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Abstract

Age prediction from face images is a challenging task.

Direct application of pre-trained models on new data leads

to poor performance due to data and distribution mismatch

and lack of newly annotated material.

In this work, we analyze the transfer of knowledge from

deep models pre-trained on massive datasets to new target

datasets with (very) little information available. We inves-

tigate (i) pre-training on massive datasets with an imposed

target age label distribution, (ii) pre-training on massive

face datasets but without age annotations, and (iii) fine-

tuning on the target train data.

The experimental benchmark uses the massive IMDB-

Wiki, VGG-Face and ImageNet datasets as sources and

ChaLearn LAP and MORPH 2 as target datasets. The deep

architectures/priors are based on the VGG-16 and the re-

cent state-of-the-art DEX and VGG-Face models.

Our main findings are as follows. (i) Using deep priors

(pre-trained models on similar data and/or task) boosts the

performance on the target dataset. (ii) Imposing the tar-

get age label distribution on pre-trained models helps. (iii)

The access to and the use of labeled target samples is criti-

cal - with as few as 12 samples used for fine-tuning a large

performance gain is achieved, surpassing the impact of im-

posing target distribution for pre-training.

Early adaptation of deep priors to new target datasets

can yield sufficiently good performance at a reasonably low

computational cost.

1. Introduction

Convolutional Neural Networks (CNNs) have shown un-

precedented performance in a wide range of prediction and

estimation tasks [6, 15, 10, 18, 16] including real age and

apparent age estimation [2, 12, 8, 1]. However, training

such models from scratch for each new task that we face re-

quires massive labeled datasets that might not be available.

Thus, the only way to perform well in these new domains

is to transfer the knowledge from a large available labeled

dataset of a related task. In this work we focus on training

and adapting models for predicting apparent or real age in

different environments.

The prediction of real age from face images has a long-

standing history [3, 9, 5] with multiple datasets being pro-

posed. The largest datasets are manually labeled or web

mined, containing tens to hundreds of thousand face images

along their age labels. However, the prediction of appar-

ent age is a relatively new task without many large datasets

available, and creating such datasets is costly due to the

need for multiple annotators per image. Currently, one of

the most prominent datasets of apparent age voted is pro-

vided by the ChaLearn Looking at People (LAP) Apparent

Age Prediction Challenge [2], in which contestants are pro-

vided with less than 4700 images to train, validate and test

their approaches and models.

In this paper we address the training sample scarcity

problem for a target dataset and cast it as an early adapta-

tion of deep models (pre)trained on immense datasets with

available labels to the new target dataset application.

Our main contributions are as follows:

i. we show clearly the advantage of using pre-trained

models and the importance of pre-training on similar

data and/or labels;

ii. knowing as little as the age distribution in the target

data is beneficial as it can be imposed onto the pre-

trained model for performance gains;

iii. the availability of target age labeled samples is critical

as very few such samples combined with a pre-trained

model on a similar task can lead to a large boost in

performance;

iv. imposing age distribution onto a pre-trained deep

model requires a reduced number of back propaga-

tions;

v. early adaptation of deep priors to new target datasets

can be done efficiently for good performance.
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The remainder of the paper is structured as follows. In

Section 2 we briefly review related works. In Section 3 we

describe the experimental setup including datasets, models

and evaluation techniques. In Section 4, we describe our

main experiments evaluating the effect of fine-tuning our

model on the target dataset, pre-training the model with dif-

ferent distributions and finally pre-training under computa-

tional and storage constraints. Conclusions are presented in

Section 5.

2. Related work

The specific problem of the small dataset provided

for apparent age prediction is typically overcome by pre-

training a CNN [7] on massive age labeled dataset of face

images.

