
 

 

Abstract 

 

In this paper we present an automatic cognition system, 

based on computer vision algorithms and deep 

convolutional neural networks, designed to assist the 

visually impaired (VI) users during navigation in highly 

dynamic urban scenes. A first feature concerns the real-

time detection of various types of objects existent in the 

outdoor environment relevant from the perspective of a VI 

person. The objects are followed between successive 

frames using a novel tracker, which exploits an offline 

trained neural-network and is able to track generic objects 

using motion patterns and visual attention models. The 

system is able to handle occlusions, sudden camera/object 

movements, rotation or various complex changes. Finally, 

an object classification module is proposed that exploits 

the YOLO algorithm and extends it with new categories 

specific to assistive devices applications. The feedback to 

VI users is transmitted as a set of acoustic warning 

messages through bone conducting headphones. The 

experimental evaluation, performed on the VOT 2016 

dataset and on a set of videos acquired with the help of VI 

users, demonstrates the effectiveness and efficiency of the 

proposed method.  

 

1. Introduction 

Recent statistics, relative to people with visual 

disabilities published by the World Health Organization 

(WHO) [1] in August 2014, show that more than 0.5% of 

the total population suffers from visual impairments (VI). 

Among these, 39 million people are completely blind. 

Unfortunately, by the year 2020 worldwide the number of 

individuals with VI is estimated to double [2].  

Regular activities, commonly performed by normal 

humans, such as: safe navigation in a novel indoor/outdoor 

environment, independent shopping or simply reaching a 

desired destination become highly challenging for VI 

people [3]. In order to infer additional cognition over the 

surroundings, the VI users rely on traditional assistive 

elements. Most often, they concern trained dogs or white 

canes. Although such elements are quite popular, they 

show quickly their limitations when confronted to the high 

dynamics of a real outdoor scene. Today, the white cane 

always represents the simplest and most affordable travel 

aid available. However, it requires an actual contact with 

the obstacle. In addition, it cannot offer information about 

the object type, its degree of danger, time to collision, and 

it cannot detect overhanging obstacles.  

Within this context, the elaboration of an assistive 

device dedicated to blind and visually impaired people that 

can improve cognition over the environment and facilitate 

the safe, autonomous navigation in novel outdoor spaces is 

a crucial challenge.  

In this paper, we propose an assistive device that 

combines computer vision techniques and deep 

convolutional neural networks in order to detect, track and 

recognize objects encountered during the outdoor 

navigation. The major contributions proposed concern: (1) 

a novel object tracking algorithm that uses a regression-

based approach to learn offline relationships between the 

object appearances and its associated motion patterns; (2) 

a visual attention model able to handle object occlusions, 

sudden camera and object movements, while minimizing 

the drift; (3) an object recognition methodology that 

exploits the YOLO [4] approach and extends it with new 

categories specific to VI–dedicated assistive devices; (4) a 

cognition system able to understand the recognized objects 

and launch acoustic warnings only for relevant obstacles 

depending on their degree of danger.  

At the hardware level, the proposed system is composed 

of a regular video camera, a processing unit (an ultra book 

computer equipped with an nVidia (GTX 1050) graphical 

board and bone conduction headphones. 

The rest of the paper is organized as follows: in 

Section 2, we briefly review the state of the art. The focus 

is put on assistive systems, based on computer vision 

methods, dedicated to the VI users. Section 3 presents the 

proposed cognition system that involves two major stages: 

obstacle detection and tracking. The experimental results, 

conducted on the VOT 2016 [5] dataset as well as on a 

video corpus acquired in real life scenarios are presented 

in Section 4. Finally, Section 5 concludes the paper and 

opens new directions for further work. 
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2. Related work 

In the last years, due to the proliferation of computer 

vision algorithms, various systems dedicated to blind and 

VI users exploiting various artificial intelligence 

paradigms have been proposed [6].  

