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Abstract

Kinship verification in the wild is a challenging yet in-
teresting issue, which aims to determine whether two un-
constrained facial images are from the same family or not.
Most previous methods for kinship verification can be divid-
ed as low-level hand-crafted features based shallow meth-
ods and kin data only trained convolutional neural network
(CNN) based deep methods. Worthy of affirmation, numer-
ous work in vision get that convolutional features are dis-
criminative, but bigger data dependent. A fact is that for
a variety of data-limited vision problems, such as limited
Kinship datasets, the ability of CNNs is seriously dropped
because of overfitting. To this end, by inheriting the success
of deep mining algorithms on face verification (e.g. LFW),
in this paper, we propose a Coarse-to-Fine Transfer (CFT)
based deep kinship verification framework. As the idea im-
plied, this paper tries to answer “is it possible to transfer a
face recognition net to kinship verification?”. Therefore, a
supervised coarse pre-training and domain-specific ad hoc
fine re-training paradigm is exploited, with which the kin-
relation specific features are effectively captured from faces.
Extensive experiments on benchmark datasets demonstrate
that our proposed CFT adaptation approach is comparable
to the state-of-the art methods with a large margin.

1. Introduction

Human face carries with lots of individual information,
and most human characteristics such as identity, age, gen-
der, emotion etc. can be distinguished by facial images.
Facial analysis has been widely studied in computer vision.
In recent years, face recognition, that aims to discover the
inherent identity-associated facial features, has witnessed
a great achievement promoted by deep learning. The ob-
jective of face recognition is to identify who is the per-
son in a given human facial image, while face verification
tries to answer whether the two persons belong to the same
person [14]. Also, the facial images can also reflect kin-
relation, and it is challenging to recognize whether the two
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Figure 1. Some samples positive (with kinship relation) and neg-
ative pairs (no kinship relation) from KinFaceW-I, KinFaceW-II,
Cornell KinFace and UB KinFace, respectively. The first two rows
are positive pairs and the last two rows are negative pairs. The kin-
ship relation types from left to right are: father-daughter, father-
son, mother-daughter and mother-son, respectively.

persons are from the same family. Therefore, an emerging
topic, kinship verification, that aims to mining implicit kin-
relation specific features, has been raised. It has many po-
tential applications, such as missing children searching and
social media mining, etc. [11]. In this work, the parent-child
based kinship is studied, such as father-daughter, father-son,
mother-daughter and mother-son. Some facial image pairs
with kinship and no kinship have been shown in Figure 1,
from which the difficulty of kin-relation discovery is shown.

Recently, many algorithms have been proposed for kin-
ship verification. Most of these work follow the techni-
cal routine from hand-crafted low-level feature extraction to
large-margin metric learning. A representative work can be
referred to as [11], in which a neighborhood repulsed met-
ric learning (NRML) was proposed by learning a projection
based metric with large margin and achieved the best per-
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formance on ensemble of hand-crafted low-level features.
Although these work greatly promote kinship verification,
they follow a conventional face recognition route that is kin-
ship data dependent. Also, the hand-crafted feature extrac-
tion (e.g. LBP, HOG) is often used for general face analy-
sis, but independent of kin-relation specific features. As a
result, the implicit and abstract kinship information cannot
be adequately represented [10]. Therefore, the kin-relation
specific feature mining and discovery is still a challenging
issue, which is also the focus of this paper to address.

Deep learning, proposed by Hinton and Salakhutdi-
nov [7], has become the most popular machine learning
algorithms for discovering discriminative intermediate and
high-level representations in a hierarchical manner [5]. In
particular, convolutional neural network (CNN) have re-
cently been shown to achieve great success in various com-
puter vision tasks, such as face recognition [14, 21], object
recognition, etc. All these achievements are attributed to
massive labeled natural image data and large-scale param-
eters for high-level discriminative features representation.
While compared with conventional machine learning, deep
learning as a supervised approach, depends on large-scale
data. Otherwise, overfitting may be encountered in small
tasks. In face recognition task, the deep CNN model is gen-
erally trained on a large-scale constrained or unconstrained
face database (i.e., CASIA Webface). Recently, CNNs have
also been used for kinship verification [10, 20]. These work
are closely related with this paper, but different in essence.
These two work tend to train a shallow CNN model based
on limited kinship data (several hundreds or thousands) for
deep kinship facial feature representation. However, the a-

bility of CNN is dropped due to data scarcity. Depth is an
important aspect of CNN architecture [18], and with the
deepen of CNN architecture the performance become bet-
ter, but more parameters are needed. Therefore, overfitting
in training will result in the singular kin-relation features.

