optimized by taking the pro-

cessed video frames as input, and the ground-truth signals

as output. Subsequently, the LSTM network was optimized

by taking as input and output, the feature vectors computed

from the CNN and the ground-truth signals, respectively.

The four analyses performed on the regression model,

are described in Sections 2.1-2.4.

2.1. Loss function analysis: RMSE & GDL

A loss function that takes into account the RMSE and

GDL was investigated for the regression model. The RMSE

represents a measure of the distance between ground-truth

and estimated data, while the GDL penalizes the gradi-

ents of the ground-truth and estimated data. The gradients

adopted here are the neighboring values differences. This

simple form of the GDL has been studied in [22] to enhance

the sharpness of the objects in the task of video frame pre-

diction. The GDL can be helpful in the estimation of lower

dimensional data, such as 1D time series signals. Equation

(1) presents a loss function L describing these concepts. In

this equation, a linear combination of the RMSE (Lrmse)

and GDL (Lgdl) terms is weighed by α ∈ [0, 1]. The def-

inition for the RMSE appears in Equation (2) and GDL in

Equation (3) with the parameter β = {1, 2}. Y and Ŷ cor-

respond to ground truth and estimated signals, respectively.

The indexes i and j iterate over M samples in the dataset

and over N kinematic variables, respectively.

L(Y, Ŷ ) = α Lrmse(Y, Ŷ ) + (1− α) Lgdl(Y, Ŷ ) (1)

Lrmse(Y, Ŷ ) =

M∑

i

Ω

(√√√√ 1

N

N∑

j

(Y
(j)
i − Ŷ

(j)
i )2

)
(2)

Lgdl(Y, Ŷ ) =

M∑

i

Ω

(
N∑

j

∣∣∣|Y (j)
i −Y

(j)
i−1|−|Ŷ

(j)
i −Ŷ

(j)
i−1|

∣∣∣
β

)

(3)

Ω(r)
Model DNN α RMSE GDL

Term Term

V1 VGG16 1.00 r —

LSTM 1.00 r —

R1 ResNet 1.00 r —

LSTM 1.00 r —

V2 VGG16 0.80 ln (r2 + ǫ) ln (r + ǫ)
LSTM 0.75 r r

R2 ResNet 0.80 ln (r2 + ǫ) ln (r + ǫ)
LSTM 0.75 r r

Table 2. Parameter α (Equation (1)) and transformation Ω(r) ap-

plied in the RMSE (Equation(2)) and GDL (Equation(3)) terms

that define the loss function used to optimize the regression mod-

els V1, V2, R1 and R2. The model composed of the VGG16 and

LSTM networks is optimized with a different set of loss functions

as described by V1 and V2. These loss functions are also investi-

gated in the model consisting of the ResNet and LSTM networks,

resulting in R1 and R2.

Each term in the summation of Equation (2) and (3) is trans-

formed by the function Ω(·). In the simplest case, this func-

tion can be defined as Ω(r) = r, where r ∈ ℜ stands for

the residual. Other definitions are considered based on a

logarithmic function Ω(r) = ln (r2 + ǫ) with r ∈ ℜ, or

Ω(r) = ln (r + ǫ) with r ∈ ℜ≥0, where ǫ in the last two

equations is a small positive constant. Table 2 shows the

loss function used to optimize two models denoted as V1

and V2, given different values of the parameter α and def-

initions of the function Ω(·) The parameter β in Equation

(3), was set to 1.0. Following the illustration of Figure 1,

the input data is defined by X ∈ ℜ224×224×3, and the fea-

ture vectors are computed from the fc7 layer of the VGG16

model, resulting in Φ ∈ ℜ4096.

2.2. ResNet model as feature extractor

In recent years, ResNets have succeeded in computer vi-

sion tasks such as image recognition [23]. These models

have “shortcut” connections that allow the design of deeper

neural networks in comparison to a plain CNN. Further-

more, the optimization of a ResNet is easier than that of

a plain CNN.

Based on these performances, a feature extractor has

been designed with residual layers, which has fewer param-

eters (∼4.92 M) compared to the VGG16 model (∼138 M),

resulting in a reduction of ∼96.44 % in the neural network

size. This percentage was computed by taking into account

all the parameters found in the convolutional and fully con-

nected layers of each neural network. Each residual block

in the ResNet model was designed according to [24], and

dropout was found beneficial and applied between the con-

volutional layers as described in [25]. The proposed ResNet

architecture is illustrated in Figure 3, and consists of a con-
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Figure 3. Architecture of the designed ResNet as feature extrac-

tor. The filter size and number of input-output feature maps are

indicated in the first convolutional layer (CONV 1). Each residual

layer (RES 2-6) is designed with two sub-layers, S1 and S2, and

dropout (with probability of 40 %) is applied between them during

training, as depicted in the diagram of the right side. In these lay-

ers, the number of input-output feature maps (for S1 and S2), as

well as downsampling operations (/2) are shown. The size of each

fully connected layer (FC 1-2) and the output layer (LIN-ACT) is

also indicated.