The SmartVision system introduced in [7] is designed 

to detect sidewalks boarders and objects situated in front 

of the VI user. The safe walking path is determined based 

on the Canny edge detection algorithm and relevant edge 

selection in an adapted Hough space. The obstacles are 

identified using a zero crossing approach and texture 

masks. However, the system is highly sensitive in the 

presence of multiple edges in the scene (e.g., street 

intersection or crossroads).  

The Mobile Vision framework proposed in [8] is 

completely integrated on a mobile device. The prototype is 

designed to detect landmarks in the environment and to 

guide the VI person towards such landmarks. The system 

identifies objects of interest using an image color 

histogram representation and an edge detection algorithm. 

However, because the smartphone needs to be handheld, 

the method is considered as intrusive. 

In [9] and [10] a real-time obstacle detection and 

classification system integrated on a smartphone device is 

proposed. The detection algorithm is based on interest 

point extraction and tracking, camera motion estimation 

and moving object identification based on motion vectors. 

The recognition process exploits a BoW / VLAD image 

representation used within a SVM training/prediction 

process. Even though the system returns overall good 

results, it cannot detect large, flat structures or correctly 

estimate the distance between the VI user and an 

obstruction.  

In [11], an embedded 6DOF SLAM dedicated to VI 

users is proposed. The system performs ego-motion 

estimation by integrating 3D/2D object appearance and 

scene global rectification using entropy minimization. The 

system works in near real-time. However, at this point the 

framework has a reduced applicability in the context of the 

VI users and needs to be further extended in order to 

incorporate additional semantic information. 

A head-mounted, stereo vision navigation assistant for 

VI is proposed in [12]. In order to extract and maintain the 

orientation information, the authors incorporate visual 

odometry and feature-based metric topological SLAM. A 

map of the user surrounding environment is constructed 

from the dense 3D data. From the user’s perspective, the 

system is considered as invasive because it needs to be 

mounted on the head. In addition, it requires a powerful 

processing unit that needs to be carried during navigation.  

An aerial obstacle detection algorithm embedded on a 

3D mobile device is proposed in [13]. The system 

performs scene reconstruction using depth maps, while the 

obstacles are detected using the distance histogram 

extracted from the 3D data. The algorithm has been tested 

by actual VI users and proves to be effective. However, 

the approach is highly sensitive to sudden camera 

movements and changes in the light intensity.  

In [14], a RGB-D assistive device is designed to detect 

humans and recognize objects. As indicated by the 

authors, the system properly functions only in indoor 

scenarios. In addition, the use of regular headphones is 

inappropriate in the context of VI users.  

The Kinect Cane system introduced in [15] is designed 

to recognize objects from depth data using the Kinect 

sensor. The method detects different types of objects and 

informs the VI user about the object’s type such as: chairs 

or upwards stairs. The feedback is transmitted to the VI 

user through vibrations.  

Similarly, in [16], a Microsoft Kinect system is 

proposed to perceive the environment and to identify 

nearby structures. Both methods introduced in [15] and 

[16] are dedicated to indoor navigation scenarios. In 

addition, they prove to be highly sensitive to the training 

phase.  

In [17], the authors propose a complete system that 

performs simultaneously moving object detection and 

tracking, subject localization and map extraction using a 

RGB-D camera. The system works in real-time and proves 

to be robust to ego-motion and noise. However, it is highly 

sensitive to changes in the illumination conditions and 

require a dedicated processing unit. 

The analysis of the state of the art shows that each 

method has its own advantages and limitations over the 

others. However, for the moment, the VI users cannot be 

completely confident about the robustness, reliability or 

overall performance of the existing prototypes. 

3. Proposed approach 

Fig. 1 presents the proposed framework, with the main 

steps involved: object detection and recognition, object 

tracking and acoustic feedback. 

3.1. Object detection module 

In recent years, the tracking-by-detection approaches 

have become increasingly popular for solving the problem 

of robust object localization in subsequent video frames, 

despite important object motion, changes in view-point or 

other acquisition-related variations.  