The most straightforward method to solve the CNN
based kinship verification issue is to prepare large-scale,
structural and labeled kinship dataset. However, it is cost
prohibitive and time consuming to structure a large kinship
datasets with correctly annotated human facial images. To
address this issue, in this paper, we propose a deep transfer
learning paradigm for kinship verification, which is called
Coarse-to-Fine Transfer (CFT). As the idea implies, we ex-
pect to inherit the success of face verification in LFW and
object recognition in ImageNet into kinship verification, by
pre-training a coarse CNN (cCNN) on a large-scale face
recognition database (i.e., source data) and re-training a fine
CNN (fCNN) model on the small-scale kinship database
(i.e., target data). After integrating the cCNN and fCNN
models together, a CFT network is formulated for kinship
verification. In CFT framework, the cCNN is used to dis-
cover the generalized facial features and the fCNN is used
to deep mining the kin-relation specific features. In order
to further strengthen the discrimination of deep kin-relation
features, the NRML [11] is used to seek a feature projection
matrix, so that the deep kinship features can be projected
into a kin-discriminated feature space. To our best knowl-
edge, deep transfer learning has not been studied in kinship
verification. Experimental results show that our proposed
coarse-to-fine transfer method can well learn the transfer-
able kin-relation specific features, and prove that it is feasi-
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ble to transfer face recognition net to kinship verification.

The key contributions of this work are threefold.

- Different from previous methods in kinship verifica-
tion, a much deeper CNN based coarse-to-fine transfer
method is proposed to adequately extract deep kin-relation
specific features based on cCNN and fCNN, which are more
universal and discriminative for Kinship verification.

- To the best of our knowledge, it is the first time to ex-
ploit deep transfer learning for kinship verification. Our ap-
proach relaxes the kinship domain data, and train the f{CNN
based on a multi-class yet simple learning mechanism.

- Experimental comparison with shallow and deep learn-
ing methods demonstrate that our proposed CFT method is
comparable to the state-of-the-arts. Further, our method is
also shown to follow humans pace in Kinship verification,
and closing the gap of human-machine performance.

2. Related Work

In this section, we review three closely related topics
with this paper, including kinship verification, deep convo-
lutional neural networks and transfer learning.

2.1. Kinship Verification

Kinship verification via facial image analysis is an chal-
lenging problem in computer vision. Since many re-
searchers have investigated this problem, many kinds of
learning based methods have been proposed. Those meth-
ods can be mainly divided into two categories: 1) feature-
based [2, 4, 28] and 2) model-based [24]. The former aim
to use general low-level feature descriptor to represent fa-
cial image. Existing feature representation approaches for
kin-relation data include histogram of gradient (HOG) [4],
scale-invariant feature transform (SIFT) [11, 27], local bi-
nary pattern (LBP) [11]. The ensemble of the above hand-
crafted features demonstrates a superior kinship verifica-
tion performance [11, 27]. Regardless of the hand-crafted
features, data-driven and high-level CNN features [10, 20]
have also been used for kinship verification, and show a
significant progress compared with hand-designed features.
The latter aim to learning an effective metric or model used
to distinguish whether two face images are with kinship re-
lation, such as neighborhood repulsed metric learning (N-
RML) [11], prototype-based discriminative feature learn-
ing (PDFL) [28], transfer subspace learning [15, 23] sup-
port vector machine (SVM) [28], large margin multi-metric
learning [8], ensemble similarity learning (ESL) [32], and
scalable similarity learning (SSL) [33].

Those previous works have achieved great progress over
the challenging kinship verification. However, the common
shortcoming is that the extracted image features are gener-
al representation of faces and lack of structural kin-relation
meaning. To this end, the proposed deep CNN model based
Coarse-to-Fine Transfer can be a competitive candidate for

better insight of the implicit kin-relation characteristic in-
side the facial images.