volutional layer (CONV 1), followed by 5 residual layers

(RES 2-6), 2 fully connected layers with ReLU as activa-

tion function (FC 1-2), in addition to an output layer with

a linear activation function (LIN-ACT). Max and average

pooling were applied after the first convolutional (CONV

1) and the last residual (RES 6) layers, respectively. Con-

volutions with a stride of 2 were used to downsample the

dimensions of feature maps in the residual layers.

The dimensionality of the input video frames and target

signals is X ∈ ℜ240×320×3 and Y ∈ ℜ12, respectively, as

shown in the diagram of Figure 3. The feature vectors are

computed by reshaping the output feature maps from the

residual layer RES 6, after an average pooling operation is

applied. Therefore, 128 feature maps of resolution 4 × 5
are reshaped as a single vector, resulting in Φ ∈ ℜ2560.

This neural network was analyzed with two loss functions

as shown in Table 2, resulting in models R1 and R2.

2.3. Varying the time steps in the LSTM network

The quality of the estimated signals was evaluated by

varying the number of time steps used in the LSTM network

to process the feature vectors from the fine-tuned VGG16

model. These experiments were carried out by training the

LSTM network at 32, 64, and 96 time steps. Both the

VGG16 and LSTM networks were optimized with only the

RMSE, by setting α = 1.0 and Ω(r) = r in Equations (1)

and (2), respectively. These parameters were selected based

on the results of the experiment described in Section 2.1.

As discussed later (in Section 3.1), a loss function which

considers only the RMSE represents a reasonable design

choice.

2.4. Generalization to “unseen” tasks

Finally, the capability of the regression model to deal

with “unseen” tasks was evaluated. Specifically, a baseline

model which consists of the VGG16 and LSTM networks

was trained on data related to suturing tasks, and evaluated

on knot-tying and needle-passing tasks. The two mentioned

CNNs, were optimized with only the RMSE, by setting α =
1.0 and Ω(r) = r in Equations (1) and (2), respectively.

3. Experiments & Results

The experiments were carried out on the JIGSAWS

dataset, which consists of 206 video sequences of three

surgical tasks, namely suturing (78), knot-tying (72) and

needle-passing (56). Each frame in a video sequence is

associated with a 12D vector of ground-truth position and

velocity in 3D space for each SRI. The whole dataset was

split in 75 % and 25 % as the training set and test set, re-

spectively. Following the illustration of Figure 1, the input

video frames for the VGG16 neural network are reshaped

from 240 × 320 pixels to a square image (320 × 320) by

replicating pixels, and subsequently resized to a resolution

of 224 × 224 pixels. This strategy is used instead of cen-

tering and cropping the image, to avoid losing the location

of the SRIs tool-tip on each video frame. In contrast, the

ResNet model takes as input the processed video frames

(240× 320 pixels), without any further resizing.

The neural network models were implemented in

Python, making use of the Google’s open source machine

learning framework, Tensorflow [26]. The experiments

were carried out using two NVIDIA Titan X Graphic Pro-

cessing Units (GPUs).

3.1. Impact of the objective function

This experiment was performed in two steps for each

model V1 and V2 (see Table 2). In the first step, the pre-

trained VGG16 model was fine-tuned over ∼100K itera-

tions with the Root Mean Square Propagation (RMSProp)

optimizer, using a batch size of 80 samples and learning rate
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Figure 4. LSTM network design. Each cell is designed with Cou-

pled Input-Forget Gates (CIFG).

of 1×10−5. Dropout was applied in the fully connected lay-

ers fc6 and fc7, with a probability of 50 %. Subsequently,

feature vectors of dimension 4096 were computed from the

fc7 layer of the VGG16 model (Φ ∈ ℜ4096). In the second

step, an LSTM network whose design is shown in Figure 4,

was optimized by taking as input these feature vectors. This

LSTM network was trained over ∼160K iterations using the

RMSProp optimizer, with a batch size of 250 samples and a

learning rate of 0.0025. Additionally, dropout was applied

at the output of each layer with a probability of 25 %.