The initial object detection is performed by applying the 

YOLO [4] algorithm on the first frame of the video 

stream. YOLO treats the object detection problem as a 

regression mechanism for spatially separated bounding 

boxes and their associated class probabilities. We decided 

to use YOLO due to the real-time processing capabilities 

and its reduced number of false positives. In addition, the 

detector can be used to predict candidate location for 

novel objects in video frames where such action is 

required. 
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Figure 1: The global architecture of the proposed approach. 

 

Each detected object is tracked in the subsequent video 

frames, as described in the following section. 

3.2. Object tracking  

The proposed approach is a generic object tracker based 

on two convolutional neural networks trained offline. The 

key principle consists of alternating between tracking 

using motion information and predicting the object 

location in time based on visual similarity. 

Initialization phase. As for the GOTURN approach 

[18], our tracker uses a regression-based technique to learn 

offline generic relationships between the object 

appearances and its associated motion patterns. The 

training of the neural network is performed offline with 

moving objects instances taken from the real world. When 

tracking novel objects, the sets of weights characterizing 

the neural network remain unchanged. In this way, no 

online fine tuning is performed.  

We have adopted a similar network architecture as the 

one proposed by GOTURN [18]. The network receives as 

input the target object as well as the associated search 

regions. The output is a set of high level image features 

that are applied as input to the fully connected layers. The 

role of the fully connected layers is to compare the feature 

from the target object in the current frame and to estimate 

the novel location of the object of interest in the following 

frame.  

The tracking system based on motion patterns proves to 

be very fast (30 fps), robust and accurate (i.e., even when 

tracking objects that undergo important scale and 

appearance changes). However, tracking based solely on 

motion information suffers from several limitations such 

as: high sensitivity to sudden/large camera movement, 

incapacity to handle long-term occlusions, inability to deal 

with multiple moving objects located in the same vicinity. 

In addition, we argue that the object estimated position 

together with its associated context area is insufficient to 

reliably determine if the new location of the bounding box 

actually contains the object of interest. 

In order to overcome such limitations, we propose to 

integrate in the process rich visual cues, established from 

the object previous positions and appearances. After 

obtaining the initial candidate location, we introduce a 

refinement strategy that aims to adaptively modify the 

bounding box position and shape in order to avoid 

incorrect/false object tracks due to the background clutter. 

The refinement process includes two stages, which are 

occlusion detection and object appearance modeling. 

Occlusion identification and processing. The process 

of occlusion detection and handling is illustrated in Fig. 2.  

We apply a quadtree decomposition algorithm in order 

to divide the candidate object location and its reference 

bounding box into a set of non-overlapping image patches. 

The partition process is repeated until the third level of 

decomposition. We decided to use only three levels of 

decomposition in order to ensure a “reasonable” degree of 

descriptiveness of the similarity measure. The image 

patches, at the initial resolution and from all levels of 

decomposition, are compared against the correspondent 

one in the reference frame.  

The similarity degree between the image patches is 

obtained using the DeepCompare [19] algorithm. The 

comparison technique is a CNN-based model trained to 

take into account a wide variety of changes into the image 

appearance. The system does not require any manually 

tuned features and is able to learn, directly from the 

training data, a general similarity function that serves to 

compare patches. 

The image patches are processed by using a 2-channel 

network architecture that offers the best trade-off between 

the computational speed and the system accuracy. The two 

patches being compared are considered as a 2-channel 

image that is directly applied to the first convolutional 

layer of the neural network. 
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Figure 2: Occlusion detection using quad-tree decomposition. 

 

The bottom of the CNN is composed of a series of 

convolutional, ReLU and max-pooling layers. The top 

module is a fully connected, linear decision layer. The 

system has great flexibility and is fast to train. 

In order to reduce the processing time we have adopted 

the following strategy that helps us to speed up the image 

patch comparison process. As in [20], we propose to 

divide the convolutional layers into smaller 3x3 kernels 

separated by ReLU activations. The similarity scores 

returned by the DeepCompare [19] algorithm can range 

between [-1.1, +10], where -1.1 signify the lowest visual 

similarity, while a value of +10 is returned for highly 

similar image patches.  