For example, in the ChaLearn LAP challenge [2], the

winners Rothe et al. [12, 13] employed the VGG-16 [15] ar-

chitecture trained on ImageNet dataset [14] for image clas-

sification and further adapted to their proposed DEX model

(see Fig. 2) with pre-training on IMDB-Wiki dataset [13],

collected by them from IMDb 1 and Wikipedia 2 websites,

with face images and real age labels. Moreover, they fine-

tuned this DEX network on the aligned and cropped face

images from LAP training set augmented by 10 transforma-

tions (i.e. rotations) and inferred the predicted age by taking

the Softmax expected value of 0-100 years age classes when

the aligned faces of validation or test set were fed to the

CNN. To address the scarcity of the training data the chal-

lenge runner up Lui et al. [8] trained two CNNs for face

identity recognition on CASIA-WebFace [19] and further

trained these models on multiple datasets of real ages, con-

taining more than 1.2 million images to finally fine-tuned

their models using the small training set provided in the

challenge.

None of the aforementioned works analyzed the effect of

target dataset size on adaptation performance because using

the whole provided dataset always results in the best predic-

tion accuracy. However, Geng et al. [4] analyzed the pre-

diction performance of different models trained on MORPH

dataset [11], including a 3 layer Neural Network (NN) and

found out that not only the NN outperforms other models

when trained on the whole dataset, but also when it was

trained on only 1

128
of MORPH dataset while other models

were trained on whole the 55K samples within the MORPH.

Though Geng et al. did not analyze deep CNNs for age pre-

diction but they showed that a NN may not require training

on the whole dataset to achieve a satisfactory result. Wag-

ner et al. [17] showed that the transfer learning through co-

efficients of CNN trained on a similar dataset result in the

best early adaptation performance compared to other sim-

1http://www.imdb.com/
2https://www.wikipedia.org/

(a) Non-face images within ImageNet dataset

(b) Images of seat belt and cowboy hat within ImageNet dataset

that are usually accompanied with faces

(c) Faces of 17, 28 and 59 year old celebrities within IMDB dataset

(d) Faces of 17, 35 and 59 year old individuals within LAP dataset

(e) Faces of 18, 34 and 61 year old individuals within MORPH 2

Figure 1: Example images of all datasets used in this work.

pler and less data hungry models trained from scratch.

In this work we analyze how transferring knowledge

from (large) datasets of similar task improves the accuracy

on a new target dataset when none or very few train samples

from the target dataset are available.
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Figure 2: Pipeline of DEX age prediction method, courtesy of Rothe et al. [13].

3. Experimental setup

In our experiments we employ standard datasets as com-

monly used in the literature, a set of state-of-the-art recent

CNN deep architectures, and a standard quantitative metric

for the age prediction accuracy. These are introduced below.

3.1. Datasets

We work with four standard datasets: ImageNet [14],

IMDb-Wiki [13], MORPH 2 [11] and LAP [2]. Examples

from each dataset are shown in Fig 1.

ImageNet dataset of Russakovsky et al. [14] contains 1.2

million images labeled with 1000 object classes and it was

meant for image classification. Although neither humans

nor faces are a class in this dataset, many of the images

contain humans, some examples are shown in Fig. 1b for

the ‘seat belt’ and ‘cowboy hat’ classes.

IMDb-Wiki dataset was created by Rothe et al. [13] by

crawling the profiles of more than 20,000 of the most pop-

ular person profiles of the Internet Movie Database (IMDb)

and Wikipedia webpages for attributes, such as date of birth

and gender, as well as correctly dated images of the individ-

uals. The real age of each of 523K images was calculated

by subtracting the date of birth from the date in which the

photo was taken. The IMDb dataset is the subset of IMDb-

Wiki comprising only the images taken from IMDb.

LAP dataset was introduced by Escalera et al. [2] with

the ChaLearn Looking at People Apparent Age Prediction

Challenge. LAP has 2476 images for training, 1136 images

for validation and 1079 images for testing. In this work

up to 80% of the training dataset is used for training and

the validation set is used for evaluation to make the results

of our study comparable to results of Rothe et al. [12] that

used 90% of the training set for training and reported the

prediction error on validation set of the challenge.

