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Abstract

This paper describes applications of thermal point cloud

to lifestyle support robots. 3D information is useful for rec-

ognizing human and objects based on their shapes, while

thermal information is useful for assessing the residential

and the human states as well as for detecting human. Com-

bining these two kinds of information will be beneficial to

the robots which live with and support people at home or in

care houses. This paper shows two applications of thermal

point cloud. One is thermal comfort measurement based

on predictive mean vote (PMV) which uses, as one of the

factors, the amount of clothing estimated by thermal infor-

mation. The other is human pose estimation only by depth

images, which has an advantages in terms of privacy and

insensitivity to illumination changes. We developed meth-

ods for these applications and show experimental results.

1. Introduction

Service robots are expected to operate in a near future

in our daily life as robotics technologies is becoming ma-

tured and ready for deployment. As we are facing the aged

society, one promising application is monitoring, in which

a robot lives with and takes care of the elderly who lives

alone.

Monitoring people has been an important application in

robotics and computer vision. One approach is so-called

smart house [14, 30, 16] which uses many embedded cam-

eras and sensors, usually put on ceilings and walls, to moni-

tor the state and the activities of residents inside. Since such

an approach requires pre-installed sensors and cannot eas-

ily applied to normal houses. Another approach is to use

wearable devices such as a thermometer and a cardiome-

ter for health monitoring [21]. Using such devices makes it

possible to take direct and reliable real-time data, but may

impose a physical and/or mental burden on people.

One of the goals of the monitoring task is to examine

if the physical states of a residence, such as temperature,

illuminance, and air cleanness, are in a comfortable condi-

tion for a resident [13, 22]. Another goal is to examine if

the resident is in a good health. Based on these examina-

tions, responses such as advice to the resident, operation of

appliances (e.g., air conditioner), or alert to the local hospi-

tal will be made. Using a mobile robot is a promising way

to achieving such goals. By installing various sensors on

an autonomous mobile robot, it can observe wherever and

whatever it wants to collect necessary information by au-

tomatically detecting targets and navigating itself to them.

While some previous works including ours [7] deal with ex-

amining physical state of a residence, this paper deals with

estimating the human state.

Image data are useful for human detection and human

state estimation. However, it may sometimes suffer from

privacy issues as well as sensitivity to illumination condi-

tions. Using depth images instead will address these is-

sues, but it may make it difficult to reliably extract hu-

man regions, due to a scarcity of informative features. We

therefore additionally use thermal information for locating

humans, which is known to be effective especially in in-

door scenes (e.g., [25]). We combine these two kinds of

information into thermal point cloud data and apply them

to human state estimation. This paper deals with two ex-

ample problems, (i) thermal comfort measurement and (ii)

pose estimation with various postures and occluding ob-

jects. These problems are effectively solved by using ther-

mal point clouds. This is the contribution of the paper.

The rest of this paper is organized as follows. Section 2

describes related work. Section 3 describes human detec-

tion using a thermal point cloud. A calibration method be-

tween a thermal and a depth camera is also described. Sec-

tion 4 describes an application of thermal images to estimat-

ing the human’s comfort. Section 5 describes a method of

estimating pose only from depth images using a deep neural

network under large occlusions. An approach to generating

training depth images for large occlusion cases is also de-

scribed. Section 6 concludes the paper and discusses future

work.
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2. Related Work

2.1. Generating thermal point cloud

3D point cloud has recently been widely used for many

mapping and recognition tasks thanks to the development

of inexpensive RGB-D cameras and point cloud processing

libraries. To add thermal information to a point cloud (i.e.,

to generate a thermal point cloud), a calibration between a

thermal and a depth camera is necessary.

Rangel et al. [23] used a board with circular holes for

a thermal-depth calibration. These holes can easily be de-

tected by a depth camera, but could be difficult for a thermal

cameras when a sufficient temperature difference does not

exist between the board and the background. Rzeszotarski

and Wiȩcek [24] put aluminium sheets on white regions in a

checker board for a thermal-RGB camera calibration. Alu-

minium sheets provide high reflection of infrared rays and

are good for making markers for infrared cameras, but this

approach cannot be applied to depth cameras. Vidas et al.