The similarity score (Sscore) between image patches is 

further analyzed in order to identify the beginning of an 

occlusion for the tracked object. We consider the object as 

being in an occluded state if the associated Sscore for the 

image patches situated on the second and third level of 

decomposition return negative values (Fig. 2). Also, 

objects of interest characterized by larger bounding boxes 

show a similar behavior (i.e., negative similarity scores on 

the 2nd and 3rd level of decomposition when compared 

with the reference object). If such parasite information is 

not eliminated, the tracking process can be biased and, at 

long term, the object of interest can be completely lost. 

To overcome such limitations, we propose to update the 

size of the bounding box and adjust its shape/size in order 

to eliminate such undesired information. The system can 

perform the following cutting operations in four different 

directions: left (L), right (R), up (U) and bottom (B). The 

process consists in reducing the size of the bounding box 

with 1/8 of the initial size. The selection of 1/8 of the 

initial size makes it possible to avoid too brutal shrinkage 

of the bounding box. However, when a more powerful 

trimming operation is required, the process is applied 

recursively until the global similarity score with respect to 

the reference patch stops increasing. The object bounding 

box cutting direction is determined based on the visual 

similarity scores obtained after performing the quadtree 

decomposition. In the case of the example illustrated in 

Fig. 2, because on the second and third level of 

decomposition all similarity scores are negatives two 

cutting operations are evaluated on the bottom (B) and on 

the right (R) side (Fig. 3).  

 
Figure 3: Object bounding box adjustment based on the 

maximum similarity score. 

 

Let us denote by ܵ௦௖௢௥௘೎ೠ೟భand ܵ௦௖௢௥௘೎ೠ೟మ  the similarity 

scores (w.r.t. the reference patch) obtained by the two 

trimmed image patches. The system selects as the optimal 

cut the one that maximizes the similarity score (MSscore) 

presented in equation (1): ܵܯ௦௖௢௥௘ = max ቄܵ௦௖௢௥௘೎ೠ೟భ; ܵ௦௖௢௥௘೎ೠ೟మቅ ;   (1) 

In order to validate the cut, we impose MSscore to be 

superior to the original Sscore computed between the image 

patches at the first level of decomposition.  

In addition, no cut is allowed for image patches with 

less than 5 pixels on the third level of decomposition. We 

impose this constraint since small patches have a reduced 

descriptive power and DeepCompare cannot perform 

relevant evaluations. 

A final stage in our refinement process concerns the 

construction and use of an adaptive object appearance 

model.  

Adaptive object appearance model. In order to handle 

obstacles characterized by long term occlusion or large 

movements we propose to extend the tracker with an 

adaptive visual attention model. The proposed tracker is 

considerably more effective than a regular tracker based 

solely on a strong motion model. The key principle of the 

proposed approach consists in alternating between 

tracking using motion information and predicting the 

object location in time based on visual similarity. 

Various trackers, based on visual features [21] construct 
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appearance models for both, the interest objects and the 

background information. Due to the real-time constraint 

imposed on our application, we decided to develop a 

model solely for the tracked objects. The major difficulty 

that needs to be addressed and solved is related to the 

extraction of reliable and representative object instances 

that can serve to effectively update the appearance model.  

Commonly, most trackers use a single/fixed appearance 

model selected from the first frame of the video stream. 

However, such an approach shows quickly its limitations 

when confronted to the high dynamics of real urban 

scenes. A single model is insufficient to cope with 

important changes in obstacles shape, pose or features. In 

order to overcome this limitation, a continuous update of 

the object appearance model is required. In the state of the 

art, various authors consider as a positive example the 

tracker’s current location and attempt to predict the object 

novel position within a neighborhood search area, by 

exploiting the object’s trajectory information [22].  