MORPH 2 dataset is the second edition of the largest lon-

gitudinal database of adult age-progression database pro-

posed by Ricanek and Tesafaye [11]. It contains more than

55K mugshots of 13,000 individuals aged from 18 to above

50. To make the results comparable to the results on LAP

dataset and also to the results reported on MORPH 2 by

Figure 3: Label distributions of imposed datasets in pre-

training DEX. Courtesy of Rothe et al. [13]

Rothe et al. [13] and prior work, we adhere to the common

setup from Rothe et al. [13] and use up to 4380 images for

training and 1095 images for testing.

3.2. Deep models

For all our models we use the VGG-16 architecture [15].

As initializations of our models’ weights, we choose

weights trained for ImageNet image classification by Si-

monyan et al. [15], for face recognition (VGG-Face) by

Parkhi et al. [10], and for real age prediction from face im-

ages (DEX) on IMDb-Wiki dataset by Rothe et al. [12, 13].

VGG-16 is a CNN architecture proposed by Simonyan et

al. [15]. VGG-16 transforms an RGB image of the size

256×256 to a 4096-dimensional feature vector using a stack

of 13 convolutional layers (with receptive field of 3×3 and

Max Pooling layers placed every 2-3 layer in between) fol-

lowed by two fully connected layers with output dimension

of 4096. All layers use ReLU non-linear activation and

the final output is fed to a fully connected layer with width
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of 1000 corresponding to the 1000 classes from ImageNet

dataset. In VGG-Face and DEX models the final output is

fed to a fully connected layer with width of 2622 (identities)

for face recognition (VGG-Face) and to 101 (age bins) for

age estimation (DEX).

VGG-Face is a model based on VGG-16 and proposed by

Parkhi et al. [10] for face recognition in unconstrained en-

vironment. The model was trained using the VGG-Face

dataset. The best recognition performance was achieved by

training on non aligned faces but testing on aligned face im-

ages.

DEX or Deep EXpectation model of Rothe et al. [12],

shown in Fig. 2, is also based on VGG-16 and trained on

the IMDb-Wiki dataset. The prediction is given by the soft-

max expected value over the 101 year bins output layer.

Since the focus of our analysis is on the settings of pre-

training and fine-tuning process, we skip the face detection

and alignment steps and use the cropped and aligned face

images as provided by Rothe et al. [12, 13] 3 and the 460K

IMDb images within this dataset are further split into 80%

for training, 10% for validation and 10% for testing. To

make the results of our experiments comparable with the

results of Rothe et al. [12] the same face detection and 10

fold augmentation is used for pre-processing the images for

fine-tuning and inference.

3.3. Performance assessment ­ MAE

To make the evaluation on LAP and MORPH 2 datasets

consistent, we use the standard Mean Absolute Error

(MAE) measure for reporting quantitative results in all our

experiments.

MAE =
1

n

n∑

i=1

|xi − µi| (1)

where n is the number of samples, xi is the model’s predic-

tion and µi is the ground truth age label for i-th face image

sample.

4. Experiments

In our experiments, we analyze how quickly a pre-

trained model can be adapted to a new task when samples

from this task are available, when only the target label distri-

bution is known, and finally if only the target label distribu-

tion is known and we have limited computational resources

available for pre-training.

4.1. Fine­tuning on target train data

In the first experiment, we analyze how many labeled

training examples are needed to adapt a model from one do-

main to another. We sample varying numbers of examples

3https://data.vision.ee.ethz.ch/cvl/rrothe/

imdb-wiki/
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Figure 4: DEX performance on LAP after fine-tuning with

different numbers of LAP examples. Points show different

trials.

from the target distribution, use them to fine-tune DEX [12],

and analyze how quickly adaptation occurs.

When fine-tuning with a very small number of samples,

the fine-tuned model’s performance depends strongly on the

examples sampled from the target domain. For this reason,

we repeated these experiments multiple times. We repeated

fine-tunings using less than 0.5% of the training set (i.e. 12

LAP samples or less) 32 times, using less than 1% of the

training set (i.e. 24 LAP samples) 16 times and so on. When

fine-tuning with more than 8% of the training set, we only

do one trial.

We scale the training steps and number of training iter-

ations linearly with the number of samples available. The

fine-tuning with the maximal dataset was done for 5 steps

of 2000 iterations. The optimizer is Stochastic Gradient De-

scent (SGD) with an initial learning rate of 0.0001 in all

settings.