[29] use non-colinear straight lines in the scene for calibra-

tion. They assume there are such lines visible from both

a thermal and an RGB-D camera. Oreifej et al. [19] de-

scribes a method of calibrating three modalities, an optical

camera, a thermal camera, and a 3D LIDAR, based on the

optical-thermal and the optical-LIDAR calibration.

2.2. Thermal comfort measurement

Thermal comfort is human satisfaction with the thermal

environment and influenced by various factors such as phys-

ical, physiological, and psychological processes [4]. One of

the indices of assessing thermal comfort is PMV (predicted

mean vote), determined in ISO 7730. PMV is also used

for estimating another measure of thermal comfort, namely,

PPD (predicted percent of dissatisfied). PMV mainly de-

pends on four environmental factors (air temperature, mean

radiant temperature, air velocity, and relative humidity) and

two personal factors (clothing insulation and activity level)

[13].

For measuring and estimating environmental factors, us-

ing a robot as a mobile base is an interesting research area.

Previous researches deal with various applications such as

odor map making [11], gas leak position localization [5],

temperature and illuminance distribution mapping [7].

The activity level of a person is related to his/her

metabolic rate and thus to the thermal comfort. The re-

lationships between the metabolic rate and various activi-

ties such as seating, standing, and cooking have been ana-

lyzed [4]. Therefore activity recognition techniques (e.g.,

[27, 8]) could be adopted for thermal comfort measurement

in robotic monitoring.

The clothing insulation, which is the other personal fac-

tor, is usually measured using a thermal mannequin [4]. The

clothing insulation for various materials and designs have

also been compiled in a database, which can be used for

an on-line thermal comfort measurement. Matsumoto et al.

[12] presented a method of measuring thermal comfort from

the estimation of the material and the weight of clothing.

2.3. Human pose estimation

Pose estimation is an important function for a monitor-

ing robot to know the state of a person. For example, un-

usual postures such as lying and crouching could be a sign

of emergency.

Human pose estimation has been one of the important

problems in computer vision. A large degrees of freedom of

human structure and frequent occlusions sometimes make

the pose estimation be a difficult task. For a robust and

reliable estimation, various methods have been proposed

[15, 10]. Thanks to recent advances in deep learning tech-

niques, many image-based methods have been proposed, for

example, for joint position estimation [28, 6] and part seg-

mentation [18].

As stated above, depth image-based pose estimation has

an advantage in terms of privacy and insensitivity to illumi-

nation conditions. Shotton et al. [26] developed a human

pose estimation method using depth-based features with a

random forest classifier. Although the method shows a nice

performance, its applicability to unusual poses and heavily-

occluded situations is limited.

We proposed a method of generating human depth im-

ages with pixel-wise body part labels by a combination of

computer graphics and motion capture techniques [17]. We

have shown that a deep neural network trained by using the

generated images can recognize well a variety of human

poses in real scenes.

3. Human Detection using Thermal Point

Cloud

3.1. Thermal-depth camera calibration

One method to calibrate two cameras is to use a marker

board (e.g., checker board). The relative pose between

the cameras is calculated by combining two extrinsic pa-

rameters obtained by a readily-available calibration routine.

In the case of thermal-depth camera calibration, making a

board which is visible from both cameras is an issue.

We use PI-160 (Optris, 160× 120 pixels) and Kinect v2

(Microsoft) as a thermal and a depth camera, respectively.

Since it is difficult to make a board which is visible from

both cameras, we additionally use an RGB camera of Kinect

v2 and calculate the relative pose between the thermal and

the depth cameras from those of the thermal-RGB and the

RGB-depth camera pair; we use different calibration boards

for each pair.

A usual checker board is used for the RGB-depth cal-

ibration, because the depth camera of Kinect v2 can also
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(a) RGB image. (b) NIR image.

Figure 1: Calibration board captured by the RGB and the

NIR camera.

(a) RGB image. (b) Thermal image.