Even though this approach shows promising results, it 

suffers from several drawbacks. Thus, if the tracker is not 

sufficiently precise when estimating the novel object 

location, the object appearance model tends to be updated 

with sub-optimal positive examples (Fig. 4a). Over the 

time, the accumulation of such false positives can 

significantly degrade the model and determine the 

tracker’s drift. In contrast, if multiple positive examples 

are selected from nearby locations, the object model is 

constantly updated and the current appearance can 

incorporate too much contextual information and thus 

become confusing (Fig. 4b). 

 

 
Figure 4: Object tracking with occlusion. Green: Proposed 

approach, Yellow: GOTURN algorithm; (a). Total occlusion; (b). 

Partial occlusion that degenerates the appearance model to 

incorporate false instances. 
 

In our work, we have adopted a tracking-by-detection 

approach that continuously updates the object appearance 

model with novel instances whenever such an action is 

required. In contrast with other state of the art techniques 

[21], because of the real-time constraint imposed by the 

targeted application, no learning process is performed in 

the online stage. 

In order to determine the novel location of the interest 

object a multiple patch matching strategy is proposed. The 

objective is to estimate, with high accuracy, the new 

position of the object bounding box in the adjacent frame.  

The input is the candidate location returned by the 

motion-based tracking algorithm (cf. Section 3.2). The 

predicted object position, together with its associated 

context region is further analyzed for a more accurate 

object location estimation. The context region is 

subsequently used as a search area in order to determine, 

independently, the best location for each instance in the 

object appearance model. At each stage, the similarity 

score provided by the DeepCompare algorithm is 

computed.  

In order to reduce the processing burden instead of a 

brute force search, we have adopted a hierarchical 

approach, similar to the block-based motion estimation in 

method used in MPEG-4 [23]. The location that yields the 

highest DeepCompare similarity score is retained as 

correct for the current object appearance model. The final 

object location in the adjacent frame corresponds to the 

instance that provides the maximal value of similarity. 

To validate the object location, we impose the 

maximum similarity score to be superior to the average 

score obtained within the temporal sliding window that 

incorporates the last N video frames processed. In our 

experiments, we selected N equal with 10 frames that 

corresponds to a temporal interval slightly inferior to half 

a second. 

The object appearance model is constantly updated with 

novel elements if the visual similarity scores of the current 

instance with all the frames being analyzed (located in the 

temporal sliding window) satisfy the similarity condition. 

In the same time, the most ancient object instance in the 

model is discarded. In this way, we ensure that the object 

appearance is not updated with sub-optimal instances (i.e., 

occluded versions of the object). 

3.3. Obstacle classification 

The image patches are classified using a modified 

version of the YOLO [4] algorithm. We extended the 

system with additional training classes specific to a 

wearable assistive device dedicated to VI users.  

The object class is predicted by performing a global 

reasoning about the entire video frame. Unlike traditional 

classification system our framework encodes during 

training and testing the contextual information about the 

object class and its appearance. Then, as for YOLO, our 

system learns generalizable representations of objects and 

is less likely to return false alarms or missed detection 

when applied to novel/unexpected video instances input. 

In the context of VI user application we retained as 

relevant the following object classes: car, bicycle and 

humans. In addition, we constructed a novel global class 

called generic static obstructions with its associated 

subclasses: garbage cans, overhanging branches, fences, 

pylons, edge of pavements and stairs. 
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3.4. Acoustic feedback module 

After the objects are tracked and classified we need to 

determine their degree of danger relative to the VI. We 

observed that not all obstacles presented in the scene 

represent a potential risk for the blind. We propose to use 

two proximity areas, situated in the near surrounding of a 

user, both with a trapezoidal shape: one situated on the 

persons walking path and the other at the head level 

(Fig. 5). The system will launch acoustic warnings only 

for the object situated in the areas delimitated by the 

trapeziums of interest. 

 

 
Figure 5: Visual impaired user proximity areas. 