2.2. Deep Convolutional Networks

Deep learning has shown its effectiveness in various
computer vision tasks, such as face recognition and ob-
ject recognition. CNN is an end-to-end supervised learn-
ing methods from pixel based images to the high-level se-
mantic. The features from the bottom to top in the net-
work architecture can be identified as low-level and high-
level image representation. Several popular CNN models
are summarized as follows. VGG [16], as a very deep CN-
N, achieved a great success in Large Scale Visual Recogni-
tion Challenge 2015. GooglLeNet [18] was proposed with
deeper structure. A 152 layed ResNet with skip connec-
tion was also proposed for image recognition [6]. In face
recognition, MTCNN [30] used the candidate CNNs to de-
tect facial landmarks. A Deepface [19] was proposed a 3D-
align. FaceNet [14] constructs a triplet-loss model and im-
prove the face verification accuracy. The approach proposed
in [26] can handle multi-modal face recognition with pos-
es. Recently, the center-loss model proposed in [21] aims to
obtain within-class separable features. Additionally, a very
popular Faster R-CNN [13] has been proved to be very effi-
cient and effective in object/pedestrain detection. All these
studies in computer vision achieve surprisingly good per-
formance, which motivates us to exploit deep convolutional
networks for kinship verification.

Compared with conventional machine learning method-
s, there too many parameters needed to be learned in CNN,
which, therefore, depends on a large-scale labeled database.
Thus, it is not feasible to train a deeper CNN through small-
scale kinship data. To this end, transfer learning is intro-
duced in our method for learning the transferable features
from large-scale domain data.

2.3. Transfer Learning

For statistical machine learning, the goal of learning is
to obtain a classification model based on the well prepared
training data, then the testing data with similar distribution
can be predicted using the trained model. Nevertheless, an
abundant annotated training database is difficult to acquire,
and machine learning methods work under a common as-
sumption that the training and testing data are drawn from
the same feature space or distribution. This assumption may
not hold in many real applications [12] due to the uncertain-
ty of sampling conditions. Transfer learning aims to solve
these above problems, by leveraging the large-scale, het-
erogenous domain data, and learn a powerful model for d-
ifferent tasks. Recently, transfer learning techniques have
been applied successfully in computer vision applications.
Wu and Dietterich [22] proposed to use both inadequate tar-
get domain data and plenty of low quality source domain
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data for image classification. In [25], a novel feature s-
pace independent semi-supervised kernel matching method
was proposed for domain adaptation. Latent sparse domain
transfer (LSDT) [31] was proposed to solve domain adapta-
tion and visual categorization of heterogeneous data.

Deep learning can be identified as a data-driven transfer
learning technology, which is trained on large-scale hetero-
geneous data. Generally, the pre-trained deep models are
used for another new domain independent of the training
data. For example, in [9], a CNN model pretrained on Ima-
geNet was used to predict poverty through satellite imagery
by two-step transfer learning. Sun and Shetty investigated
cross-domain transfer learning between video frames and
web images by using pre-trained deep convolutional neu-
ral networks [17]. Esteva et al. [3] proposed to pre-train a
CNN model on ImageNet, and fine-tune the model again
using 13K clinical images. The superior performance has
been compared against 21 board-certified dermatologists on
biopsy-proven clinical images. The authors in [1, 29] have
discussed the transferability of deep neural networks with
extensive experiments by fine-tuning on a domain data.

Inspired by deep learning and transfer learning [1, 3, 9,
29], we propose a deep transfer model (CFT), which con-
sists of a coarse CNN model (¢cCNN) and a fine CNN mod-
el (f{CNN). The former is pre-trained on a large-scale face
recognition database for coarse generalized facial features.
The latter is re-trained on the small-scale Kinship database
by using a 5-fold cross-validation strategy for structuring
fine kin-relation specific features.

3. Coarse-to-Fine Transfer Approach

In our approach, kinship specific features are extracted
based on a Coarse-to-Fine Transferring (CFT) paradigm. In
order to obtain more discriminative and robust deep fea-
tures, CFT is constructed based on a deep CNN architec-
ture, consisting of a coarse CNN and a fine CNN. First, the
cCNN is pre-trained on a large-scale facial image database
as source data via face recognition based training mecha-
nism. Then, the f{CNN model is re-trained on small-scale
kinship database based on cCNN via multi-class learning
rule (two kinship images per class). For each facial image,
cCNN is used for generalized facial features and fCNN is
used for kin-relation specific characteristic features. Fig-
ure 2 shows the pipeline of our proposed transferring ap-
proach from face recognition net to kinship verification.