Figure 2: Calibration board captured by the RGB and the

thermal camera.

produce NIR (near infrared) images, in which the board is

visible. Fig. 1 shows images of the board in both camera

images.

For the thermal-RGB calibration, we follow the work

by Rzeszotarski and Wiȩcek [24]. In addition to putting

aluminium sheets on white regions, we heat up the board

to make the temperature difference clearer for the thermal

camera. Fig. 2 shows images of the board, which are visi-

ble by both the RGB and the thermal camera. Note that this

aluminium-pasted board is hard to be properly observed in

NIR images, and therefore we cannot directly calibrate the

thermal-depth camera pair using this board.

By combining the two calibration results, we have a

transformation (i.e., relative pose) between the thermal and

the depth camera. Using the transformation, we can attach

thermal data to the point cloud. Fig. 3 shows the camera set-

tings on a mobile robot and an example thermal point cloud.

The temperature is shown in a pseudo color mapping, from

red (warm) to blue (cool).

3.2. Human detection using thermal point cloud

We currently use a combination of a thresholding for

thermal data and the Euclidean distance clustering for de-

tecting a human using a thermal point cloud. We set a tem-

perature threshold to 23◦C for human region detection, and

that for clustering is set to 80mm. The size filtering is then

adopted to extract only points of humans.

Fig. 4 shows a detection result. In the thermal image,

since there are many warm regions and some of them are

connected to the front human region, human detection using

only thermal image may fail. Using the thermal point cloud,

thermal camera

RGB-D camera

(a) Robot and cameras. (b) Test scene and thermal point cloud.

Figure 3: Camera settings and an example thermal point

cloud.

(a) Scene. (b) Thermal image. (c) Human region.

Figure 4: Human detection using thermal point cloud.

Figure 5: A simple state estimation, sitting or lying.

the human region is correctly extracted. Fig. 5 show other

examples, with a principal axis estimation of the extracted

region for a simple human state estimation (sitting or lying).

4. Thermal Comfort Measurement

4.1. Predicted mean vote

We first briefly explain how to calculate PMV based on

[4]. Table 1 shows the correspondence between PMV and

the thermal sensation scale.

PMV basically depends on the following values: thermal

insulation (or thermal resistance) of clothing (clo-value),

activity level (met-value), air temperature, air velocity, ra-

diant temperature, and humidity. Among these, the air tem-
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Table 1: PMV and thermal sensation scale.

PMV Thermal Sensation Scale

+3 hot

+2 warm

+1 slightly warm

0 neutral

-1 slightly cool

-2 cool

-3 cold

perature and the humidity are measured by on-robot sen-

sors. The radiant temperature is assumed to be the same as

the air temperature. The air velocity is set to be a small

value for indoor environments. The activity level is de-

termined based on the human posture, such as sitting and

standing, and actions taken. The clo-value can be approxi-

mately measured using thermal images as explained below.

4.2. Estimating clo-value

The clo-value of a clothing is usually measured on a ther-

mal mannequin, but that cannot be used for on-line mea-

surements in a daily situation. We instead adopt an estima-

tion method based on thermal measurements. The clo-value

Iclo is given by [3]:

Iclo = (1/0.155 · h)(ts − tcl)/(tcl − to), (1)

where h is the heat transfer coefficient of the human body

(set to 0.052), to is the operative temperature (approximated

here by the air temperature), ts is the skin surface temper-

ature, and tcl is the clothing surface temperature. The last

two temperature values are measured using thermal images

as follows.

Assuming that an extracted human region in the thermal

image (see Sec. 3.2) is composed of the skin and the cloth-

ing regions and that the former is warmer than the latter,

we apply a binarization to that region for discriminating

skins and clothings. We first get an initial binarization us-

ing Otsu’s method [20] and then apply a thinning operation

to the segmented regions for obtaining markers to be used

for the subsequent processing of a marker-based watershed

algorithm. The output of the watershed algorithm is the fi-

nal segmentation. Fig. 6 shows the process of dividing a

human region into skin and clothing regions. The average

temperature is calculated in the respective regions and used

for calculating the clo value in eq. (1).