 

The classified objects are analyzed and prioritized 

depending on their potential level of danger. A detected 

object is marked as urgent (U) if it is situated within the 

trapeziums of interest (user proximity region), otherwise 

the obstacles is categorized as normal (N) or non-urgent. 

By employing two areas of proximity we can prevent the 

system to launch acoustic warning messages for all the 

detected objects existent in the scene. We adopted this 

strategy in order to overwhelm the user with too much 

information.  

In order to keep the acoustic feedback intuitive only the 

following set off alarms will be generated by the system, 

in descending order of priority: “vehicle”, “bicycle”, 

“human” and “obstruction”.  

Finally, in order to infer to the VI people information 

regarding the relative position of the detected object the 

acoustic warning messages are encoded in stereo using the 

right, the left and both channels.  

In addition, not to confuse the VI user with too much 

information, the warning messages are sent with a 

frequency rate inferior to two seconds, regardless of the 

scene dynamics. The sound patterns are transmitted to the 

VI person through bone conduction headphones. 

4. Experimental evaluation 

Datasets and baseline systems: The proposed tracker 

is evaluated using the VOT2016 dataset. The video dataset 

contains 60 high challenging image sequences with the 

following visual attributes: illumination change, motion 

and size change, occlusion and various camera motions. 

All the sequences were annotated by human observers. We 

compared the proposed method with four state of the art 

algorithm denoted: GOTURN [18], C-COT [24], Stapler 

[25] and TCNN [26]. 

The entire system, integrating all modules (i.e., obstacle 

detection, tracking and object classification) was evaluated 

on the same video dataset as in [10]. The database 

includes 20 video sequences recoded with the help of VI 

users. The videos are acquired at a resolution of 320 x 240 

pixels, are trembled and cluttered. 

Implementation details: For each tracker, the default 

parameters and the source codes provided by the authors 

are used in all the evaluations. All the experiments were 

performed on a portable processing unit (regular ultrabook 

computer, with Visual Studio C++/Matlab on an Intel 

Core Kaby Lake i7-7700HQ, 32GB RAM and NVIDIA 

GeForce GTX 1050 GPU). Because the processing unit 

needs to be carried by the VI user in the backpack we 

decided to use an ultrabook due to its lightweight (inferior 

to 1 kg). 

Evaluation measures: In the state of the art, various 

techniques use as evaluation metric the center prediction 

error. However, as indicated in [27] this measure is highly 

sensitive and dependent on the annotation. In addition, the 

measure completely ignores the interest object size and 

does not take into account the apparent tracking failure. 

We evaluated the proposed tracker using the quantitative 

measures, as described below. 

As indicated in [28], the quantitative evaluation of the 

proposed approach is determined using the region overlap 

measure (Φ). This measure is computed as the overlap 

between the predicted target region (ܴ௧் ) and the ground 

truth annotation data (ܴ௧ீ ).  Φ = ሼ߶௧ሽ௧ୀଵே ,						߶௧ = ܴ௧ீ ௧்ܴ௧ீܴځ ௧்ܴڂ ; 																ሺʹሻ 

where ܴ௧ denotes the region of the object at time t, while 

N is the total number of frames of the considered video 

sequence. The region overlap measure takes into account, 

in the same time, both the position/size of the predicted 

bonding box and the ground-truth data. Compared with the 

center-based errors, the region overlap measure Φ does 

not return arbitrary large errors for tracking failures. In 

terms of pixels classification the overlap can be interpreted 

as: ߶௧ = ܴ௧ீ ௧்ܴ௧ீܴځ ௧்ܴڂ = ܶܲܶܲ + ܰܨ + ܲܨ ;									ሺ͵ሻ 

where ܶܲ are true positives pixels, ܰܨ the false negatives 

pixels and ܲܨ the false positives pixels.  

We have compared the proposed algorithm in terms of 

accuracy with state of the art methods as GOTURN [18], 

Stapler [25] and TCNN [26] and the winner of the 2016 

benchmark evaluation C-COT [24].  