Results We report the prediction error for each model as

we increase the number of training samples from target

dataset in the first columns of Tables 1 and 2 for LAP and

MORPH 2, respectively. The adaptation performance on

the LAP dataset is also visualized in in Fig. 4).

The plot shows that in some cases, when fine-tuning with

only three samples, and in one case when fine-tuning with

six, we end up with models that perform worse than the

original model we chose as our starting point. On average,

however, we see that fine-tuning with only six samples de-

creases the MAE from 5.5 to 4.4, more than one year of im-

provement. The total improvement possible by fine-tuning

is 2.2 years MAE, but most of the gains come in the first few

samples. In MORPH 2, fine-tuning with six samples gives

a gain of 0.7 years, out of the total 1.9 years of improve-

ment available through fine-tuning. Thus we see that if the
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Figure 5: Adaptation performance on LAP of different

CNN models.

source task is sufficiently close to the target task, adaptation

occurs very quickly given just a few labeled examples from

the target domain.

4.2. Pre­training distribution

We now evaluate how well a model can perform if it is

not trained with any samples from the target domain. For

this analysis, we evaluate the DEX model [12] with differ-

ent label distributions imposed, as well as two models not

trained for age prediction, e.g. VGG-Face [10] and the orig-

inal VGG-16 trained on ImageNet [15]. We also fine-tune

each of these models with data from the new task to quan-

tify the improvement possible by fine-tuning the models di-

rectly.

To impose different label distributions onto DEX [12],

we resample a dataset that is available to us (i.e. IMDB),

and use this to further train the pre-trained model. The dis-

tributions imposed are: (i) the uniform distribution, (ii) the

IMDb dataset, and (iii) the LAP/MORPH2 label distribu-

tion. We also evaluate the original DEX model (effectively

the IMDb-Wiki distribution). These are shown in Fig 3.

To resample the IMDb dataset to a uniform label distri-

bution, we take the following number of samples for each

age:

nuniform(age) =
4×NIMDb

101
(2)

where Ndataset is the total number of samples in dataset.

For the matched distribution, we have

nmatched(age) = ntarget(age)×
4×NIMDb

Ntarget

(3)

Due to overfitting, training with the uniformly dis-

tributed dataset was only done for one epoch with the learn-

ing rate of 0.00001. All other models were trained to con-

vergence.
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Figure 6: Adaptation performance on MORPH 2 of differ-

ent CNN models.

Results The model performances before fine-tuning are

shown in the top row of Tab. 1 for the LAP and in Tab 2 for

the MORPH 2. We see that imposing the target label dis-

tribution improves model performance - relative to DEX,

the MAE decreases from 5.484 to 4.289 for LAP, and from

4.708 to 4.220 for MORPH 2. However, although the la-

bel distribution of the target has been matched, the pixel

distribution of the target is not, which is why considerable

improvements are still possible by fine-tuning. Imposing

a distribution which does not match the true target distri-

bution is very harmful - imposing the uniform distribution

almost doubles the MAE in both LAP and MORPH 2.

To adapt VGG-Face [10] and VGG-16 [15] to age pre-

diction, we replace their final layers with a randomly ini-

tialised 101-dimensional fully connected layer. Thus the

performances reported for these models before fine-tuning

are equivalent to random guessing.

We now examine how quickly each of these models con-

verges to the new task when fine-tuning, as shown in Figs 5

and 6. On average, imposing the LAP distribution only

is better than than the fine-tuned DEX model when less

than nine samples are used for fine-tuning. In the case of

MORPH 2 , this crossover point happens after fine-tuning

with six samples. This could be because the uniform back-

ground of the MORPH 2 mugshots makes the images less

variable and easier to learn. We also see that the effect of

imposing a distribution which is far away from the target,

e.g. the uniform distribution, is erased when we fine-tune

with six samples in the case of LAP and with nine samples

for MORPH 2. Indeed, all models based on DEX converge

to performances within a spread of 0.1 MAE after being

fine-tuned with just 24 samples for LAP, and 13 samples

for MORPH 2. Thus, fine-tuning with labeled examples is

very important and allows the model to adapt very quickly,

i.e. after being exposed to only a few target examples.