We show experimental results for the clo-value calcula-

tion. Fig. 7 shows thermal images and Table 2 shows the

calculation results. Subject A layered two T shirts, a shorter

one and a longer one; according to [3], their clo-values are

predicted as 0.09 and 0.12, respectively, and 0.21 in total.

Subject B had the same combination. Subject C wore only

(a) Thermal image. (b) Markers. (c) Segmentation result.

Figure 6: Detecting skin and clothing regions.

(a) Subject A. (b) Subject B. (c) Subject C.

Figure 7: Three subjects in different clothings.

Table 2: Clo-value calculation results.

Subject Ts (◦C) Tc (◦C) Ta (◦C) Clom Clot

A 35.83 31.65 24.50 0.20 0.21

B 30.77 28.49 25.50 0.26 0.21

C 29.76 28.42 24.75 0.12 0.09

Ts: Skin surface temperature, Tc: Clothing surface temperature,
Ta : Air temperature,
Clom: Measured clo-value, Clot: Clo-value estimated from the material.

the shorter one. We calculate the clo-values from the skin

surface, the clothing surface, and the air temperatures, and

then compared them with the predicted ones. The difference

between the two clo-values are between 0.1 to 0.5. The dif-

ferences are not very small but at least qualitatively accept-

able considering the simplicity of the method.

4.3. Measuring Thermal Comfort

We developed an experimental system which estimates

the thermal comfort automatically. We use a mobile robot

equipped with the thermal-depth camera system and various

sensors such as thermocouples and a humidity sensor con-

trolled by Arduino’s. Fig. 8 shows an experimental scene

in which the robot finds and moves to each person to esti-

mate the clo-values, with thermal image processing results.

We measured PMV values for each person at three different

heights, 170cm, 110cm, and 10cm from the floor, to see the

comfort at various body positions.

Table 3 summarizes the measurement results. ISO 7730
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Figure 8: Thermal comfort measurement experiment.

Table 3: PMV measurement results.

Person Clo-value PMV (170cm) PMV (110cm) PMV (10cm)

A 0.21 -2.52 -2.86 -2.64

B 0.22 -2.43 -2.75 -2.54

describes that a comfortable environment has the PMV

value in ±0.5. The thermal environment of the experimen-

tal site is shown to be rather cool for both persons (see Ta-

ble 1). To raise the lowest PMV value (-2.86) to be within

the comfortable range (±0.5), for example, the air temper-

ature needs to be increased by nine degrees or the clo-value

should be increased by 0.8 points. A monitoring robot could

take an action such as turning on a heater or recommend-

ing the respective person to layer another clothing (e.g.,

sweater).

5. Pose Estimation using Depth Images with

Occlusions

5.1. Generating training data with occlusions for a
depth image-based pose estimation

We use our depth image-based human pose estimation

method [17]. The method trains a deep neural network us-

ing a set of depth images with pixel-wise body part labels.

In such a learning-based method, the amount and the quality

of training data is a key to a high estimation performance. In

a usual residential environment, people often use furniture

or other apparatus and their bodies may be largely occluded.

When we see a person working at a desk from his/her front

side, for example, the lower part of the body is almost oc-

cluded. Such largely-occluded data should also be included

in the training data.

Since our method [17] uses a computer graphics tool

(i.e., Maya [2]) for generating data, we can create vari-

ous largely-occluded situations by putting arbitrary objects

(a) Determining the camera pose. (b) View from the virtual camera.

Figure 9: Image generation using Maya.

around a human. As typical cases, we consider desks and

chairs as objects occluding a human body. Fig. 9 shows

how the labeled human body image is generated. We set the

camera pose to the one on our robot system (30 degrees of

downward looking angle and 110cm height, see Fig. 3(a)).

We moved the camera on a circle around the vertical axis

at the human model as shown in the left figure, and gener-

ate images from various viewing directions. The right fig-

ure shows the view from a camera pose, indicating the case

where the upper legs are completely occluded.

We change the following three factors on the object

placement to generate a variety of occlusions: the type of

chairs, the existence of a desk, and the distance between a

human and a desk. Fig. 10 shows the variations of scenes

obtained by changing these factors. Object regions in the

images are treated as background in the final images. Fig.