We have performed an extensive evaluation on all the 

60 sequences from VOT 2016 challenge. Our approach 

returns an average overlap score of 0.551 while 

GOTURN, Staple, TCNN and C-COT achieve 0.394, 

0.49, 0.52 and 0.51 respectively (Table 1). 
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Table 1. Experimental evaluation of the proposed tracking 

system and comparison with state of the art methods using 

the overlap score as evaluation metric. 

Sequence GOTURN C-COT Staple TCNN OUR

Birds1 0.10 0.32 0.08 0.43 0.48

Bmx 0.59 0.13 0.30 0.17 0.59

Bolt1 0.43 0.46 0.51 0.51 0.61

Butterfly 0.65 0.45 0.33 0.53 0.64

Fernando 0.45 0.26 0.36 0.38 0.45

Godfather 0.05 0.32 0.51 0.31 0.57

Iceskater1 0.37 0.45 0.17 0.58 0.60

Pedestrian1 0.56 0.67 0.67 0.60 0.65

Racing 0.76 0.45 0.54 0.40 0.77

Shaking 0.75 0.63 0.05 0.67 0.77

Soldier 0.71 0.24 0.32 0.66 0.71

TOTAL 0.39 0.51 0.49 0.52 0.55

 

From the experimental results presented in Table 1 we 

observe that the proposed method shows a significant 

increase in accuracy and becomes the best-performer on a 

diverse set of examples. If we consider for example the 

Bird1 and Godfather video sequences our system 

outperforms the traditional GOTURN method. In addition, 

when compared with CCOT or TCNN on Bolt1 or Racing 

our method does not allow the system to drift due to its 

selective update of the appearance model. 

Finally, we evaluated the entire framework in terms of 

precision (P), recall (R) and F1 score on the dataset of [9] 

that contains 20 videos with an average duration of 10 

minutes recorded using VI users. The experimental results 

are presented in Table 2. The proposed method returns an 

average detection rate superior to 89% for all types of 

obstacles. Compared with the state of the art method [9] 

our system shows an improvement of more than 5%. 

 

Table 2. Experimental evaluation the proposed framework 

on a set of video acquired with the help of VI users. 

Ground truth Recall Precision F1 score

Vehicles 431 0.92 0.88 0.90 

Pedestrians  374 0.94 0.91 0.92 

Bicycles 120 0.88 0.84 0.86 

Obstructions 478 0.89 0.87 0.88 

TOTAL 1403 0.91 0.87 0.89 

 

In terms of computational speed, when implementing 

the proposed framework on a regular ultrabook computer, 

running on an Nvidia GTX 1050 GPU, the average 

processing speed is around 15 fps. 

In Fig. 6 we present some experimental results obtained 

by our method on the video dataset from [10] acquired in 

real-life scenarios with the help of actual VI. The category 

of each detected obstacle is also presented. 

5. Conclusions and perspectives 

In this paper, we have proposed a novel perception 

system based on computer vision methods and deep 

convolutional neuronal networks able to assist the visual 

impaired user during the outdoor navigation. In contrast to 

various techniques existent in the state of the art our 

system is able to detect, track and recognize, in real-time, 

all relevant object existent in the scene without any a 

priori knowledge about shape, position or dynamics. The 

output of our system is transformed into a set of acoustic 

warnings transmitted to the VI user through bone 

conducting headphones.  

The experimental evaluation performed on a set of 60 

challenging video sequences selected from the VOT 2016 

and 20 video sequences recoded with the help of VI users 

demonstrates the effectiveness and efficiency of our 

method. 

 

 
Figure 6: Experimental detection and recognition results on the video dataset acquired by VI users. 
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In addition, when compared with different state of the 

art algorithms, our approach shows an increase in 

performance (in terms of accuracy) of more than 5%. 

For future work we propose to integrate our method in a 

larger framework that includes: face recognition, guided 

navigation and shopping assistance functions. In addition, 

a study with real VI users is envisaged.  
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