This point is made even more strongly by the experi-
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DEX Model VGG-Face VGG-16

dataset: IMDB-Wiki IMDB IMDB IMDB VGG-Face ImageNet

distribution: original uniform original LAP matched original original

# LAP MAE SD MAE SD MAE SD MAE SD MAE SD MAE SD

0 5.484 10.007 5.337 4.289 19.626 21.769

3 4.967 ±0.623 6.940 ±1.114 4.743 ±0.556 4.362 ±0.384 11.325 ±2.160 11.652 ±2.960

6 4.366 ±0.468 4.584 ±0.571 4.295 ±0.543 4.325 ±0.386 11.063 ±2.172 12.590 ±4.727

9 4.298 ±0.291 4.454 ±0.351 4.246 ±0.281 4.240 ±0.217 10.694 ±1.793 11.934 ±2.306

12 4.241 ±0.278 4.315 ±0.317 4.117 ±0.258 4.173 ±0.240 10.99 ±1.585 10.751 ±1.135

24 3.950 ±0.127 4.031 ±0.149 3.931 ±0.134 3.977 ±0.081 9.081 ±0.675 9.823 ±0.686

49 3.847 ±0.094 3.902 ±0.069 3.817 ±0.082 3.858 ±0.088 8.146 ±0.354 9.361 ±0.281

99 3.730 ±0.045 3.822 ±0.082 3.758 ±0.049 3.802 ±0.027 7.756 ±0.280 9.493 ±0.063

198 3.666 ±0.044 3.722 ±0.038 3.628 ±0.050 3.742 ±0.054 7.117 ±0.176 9.310 ±0.123

396 3.593 3.636 3.560 3.712 5.917 8.899

495 3.495 3.546 3.494 3.578 5.523 8.278

990 3.376 3.428 3.361 3.368 5.146 7.897

1981 3.294 3.294 3.314 3.318 4.423 6.726

Table 1: Adaptation performance on LAP of different models with new imposed distributions after fine-tuning with LAP.

DEX Model VGG-Face VGG-16

dataset: IMDB-Wiki IMDB IMDB IMDB VGG-Face ImageNet

distribution: original uniform original MORPH 2 matched original original

# MORPH 2 MAE SD MAE SD MAE SD MAE SD MAE SD MAE SD

0 4.708 9.136 4.673 4.220 16.206 16.499

3 4.373 ±0.428 6.838 ±0.897 4.296 ±0.386 4.110 ±0.301 10.702 ±2.773 12.023 ±3.777

6 4.060 ±0.382 5.384 ±0.729 4.072 ±0.357 4.050 ±0.307 9.436 ±1.105 10.475 ±2.074

9 3.947 ±0.255 4.460 ±0.491 3.977 ±0.180 4.028 ±0.233 9.179 ±1.130 10.079 ±2.232

13 4.107 ±0.532 4.139 ±0.487 4.024 ±0.420 4.168 ±0.467 8.828 ±0.895 9.394 ±1.679

20 3.968 ±0.364 3.977 ±0.387 3.944 ±0.355 4.109 ±0.486 8.667 ±0.822 9.040 ±0.820

27 3.771 ±0.316 3.833 ±0.301 3.794 ±0.320 3.911 ±0.404 8.215 ±0.953 8.603 ±0.685

54 3.526 ±0.122 3.552 ±0.148 3.534 ±0.170 3.584 ±0.111 7.322 ±0.399 7.941 ±0.354

109 3.383 ±0.082 3.388 ±0.068 3.346 ±0.076 3.414 ±0.090 6.378 ±0.363 7.171 ±0.495

219 3.294 ±0.050 3.316 ±0.047 3.233 ±0.085 3.273 ±0.049 5.883 ±0.259 6.367 ±0.043

438 3.156 ±0.005 3.188 ±0.026 3.098 ±0.012 3.131 ±0.043 4.776 ±0.036 5.661 ±0.224