3.1. Coarse Convolutional Network (cCNN)

The proposed deep transfer model, that is based on con-
volutional neural network architecture, has over 7 million
parameters. Similar to general CNN model, the proposed
CFT model consists of convolutional layers, pooling layers,
fully-connected layers and soft-max layer.

Numerous research has shown that the performance of
CNN model is greatly attributed to the net depth [6, 18].
That is, the deeper the network is, the better the perfor-
mance is. Therefore, we prefer using smaller convolution
kernel rather than a bigger one, such that the network is
deeper but without increasing the number of network pa-
rameters. For example, two 3 x 3 convolution kernel are
used instead of one 5 x 5 kernel in our model. The convo-
lution with ReL.U nonlinearity is formulated as

Y, fmaXObl+ZWl * X1 (1)

where Xﬁ and Yé- are the i-th input feature map and j-th out-
put feature map in the [-th convolution layers, respectively.
Wl is the convolution kernel between the i-th input feature
map and j-th output feature map. bé. is the bias of j-th out-
put feature map, and * denotes convolution operation. Note
that the ReLU nonlinearity is used as activation function in
each convolution layer, because it has been proved to have
faster convergence and better stability than others.

After each two convolution layers, a pooling layer is fol-
lowed for translation invariance, dimension reduction, and
avoiding overfitting. In general, considering the ReL.U ac-
tivation results, the max-pooling layer is adopted, which is
defined as

(4.k) _

v max {z;

(7-s+m,k-s+n) 2
O<m n<s } ( )

(%) denotes the output of the ¢-th feature map in

the location (7, k). Similarly, x (J *) is the value of location
(4, k) in the i-th feature map. The neighboring region size
of max-pooling layer is 2 x 2.

In order to compare with other algorithms, the size of
each input RGB image to cCNN is 64 x 64. Note that one
pooling layer is deployed after two convolutional layers.
The details of the proposed CFT network configuration for
each CNN model are described in Table 1. The training pro-
cess of cCNN follows a face recognition mechanism based
on CASIA WebFace database (source data), which includes
494,414 unconstrained facial images of 10575 persons. Af-
ter cleaning the data of very low quality, the final training
data includes 452,720 images of 10575 persons. That is, the
c¢CNN model is trained over 10,000 classes. The cCNN is
proposed for data scarcity problem of Kinship verification,
and transferred to another Kinface domain data by leverag-
ing the fCNN introduced in the next section. The details for
detection and alignment can be found in Section 3.2.

3.2. Fine Convolutional Network (fCNN)

where y,

The fCNN shares a similar network architecture and op-
timization algorithm with the cCNN. The difference lies
in that the training data of cCNN is a large-scale face
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Convl Pooll Conv2 Pool2 Conv3 Pool3 Conv4 Pool4 Conv5 FC
convl1-32 5 conv21-64 ) conv31-96 > conv41-128 ’ conv51-160 FC1-512
convi2-64 | M| conv22-128 | MY | conv32-192 | T | conva2-256 | M7 | conv52-320 | FC2-10575

Table 1. CFT Configuration. The convolution layers are denoted as “conv(index)-(No. of kernels)”, the pooling layer parameters are

denoted as “(pooling operator)-(grid size)”, and the fully-connected layer parameters are denoted as “FC(index)-(No. of outputs)

database with about 500K labeled images over 10K classes
(source data), while f{CNN is trained on a small-scale kin-
face database (target data) with about 3K labeled images
over 1K classes. However, fCNN still inherits the merit of
cCNN for generalized facial feature (e.g. edges, corners,
texture) and further achieves higher-level kin semantic fea-
ture. The fundamental reason why we propose deep trans-
fer model is that for the existing kinship dataset, such as
KinFaceW-1!, KinFaceW-1I', Cornell KinFace?, and UB K-
inFace?, the total number of the doublet or triplet positive
pairs does not exceed 5K.