Table 3 presents the Root Mean Squared Error (RMSE)

and Pearson Correlation Coefficient (PCC) metrics com-

puted on the test set for models V1 and V2. By examin-

ing these values, and specifically the PCC, it can be con-

cluded that using the GDL does not provide an advantage

(at least for this application). Optimizing both the VGG16

and LSTM networks with only the RMSE represents a rea-

sonable choice. Moreover, in Table 3 it is appreciated that

the PCC is higher for the position than for the velocity vari-

ables. This result can be justified by examining the shape of

a sample of ground-truth and estimated signals, as depicted

in Figure 6 for model V1. In this illustration, the position

and velocity variables have a normalized amplitude (in the

range +/-5). Furthermore, it can be appreciated that the po-

sition variables are smoother compared to the velocity vari-

ables.

3.2. ResNet model results

This experiment was carried out in two stages for each

model R1 and R2 (see Table 2). First, the ResNet was

trained from scratch over ∼140K iterations with the Root

Mean Square Propagation (RMSProp) optimizer, using a

batch size of 80 samples, and a learning rate of 0.5× 10−4.

Subsequently, an LSTM network was trained to model a

sequence of feature vectors computed from the ResNet

(Φ ∈ ℜ2560). The LSTM network design (see Figure 4)

and hyper-parameters used during the optimization are the

same than those described in Section 3.1. This neural net-

work was trained over ∼180K iterations.

Table 4 presents a comparison between models R1 and

R2, by providing the RMSE and PCC metrics computed on

the estimated position and velocity in 3D space (data in the

test set) for each SRI. By examining this data, the results

are more favorable for the model R2 than R1. The model

R2 has higher PCC and lower RMSE metrics for most of the

variables. As discussed in Section 3.1, estimating the SRIs’

tool-tip position is easier compared to velocity. This is

quantitatively described in Table 4 by the higher and lower

quality metrics for the position and velocity variables, re-

spectively. An important observation supporting the better

performance of model R2, is that including the GDL in the

loss function results in more benefits when training a model

from scratch (ResNet) than when using a pre-trained model

(VGG16). Furthermore, model R2 is competitive with the

baseline model V1, as depicted in Figure 5. In the last il-

lustration, the metrics (RMSE and PCC) for the model R2

are deteriorated by a small margin with respect to model

V1, as indicated by the percentage on top of each variable.

Therefore, there is a compromise between the number of

parameters in the CNN used for FE and the quality of the

estimated signals.

3.3. Effect of varying the time steps in LSTM

The results of the regression model that consists of the

VGG16 network as well as the LSTM network with 32,

64 and 96 time steps, optimized only with the RMSE are

shown in Table 5. The LSTM network design (see Figure 4)

as well as the hyper-parameters used for its optimization

are the same as described in Section 3.1. By analyzing the

RMSE and PCC presented in Table 5, the regression model

that takes into account an LSTM network with 32 time steps

is competitive with the model that considers 64 time steps.

In contrast, an LSTM network optimized over 96 time steps

does not provide an advantage over the other two mentioned

models.

The aforesaid results shed light on the careful selection

of the number of time steps used in the LSTM network.

Intuitively, by increasing this hyper-parameter, the LSTM

network should provide a better performance, and only a

more expensive model is expected. However, this is not

always the case, and a more economical model can meet

the requirements (i.e. the LSTM network with 32 instead of

96 time steps).

3.4. Evaluation of the model for “unseen” tasks

This experiment was carried out in the conditions de-

scribed for model V1 in Section 3.1, however, the training

set consisted only of data related to suturing tasks. After-

ward, the capability of the model to generalize to “unseen”

tasks was evaluated by the metrics displayed in Figure 7. In
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Model Left Tool Right Tool

xl yl zl vlx vly vlz xr yr zr vrx vry vrz

RMSE (Lower values are better)

V1 0.2577 0.1442 0.1421 0.3801 0.2126 0.3068 0.0723 0.0646 0.0666 0.2014 0.1158 0.1763

V2 0.1975 0.1415 0.1677 0.3896 0.2051 0.3138 0.0762 0.0650 0.0553 0.1948 0.1118 0.1795

PCC (Values close to 1.0 are better)

V1 0.9419 0.9599 0.9456 0.6949 0.3647 0.6403 0.8898 0.9177 0.7871 0.5002 0.2720 0.4929

V2 0.9497 0.9444 0.9371 0.6599 0.3798 0.6025 0.8888 0.9159 0.8049 0.4913 0.2667 0.4332

Table 3. RMSE and PCC computed for models V1 and V2 (data in the test set) for each SRI (left & right)

this illustration, the RMSE and PCC metrics are better for

the “seen” task, which is suturing, on the other hand, they

are deteriorated by a wide margin for the “unseen” tasks,

represented by needle-passing and knot-tying. These re-

sults indicate that the SRIs’ motion required for each task

is highly task-specific. Thus, a robust regression model for

this application needs to take into account data related to all

the surgical tasks.