876 3.014 3.054 2.972 2.962 4.145 4.895

1095 2.945 2.980 2.893 2.880 3.866 4.404

2190 2.843 2.876 2.820 2.808 3.394 3.806

4380 2.768 2.743 2.689 2.691 3.035 3.370

Table 2: Adaptation performance on MORPH 2 of different models with new imposed distributions after fine-tuning with

MORPH 2.

ments on VGG-Face and VGG-16. Although the discrep-

ancy between VGG-Face and DEX after fine-tuning with 3

samples is 6.3 MAE for LAP (6.6 for MORPH 2), after fine-

tuning with all available samples, the difference in perfor-

mance is only 1.1 MAE for LAP and 0.3 MAE for MORPH

2, despite the fact that the models started from very different

initializations. Even more impressively, VGG-16 trained on

ImageNet fine-tuned with 2190 samples manages to outper-

form MORPH 2 imposed on DEX. Thus, having access to

labeled examples from the target domain enables the model

to overcome initializations that are only weakly related to

the target task.

4.3. Pre­training dataset size

In the previous section, we showed that imposing the

target distribution improves performance in the absence of

samples from the new domain. However, pre-training for

multiple epochs on a large re-sampled dataset requires mas-

sive amounts of computation. For example, each 10 epoch

pre-training done in Section 4.2 took about a day on 3

Maxwell Titan X GPUs.

In this experiment, we investigate whether we can im-
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Number of samples from IMDB used to impose LAP distribution

0 100 1,000 10,000 368,553

# LAP MAE S.D. MAE S.D. MAE S.D. MAE S.D. MAE S.D.

0 5.484 4.416 4.280 4.148 4.289

3 4.967 ±0.623 4.527 ±0.440 4.339 ±0.415 4.351 ±0.331 4.362 ±0.384

6 4.366 ±0.468 4.449 ±0.544 4.330 ±0.382 4.310 ±0.481 4.325 ±0.386

9 4.298 ±0.291 4.524 ±0.433 4.304 ±0.329 4.266 ±0.376 4.240 ±0.217

12 4.241 ±0.278 4.339 ±0.292 4.250 ±0.324 4.241 ±0.244 4.173 ±0.240

24 3.950 ±0.127 4.008 ±0.091 4.007 ±0.148 4.036 ±0.098 3.977 ±0.081

49 3.847 ±0.094 3.882 ±0.102 3.892 ±0.097 3.928 ±0.038 3.858 ±0.088

99 3.730 ±0.045 3.776 ±0.040 3.785 ±0.040 3.840 ±0.048 3.802 ±0.027

198 3.666 ±0.044 3.641 ±0.066 3.645 ±0.031 3.756 ±0.069 3.742 ±0.054

396 3.593 3.596 3.620 3.589 3.712

495 3.495 3.450 3.594 3.529 3.578

990 3.376 3.404 3.419 3.407 3.368

1981 3.294 3.283 3.271 3.331 3.318

Table 3: Adaptation of models with LAP distribution imposed in pre-training using 0, 100, 1000, 10000 or 368,553 samples

after fine-tuning with different number of LAP samples.

Number of samples from IMDB used to impose MORPH 2 distribution

0 100 1,000 10,000 368,553

# MORPH 2 MAE S.D. MAE S.D. MAE S.D. MAE S.D. MAE S.D.

0 4.708 3.994 3.945 3.844 4.220

3 4.373 ±0.428 3.998 ±0.332 3.923 ±0.256 3.824 ±0.303 4.110 ±0.301
6 4.060 ±0.382 3.879 ±0.276 3.866 ±0.301 3.750 ±0.285 4.050 ±0.307
9 3.947 ±0.255 3.912 ±0.267 3.853 ±0.241 3.752 ±0.174 4.028 ±0.233

13 4.107 ±0.532 4.103 ±0.543 4.165 ±0.652 4.041 ±0.540 4.168 ±0.467
20 3.968 ±0.364 4.013 ±0.422 4.112 ±0.483 4.019 ±0.492 4.109 ±0.486
27 3.771 ±0.316 3.839 ±0.340 3.927 ±0.378 3.804 ±0.407 3.911 ±0.404
54 3.526 ±0.122 3.547 ±0.117 3.594 ±0.100 3.543 ±0.123 3.584 ±0.111