It is worth noting that, although both source domain and
target domain are with facial images, there are essential d-
ifferences in data protocol. The protocol of CASIA Web-
Face* data classification based, that is, the goal of face
recognition is to identify who she/he is. However, the kin-
ship verification aims to determine whether there is a kin-
ship relation between two persons, and the label is 1 if yes,
otherwise 0. As a result, the training protocol of target do-
main cannot be transferred to source domain for training the
fCNN. To this end, we make a similar protocol on Kinship
data with WebFace. Specifically, we select the positive pairs
of parent-chid images and manually tag each positive pair
as different label starting from digit 0. That is, for each pos-
itive parent-child pair, they are marked as the same identity.
In this way, the target data and source data share a simi-
lar training protocol. During the fCNN training, a 5-fold
cross-validation strategy is used. Therefore, the kin faces
training data (4 folds) includes 3162 images of 1500 class-
es. For each kinface database except the UB KinFace data,
2 images per class are considered. UB KinFace is differen-
t from other three kinship datasets that it is constructed in
triplet: children, young parents and old parents. The young
parent and the old parent in each triplet are the same per-
son but age different. Therefore, for UB KinFace, 3 images
per class are considered. For performance evaluation, with
4 folds for training and the remaining 1 fold for testing, the
average accuracy of 5-fold is reported.

Additionally, there are two ways for the fCNN training,
and results in two associated algorithms CFT and CFT*.

- CFT: high-level kin-relation feature mining by training
the fully-connected layers of f{CNN on the kinship training

Uhttp://www.kinfacew.com/download.html
Zhttp://chenlab.ece.cornell.edu/people/ruogu/kin_verify.html
3http://www1.ece.neu.edu/ yunfu/research/Kinface/Kinface.htm
“http://www.cbsr.ia.ac.cn/english/CASIA-WebFace-Database.html

”»

data with convolutional layers frozen.

- CFT*: low-level and high-level feature mining by
slightly training both convolutional layers together with
fully-connected layers of fCNN on the kinship training data.

Notably, mini-batch Stochastic Gradient Descent (SGD)
based error back propagation algorithm is used for training
the proposed CFT network. The CFT is implemented by
using Caffe and Python package.

3.3. Data Pretreatment: Face Detection and Align-
ment

For cCNN training on WebFace database and fCNN
training on Kinship database, face detection is implemented
by using MTCNN? facial point detection method proposed
by [30], which detects five facial landmarks, including the
two eye centers, the nose tip, and the two mouth corner-
s. If the detection fails, we simply discard the image if it
is from WebFace database, but use hand-crafted landmarks
if it is from Kinship database. Then, the detected faces are
globally aligned by using affine transformation based on the
two eye centers and the mid-point between the two mouth
corners. Finally, the aligned 64 x 64 facial images are ob-
tained as the inputs of CNNs. For feature extraction of each
kinface, the output of CFT is a kin-relation specific feature
vector with length of 512, that is ready for verification.

4. Verification Metric

Verification metric is used to measure the similarity of
two faces based on the CFT features. In this paper, we have
applied the intrinsic and learning free Euclidean distance
metric and an ad hoc NRML metric for kinship verification.

4.1. Learning Free Metric

The most intrinsic metric used to calculate the similarity
of each two vectors x1 and x5 is Euclidean distance metric,
which is learning free metric, and can be calculated as

n
Z(ﬂhk - 3721@)2
k=1

where z; and zo are two samples with n-dimensional col-
umn vectors, respectively. Generally, the similarities of
intra-class samples (with kin-relation) should be higher than
inter-class samples (without kin-relation).

dy = 3)

Shttps://github.com/kpzhang93/MTCNN face_detection_alignment
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Figure 3. Intuitive illustration of NRML. (a) High-dimensional
feature space. The data points in blue and red denote parents and
children, respectively. The data points with kinship relation are
denoted as circles. The data points in the neighborhood and non-
neighborhood are denoted as triangles and squares, respectively.
(b) The new NRML subspace, where a kinship margin is obtained.