Figure 5. RMSE (top row) and PCC (bottom row) metrics for the

regression models V1 and R2. The percentage in red/green color,

describes the decrease/increase in the quality of the metrics for the

model R2 with respect to the baseline model V1.

4. Conclusions

In the present work, a regression model based on DNNs

for the application of VBSS was developed. It estimates

the tool-tip position and velocity in 3D space of a pair of

SRIs. The analyses made on the regression model reveal

Figure 6. Estimated tool-tip position and velocity in 3D space for

each SRI, related to a suturing task using the baseline model V1.

The signals’ amplitude is shown in a normalized space (in the

range +/-5).

the benefits and drawbacks of different design choices.

Using the fine-tuned VGG16 neural network for FE rep-

resents the best design choice. However, a smaller CNN (in

terms of parameters) designed with residual layers is com-

petitive with the VGG16 model. The analysis of the loss

function, highlights that including the GDL term is benefi-

cial when the regression model takes into account a CNN

trained from scratch and designed for FE (ResNet). In con-

trast, the advantage of using the GDL in the loss function

is less clear when a pre-trained model is used for FE (fine-

tuned VGG16 neural network).

Regarding the analysis of LSTM network, increasing the
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Model Left Tool Right Tool

xl yl zl vlx vly vlz xr yr zr vrx vry vrz

RMSE (Lower values are better)

R1 0.3676 0.1883 0.1923 0.4612 0.2187 0.3613 0.0938 0.0862 0.0951 0.2149 0.1203 0.1910

R2 0.2896 0.1542 0.1645 0.4292 0.2213 0.3567 0.0921 0.0643 0.0771 0.2054 0.1170 0.1845

PCC (Values close to 1.0 are better)

R1 0.8284 0.9197 0.8754 0.4823 0.2902 0.4296 0.8187 0.9011 0.7640 0.3730 0.1892 0.3516

R2 0.8837 0.9278 0.9085 0.5469 0.2698 0.4217 0.8473 0.9136 0.7216 0.4325 0.2125 0.3923

Table 4. RMSE and PCC computed for models R1 and R2 (data in the test set) for each SRI (left & right)

Time Left Tool Right Tool

Steps xl yl zl vlx vly vlz xr yr zr vrx vry vrz

RMSE (Lower values are better)

32 0.2277 0.1268 0.1422 0.3635 0.1976 0.2934 0.0913 0.0671 0.0620 0.1924 0.1111 0.1669

64 0.2577 0.1442 0.1421 0.3801 0.2126 0.3068 0.0723 0.0646 0.0666 0.2014 0.1158 0.1763

96 0.2644 0.1335 0.1292 0.3931 0.2121 0.3230 0.0885 0.0658 0.0723 0.1994 0.1124 0.1842

PCC (Values close to 1.0 are better)

32 0.9334 0.9583 0.9481 0.7119 0.4759 0.6692 0.8913 0.9194 0.7534 0.5511 0.3256 0.5530

64 0.9419 0.9599 0.9456 0.6949 0.3647 0.6403 0.8898 0.9177 0.7871 0.5002 0.2720 0.4929

96 0.9341 0.9542 0.9530 0.6382 0.3534 0.5804 0.8863 0.9121 0.7945 0.4786 0.2506 0.4023

Table 5. Number of time steps used in the LSTM network, and their impact in the quality of the estimated signals (data in the test set) for

each SRI (left & right), evaluated by the RMSE and PCC metrics.

Figure 7. RMSE (top row) and PCC (bottom row) metrics com-

puted on the regression model trained only on data related to su-

turing tasks, and evaluated on the “seen” (suturing) and “unseen”

tasks (needle-passing and knot-tying).

number of time steps used to model sequential feature vec-

tors, does not translate into an improvement in the quality of

the estimated signals. Using 32 instead of 96 time steps in

the LSTM network (to process the feature vectors from the

VGG16 model), resulted in better accuracy (in terms of the

RMSE and PCC) and a more economical model. Finally,

the analysis related to the generalization of the regression

model to “unseen” tasks, shows the importance of provid-

ing the DNN with data related to different surgical tasks

during the training process.

It is important to notice that the regression model de-

scribed in this work represents a generic framework, and it

is not restricted to a specific application (i.e. SRIs’ tool-tip

position and velocity estimation). It can be extended to sim-

ilar problems, where a non-linear mapping between monoc-

ular video sequences and 1D time series signals is required,

i.e. tracking persons in video surveillance. As future work,

this regression model is to be improved by interpreting its

predictions and identifying its weaknesses (as done for im-

age classification in [27]) using methods such as layer-wise

relevance propagation [28]. Also, a semi-supervised ap-

proach represents an interesting avenue of research.
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