109 3.383 ±0.082 3.427 ±0.096 3.478 ±0.117 3.423 ±0.073 3.414 ±0.090
219 3.294 ±0.050 3.322 ±0.055 3.347 ±0.041 3.295 ±0.067 3.273 ±0.049
438 3.156 ±0.005 3.167 ±0.010 3.202 ±0.020 3.158 ±0.009 3.131 ±0.043
876 3.014 3.025 3.044 3.035 2.962

1095 2.945 2.966 2.965 2.964 2.880

2190 2.843 2.867 2.837 2.854 2.808

4380 2.768 2.756 2.744 2.727 2.691

Table 4: Adaptation of models with MORPH 2 distribution imposed in pre-training using 0, 100, 1000, 10000 or 368,553

samples after fine-tuning with different number of MORPH 2 samples.

pose the target distribution using less computation and using

less memory to store the entire source dataset. To do this,

we impose the target distribution using only 100, 1000 and

10000 samples from the IMDB dataset. Such pre-trainings

took less than a minute, 5 minute and 45 minutes on the

same 3 GPU system respectively.

Again, after imposing these distributions, we fine-tune

the obtained models to see the relative improvement of im-

posing a distribution versus fine-tuning.

Results The results are shown in Tables 3 and 4, as well

as visualized in Fig 7 and 8. Here we see that imposing the

distribution with just 100 samples already give more than

one year improvement in MAE, in LAP and 0.7 MAE in

MORPH 2. Increasing our training set tenfold only gives

an additional gain of 0.13 and and 0.05 MAE respectively.
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Figure 7: Adaptation performances on LAP test data of

LAP matched pre-trainings with different sizes.
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Figure 8: Adaptation performances on MORPH 2 test data

of MORPH 2 matched pre-trainings of different sizes.

Thus, most of the benefit of imposing the label distribution

can already be obtained by using only a 100 samples to train

the network.

Imposing MORPH 2 onto DEX using only 100 samples

outperforms DEX fine-tuned with less than 9 samples. Us-

ing 1000 samples to impose the LAP distribution outper-

forms DEX fine-tuned with 9 samples. Thus, if we have no

access to the samples from the target domain, and would

like to impose a label distribution, we can obtain satisfac-

tory results using only 100 or 1000 samples, cutting com-

putational time by a factor of around 370 in our case.

Note about Fig. 8, on MORPH 2 - the ‘bump’ in error

around 20 samples comes from the fact that our learning

policy was selected for training with smaller datasets and

kept fixed for all fine-tuning sizes. Despite the increase in

error around 20 samples, with more training, the models

adapt to larger fine-tuning sizes. This ‘bump’ is less notice-

able in the case of LAP dataset as shown in Fig. 7.

In both the LAP and MORPH 2 experiments, impos-

ing the target distribution using 10000 samples has lower

MAE than using the entire dataset. This could be due to

the inherited settings from DEX, a model optimized for the

LAP dataset with a number of train samples in a comparable

range.

A target age label distribution can be imposed onto a

pre-trained model by fine-tuning with only 100 or 1000 sam-

ples from the pre-train dataset.

5. Conclusion

In our experiments, we found that having even a little

bit of information from the target domain helps to adapt a

pre-trained model to a new task.

When we have access to samples directly from the tar-

get domain, training even with a small number of these de-

creases the the MAE significantly on average. Already fine-

tuning the DEX model with six samples decreases the MAE

by more than one year in the LAP dataset and by 0.7 in

the MAE. This is a significant part of the total 2.2 and 1.9

year MAE improvements that are possible when we fine-

tune with the entire dataset. Having access to samples from

the target domain also lets us use models trained on non-

face tasks, such as VGG-16 trained on ImageNet, and adapt

them. Fine-tuning allowed this model to go from 12 MAE

to 3.4 MAE - within 0.7 MAE of the best-performing fine-

tuned model on MORPH 2.