4.2. Ad hoc Metric

Metric learning aims to structure an appropriate feature
space, in which the structural difference between features
can be measured. Neighborhood repulsed metric learning
(NRML) [11] was proposed to seek a projected matrix, that
can project the features from original space to a another s-
pace, where the intra-class samples are pulled as close as
possible and the inter-class samples lying in a neighborhood
are repulsed as far as possible. The idea of NRML is de-
scribed in Figure 3. The model of NRML is formulated as

max J(W) = tr[W7 (H, + Hy — H3)W]
n (4)
subjectto  WTW =1,

where WTW = T is a orthogonal constraint to restrict
the scale of W, H; £ ﬁ Zf;l Zflzl(xi — Yit, ) (i —
yie)T. Hy 2 Fe S0 S0 (@i, — yi) (@i, — u0)7
Hy 2 L3N (2 — yi)(zi — )T, ; and y; are two
m-dimensional column vectors of the ith parent-child kin
pair, respectively, y;;, represents the ¢;th k-nearest neigh-
bor of y; and xz;;, denotes the toth k-nearest neighbor of ;.
The W can be obtained by solving an Eigen-decomposition
problem. Then we use the W to project our CFT features
into another space where cosine distance is calculated for
Kinship verification.

5. Experiments

In this section, in order to demonstrate the effective of
our proposed approach CFT, we experimented with four
benchmark kinship datasets.

5.1. Datasets

In experiments, two kinds of databases are considered:
large-scale CASIA WebFace data (500K) and small-scale
KinFace data (4K). The KinFace data include four publicly
available datasets, such as KinFaceW-I, KinFaceW-II [11],
Cornell KinFace [4] and UB KinFace [23].

Method F-S | F-D | M-S | M-D | Mean
Human A [28] | 62.0 | 60.0 | 68.0 | 72.0 | 65.6
Human B [28] | 68.0 | 66.5 | 74.0 | 75.0 | 70.9
MNRML [11] | 72,5 | 66.5 | 66.2 | 72.0 | 69.6
MPDFL [28] | 73.5 | 67.5 | 66.1 | 73.1 | 70.1
SMCNN [10] | 75.0 | 75.0 | 68.7 | 722 | 72.7

DKV [20] 71.8 | 62.7 | 66.4 | 66.6 | 66.9
CFT 795 | 71.6 | 73.3 | 799 | 76.1
CFT* 78.8 | 71.7 | 77.2 | 819 | 774

Table 2. Accuracy of differen methods on KinFaceW-1

Method F-S | F-D | M-S | M-D | Mean
Human A [28] | 63.0 | 63.0 | 71.0 | 75.0 | 68.0
Human B [28] | 72.0 | 725 | 77.0 | 80.0 | 75.4
MNRML [11] | 769 | 743 | 774 | 77.6 | 76.5
MPDFL [28] | 77.3 | 747 | 77.8 | 780 | 77.0
SMCNN [10] | 75.0 | 79.0 | 78.0 | 85.0 | 79.3

DKV [20] 734 | 682 | 71.0 | 72.8 | 71.3
CFT 754 | 688 | 774 | 778 | 759
CFT* 774 | 76.6 | 79.0 | 83.8 | 79.3

Table 3. Accuracy of differen methods on KinFaceW-II

Method Set1 | Set2 | Mean
MNRML [11] | 66.8 | 67.3 | 67.1
MPDFL [28] | 67.0 | 67.5 | 67.3

CFT 703 | 743 | 723
CFT* 66.5 | 64.5 | 655

Table 4. Accuracy of differen methods on UB KinFace

Method | MNRML [11] | MPDFL [28] | CFT CFT*

Mean 71.6 71.9 78.6 783

Table 5. Accuracy of differen methods on Cornell KinFace

- Both KinFaceW-I and KinFaceW-II include four dif-
ferent types of kin relationships: father-son (F-S), father-
daughter (F-D), mother-son (M-S) and mother-daughter
(M-D). KinFaceW-I consists of 156, 134, 116, and 127
pairs, respectively. KinFaceW-II consists of 250 pairs for
each relationship.

- Cornell KinFace contains totally 150 parent-child pairs.

- UB KinFace contains 200 triplets and each triplet is
structured by child, young parent and old parent.

5.2. Experimental Setup

In experiments, the cCNN is first trained on WebFace,
then the fCNN is trained on KinFace via 5-fold cross vali-
dation, and finally Euclidean metric and NRML metric are
used for kinship verification.