11 shows example pairs of depth image and body part la-

bels.

5.2. Experimental results

5.2.1 Classifier and dataset

We used the same FCN (fully connected network) as the

one used in [17]. The input to the network is a depth im-

age with 212 × 212 pixels and the output is twelve labels

(eleven for body parts and one for background). We gener-

ated 764,832 images and trained the network using three

TITAN X GPU boards. The learning process converged

about in seven days. The generated dataset and others can

be downloaded at [1].

5.2.2 Evaluation using synthetic data

We generated 29,608 test images using in the same way as

the training image generation. Fig. 12 shows example esti-

mation results. Table 4 summarizes the results in a confu-

sion matrix. These results show that the body parts are well

recognized even under occlusion.

5.2.3 Results for real data

We then tested the trained classifier for the depth image re-

gions extracted using the thermal point cloud (see Sec. 3.2).
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Figure 11: Example pairs of body part label images (first row) and depth images (second row).

Table 4: Confusion matrix for synthetic data.

Estimated

A
ct

u
al

HD TRS LUA RUA LFA RFA Hip LUL RUL LLL RLL BG

HD 0.97 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02

TRS 0.00 0.95 0.00 0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.02

LUA 0.00 0.06 0.87 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.04

RUA 0.01 0.10 0.00 0.82 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.03

LFA 0.00 0.01 0.02 0.00 0.88 0.03 0.00 0.00 0.00 0.00 0.00 0.06

RFA 0.01 0.00 0.00 0.03 0.00 0.92 0.00 0.00 0.00 0.00 0.00 0.04

Hip 0.00 0.04 0.00 0.00 0.02 0.00 0.89 0.00 0.01 0.00 0.00 0.04

LUL 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.88 0.03 0.01 0.01 0.04

RUL 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.00 0.92 0.00 0.01 0.03

LLL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.88 0.05 0.06

RLL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.92 0.05

BG 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

HD: Head, TRS: Torso, LUA: left upper arm, RUA: right upper arm, LFA: left forearm, RFA: right forearm

LUL: left upper leg, RUL: right upper leg, LLL: left lower leg, RLL: right lower leg, BG: background

Fig. 13 shows results for several real scenes. The columns

shows the following from left to right: scene images, ther-

mal point clouds, extracted human regions in the depth im-

age, the estimation results. Note that RGB images in the

first column are not used in pose estimation. The estima-

tion results are reasonably good even in sometimes heavy

occlusions.

6. Conclusions and Discussion

This paper describes two applications of thermal point

cloud in robotic monitoring task: thermal comfort measure-

ment and human pose estimation. Thermal point cloud is

generated by combining data from a calibrated pair of ther-

mal and depth cameras and effective in extracting human

regions. Thermal comfort is evaluated using PMV, which

is measured based on a combination of environmental and

personal factors. One of the personal factors, clothing insu-

lation, is automatically estimated by analyzing an extracted

human thermal image. Pose estimation is carried out using

a depth image-based deep neural network. Considering fre-

quent largely-occluded situations, we developed a method

of generating training data with various occlusion cases.

The classifier trained by using the data is shown to be ef-

fective in the experiments using a synthetic and a real data

set.

Currently, the factors in measuring thermal comfort are

approximated or assumed; for example, we use a simple

temperature difference-based method for estimating clo-
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(a) Changing chair types.

(b) Switching the existence of a desk.

(c) Changing distances to the desk: 50cm, 60cm, and 70cm from left to right.

Figure 10: Object placement variations.

values. Although the obtained clo-values are reasonable,

we need to consider a more complicated model (e.g., [9]) or

more various combinations of clothings and environments.

Applying pose estimation, activity recognition, and activ-

ity classification techniques to determine the activity level

is also an interesting research direction.

The current pose estimation method seems to work well,

but needs to be tested for a more variety of situations. Con-

necting the pose estimation results to assistive/supportive

operations, such as vital sign recognition using a specific

body parts (e.g., head part), is also necessary for real appli-

cation situations.
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