However, even if we do not have any samples from the

target dataset available, but know its label distribution, we

can also adapt a pre-trained model by imposing the label

distribution of the target task. When less than 12 (LAP,

or 13, MORPH 2) samples are available for fine-tuning,

imposing the distribution has better performance than fine-

tuning the DEX model.

In an even more constrained scenario, we show that even

when we are limited in how much pre-training we can do,

we can still have gains in imposing the target distribution

using only 100 samples. This amount of pre-training is

equivalent to fine-tuning with six to nine samples, in both

datasets.

In summary, we have characterized how quickly a pre-

trained model can be adapted to a new task, both when data

from this new task is available, and when only the label dis-

tribution of this task is known. When there are less than

around ten samples available from the target domain, im-

posing a distribution is helpful to the model performance.

However, having access to labeled data is the best signal for

learning.
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Escalante, D. Misevic, U. Steiner, and I. Guyon. Chalearn

looking at people 2015: Apparent age and cultural event

recognition datasets and results. In Proceedings of the IEEE

International Conference on Computer Vision Workshops,

pages 1–9, 2015.

[3] Y. Fu, G. Guo, and T. S. Huang. Age synthesis and esti-

mation via faces: A survey. IEEE transactions on pattern

analysis and machine intelligence, 32(11):1955–1976, 2010.

[4] X. Geng, C. Yin, and Z.-H. Zhou. Facial age estimation by

learning from label distributions. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 35(10):2401–2412,

2013.

[5] H. Han, C. Otto, and A. K. Jain. Age estimation from face

images: Human vs. machine performance. In Biometrics

(ICB), 2013 International Conference on, pages 1–8. IEEE,

2013.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages

1097–1105, 2012.

[7] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, 1998.

[8] X. Liu, S. Li, M. Kan, J. Zhang, S. Wu, W. Liu, H. Han,

S. Shan, and X. Chen. Agenet: Deeply learned regressor and

classifier for robust apparent age estimation. In Proceedings

of the IEEE International Conference on Computer Vision

Workshops, pages 16–24, 2015.

[9] G. Panis and A. Lanitis. An overview of research activities

in facial age estimation using the fg-net aging database. In

European Conference on Computer Vision, pages 737–750.

Springer, 2014.

[10] O. M. Parkhi, A. Vedaldi, A. Zisserman, et al. Deep face

recognition. In BMVC, volume 1, page 6, 2015.

[11] K. Ricanek and T. Tesafaye. Morph: A longitudinal image

database of normal adult age-progression. In Automatic Face

and Gesture Recognition, 2006. FGR 2006. 7th International

Conference on, pages 341–345. IEEE, 2006.

[12] R. Rothe, R. Timofte, and L. Van Gool. Dex: Deep expecta-

tion of apparent age from a single image. In IEEE Interna-

tional Conference on Computer Vision Workshops (ICCVW),

December 2015.

[13] R. Rothe, R. Timofte, and L. Van Gool. Deep expectation

of real and apparent age from a single image without facial

landmarks. International Journal of Computer Vision, pages

1–14, 2016.

[14] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

et al. Imagenet large scale visual recognition challenge.

International Journal of Computer Vision, 115(3):211–252,

2015.

[15] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014.

[16] R. Timofte, E. Agustsson, L. Van Gool, M.-H. Yang,

L. Zhang, et al. NTIRE 2017 challenge on single image

super-resolution: Methods and results. In The IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR)

Workshops, July.

[17] R. Wagner, M. Thom, R. Schweiger, G. Palm, and A. Rother-

mel. Learning convolutional neural networks from few sam-

ples. In Neural Networks (IJCNN), The 2013 International

Joint Conference on, pages 1–7. IEEE, 2013.

[18] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and

L. Van Gool. Temporal segment networks: towards good

practices for deep action recognition. In European Confer-

ence on Computer Vision (ECCV), volume 9912, pages 20–

36, 2016.

[19] D. Yi, Z. Lei, S. Liao, and S. Z. Li. Learning face represen-

tation from scratch. arXiv preprint arXiv:1411.7923, 2014.

1647