We have compared our CFT method with four state-
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Methods KinFaceW-1 KinFaceW-1I UB Cornell
FS | F-D | M-S | M-D | F-S | F-D | M-S | M-D | 0-1 0-2 -
cCNN 76.6 | 66.8 | 72.4 | 77.2 | 752 | 67.0 | 76.2 | 73.8 | 70.3 | 66.3 73.7
CFT 795 | 71.6 | 73.3 | 799 | 754 | 68.8 | 77.4 | 77.8 | 70.3 | 74.3 78.6
CFT* 78.8 | 71.7 | 77.2 | 819 | 77.4 | 76.6 | 79.0 | 83.8 | 66.5 | 64.5 78.3
Table 6. Accuracy of cCNN and CFT on kinship databases
Methods KinFaceW-1 KinFaceW-II UB Cornell
FS | F-D | M-S | M-D | F-S | F-D | M-S | M-D | 0-1 0-2 -
ED based CFT 75.0 | 88.4 | 685 | 764 | 71.4 | 65.0 | 73.8 | 75.0 | 71.3 | 58.0 72.7
ED based CFT* 715 | 739 | 71.1 | 77.5 | 73.6 | 74.6 | 76.8 | 80.0 | 60.5 | 49.0 73.0
NRML based CFT | 79.5 | 71.6 | 73.3 | 79.9 | 754 | 68.8 | 774 | 77.8 | 70.3 | 74.3 78.6
NRML based CFT* | 78.8 | 71.7 | 77.2 | 81.9 | 77.4 | 76.6 | 79.0 | 83.8 | 66.5 | 64.5 78.3

Table 7. Accuracy of differen metric used on CFT

of-the-art methods in kinship verification, including two
shallow learning methods such as MNRML [11] and M-
PDFL [28], and two deep learning methods such as SMCN-
N [10] and DKV [20]. Additionally, the performance com-
parison with human score [28] is also analyzed. Notably,
for all algorithms, 5-fold cross-validation is used.

5.3. Comparison with Shallow Algorithms

The verification results of the proposed CFT (the f{CNN’
fully-connected layers are trained) and CFT* (all layers of
fCNN are trained) on KinFaceW-I and KinFaceW-II have
been shown in Table 2 and Table 3, respectively. The results
of MNRML is copied from [11]. For fair comparison, the
best result with feature ensemble of the compared methods
are presented. As can be seen from these two tables, our
proposed CFT methods show competitive performance.

Specifically, from the results listed in Table 2 and 3, we
can observe that:

- The proposed CFT and CFT* methods consistently out-
perform state-of-the art face verification methods, i.e. MN-
RML and MPDFL based on feature ensemble and metric
learning. Also, the effectiveness of high-level kin-relation
semantic discovery has been demonstrated.

- The proposed CFT based methods also outperform the
deep learning based face verification methods, i.e. SMC-
NN and DKV which are modeled on KinFace Only. The
transferability of the proposed methods has been shown.

- By comparing our method with human knowledge on
the KinFaceW-I and KinFaceW-II, the results show that
CFT methods achieve even better performance than human.

- By comparing CFT with CFT*, we get that CFT* with
all layers trained shows a superiority to CFT with Only
fully-connected layers trained. That is, kin-relation specific
features are associated with low-level and high-level layers
on KinFaceW-I and KinFaceW-II datasets.

- By comparing Table 2 with Table 3, the performance

on KinFaceW-II seems to be better than KinFaceW-1. This
may be due to that the data sampling for each pair is from
the same scene with different size. Interestingly, this phe-
nomenon does not happen in CFT methods. The reason is
that we use a massive WebFace data for transfer learning,
and a large prior knowledge about faces have been captured.
Thus, the performance dose not strongly depend on KinFace
self, and the robustness of our proposed CFT is shown.

Further, the experimental results on UB KinFace and
Cornell KinFace have been shown in Table 4 and Table 5,
respectively. In Table 4, two subsets is constructed from the
UB KinFace database: Set 1 (200 children and young par-
ents image pairs) and Set 2 (200 children and old parents
image pairs). From these tables, we can see that the pro-
posed CFT methods outperform state-of-the-art MNRML
and MPDFL 5 and 7 percentage, respectively. The superi-
ority of the proposed methods are demonstrated. Notably,
for UB KinFace, the CFT* fails, this may be caused by
the triplet structure of UB. When constructing labels, the
young-old parents with age difference are also used, which
is not suitable for CFT*. Besides, it is noteworthy that, dif-
ferent from KinFaceW-I and KinFaceW-II, CFT with Only
fully-connected layers trained shows a superiority to CFT
with all layers trained. So that, the kin-relation specific fea-
tures are only associated with high-level layers on UB Kin-
Face and Cornell KinFace datasets.

5.4. Comparison with Deep Algorithms

In Table 2 and Table 3, DKV and SMCNN, as kinship
verification methods, are compared. The proposed method
outperform them with the following considerations.

- For DKV, stacked auto-encoder (SAE) network in-
stead of CNN is constructed, in which each auto-encoder is
trained and stacked together by throwing the decoder part.
Additionally, the hand-crafted LBP features instead of raw
pixel images are feeded as inputs. Therefore, the high-level
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kin-relation specific features cannot be captured.

- For SMCNN, a similarity metric based convolutional
structures were designed as CNN does, which contains 8
layers: 4 convolutional layers, 3 pooling layers and 1 fully-
connected layer. First, the CNN was trained by using all
KinFace training samples and then fine-tuned with image
pairs in different kin relation. That is, SMCNN was trained
twice with the same KinFace data, and therefore over-fitting
may be caused. Additionally, SMCNN depends on KinFace
data used, which results in that it cannot be adapted to an-
other KinFace data. From Table 2 and 3, we observe that the
performance difference of SMCNN between KinFaceW-I
and KinFaceW-II is very significant.

- For CFT, the performance is significantly improved,
which demonstrates that transfer learning with a deeper
model in coarse-to-fine manner from a large-scale facial im-
ages can effectively enhance the kin-relation feature min-
ing ability. The overfitting and robustness to unconstrained
Kinship verification can be improved. The following exper-
iments provide further evidence of this view.

5.5. Comparison With Coarse CNN

The comparisons on four kinship datasets with coarse
CNN (trained over WebFace Only) are presented in Ta-
ble 6, from which we observe that features extracted from
coarse CNN are effective. This demonstrates the feasibil-
ity of transfer learning from source domain to target do-
main. However, CFT methods that integrate a fine CNN
show a significant improvement over the coarse CNN. This
shows that a small-scale kinship domain data is also impor-
tant for extracting the high-level deep kin-relation specific
features. Therefore, the proposed Coarse-to-Fine transfer
learning paradigm is effective.

5.6. Comparison of Different Metrics

For the extracted CFT features, the learning free Eu-
clidean distance (ED) and neighborhood replused metric
learning (NRML) have been considered in verification. The
results on four datasets are shown in Table 7. We observe
that the ad hoc NRML metric outperforms the intrinsic ED
metric. This demonstrates that it is useful to design appro-
priate large margin metric learning method for improving
the proposed CFT method. This also motivates us to com-
bine deep learning and conventional learning for more sur-
prising results.

5.7. Convergence

The convergence in fCNN training with two different
types (CFT vs. CFT#*) is shown in Figure 4, respectively.
It is obvious that the convergence rate for all layers train-
ing is faster than only fully-connected layer training. This
demonstrates that low-level layers are also useful in help-
ing kin-relation specific feature mining. However, for both
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Figure 4. Convergence curve of coarse-to-fine transfer

methods, a good convergence can be achieved.

6. Conclusion

In this paper, we propose a Coarse-to-Fine Transfer
Learning method for kinship verification, which is motivat-
ed by the transferable advantage of facial knowledge and
the kinship data scarcity problem in training a deep model.
We aim to explore the learning problem of small-scale data
by leveraging another large-scale domain data. Specifically,
in CFT, two deep CNN model including cCNN and fCNN
are exploited for capturing the high-level and discriminative
kin-relation specific semantic features. The coarse cCNN
model is trained by leveraging a large-scale face recogni-
tion database (i.e. CASIA WebFace) and used for gener-
alized low-level facial features but with weak kin-relation.
Then, the fine f{CNN model is trained by using a small-scale
domain data (i.e. KinFace) based on the cCNN model with
two types: Transferring fully-connected layers only (CFT)
and transferring all layers (CFT*). Finally, the neighbor-
hood replused metric learning (NRML) is used for verifica-
tion based on CFT features. Extensive experiments demon-
strate that the proposed CFT show the best performance is
comparable to the state-of-the-art kinship verification meth-
ods. In future, structured deep transfer model such as GAN-
based instead of data-driven transfer will be studied.
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