
Improving face verification and person re-identification accuracy using

hyperplane similarity

Hiroko Kobori

Mitsubishi Electric

Kanagawa, Japan 247-8501

Kobori.Hiroko@ct.MitsubishiElectric.com

Michael Jones

Mitsubishi Electric Research Labs

Cambridge, Massachusetts 02139

mjones@merl.com

Abstract

The standard framework for using a convolutional neu-

ral network (CNN) for face verification is to compare the

feature vectors taken from the penultimate network layer of

a CNN trained to classify the identity of an input face using

a softmax loss over identities. Feature vectors are typically

compared using the simple L2 distance. We demonstrate

that the L2 distance is not the best distance to use in this

scenario, and propose the hyperplane similarity as a more

appropriate similarity function that is derived from the soft-

max loss function used to train the network. We demonstrate

that hyperplane similarity improves verification results es-

pecially for low false acceptance rates which are usually

the most important operating regimes for real applications.

We also propose a fast algorithm for finding the separating

hyperplanes needed to compute hyperplane similarity.

1. Introduction

In recent years a standard deep convolutional neural net-

work (CNN) architecture for face recognition has emerged

that achieves excellent accuracy on various difficult test sets

[13, 16, 21, 20]. The architecture takes a cropped face im-

age as input and uses a strong baseline CNN such as VGG

[18] or ResNet [7] to compute a feature vector followed by

a fully connected layer that outputs a vector of length C

where C is the number of unique identities in the training

set. The network is trained to minimize the softmax loss

between the output vector and a one-hot encoding of the

correct identity for the input face image. After training, the

final fully connected layer plus softmax function that gives

the probability of each training identity is discarded since

the training identities are not the same as the identities en-

countered during testing. Instead, the output of the layer

before the final fully connected layer is used as a feature

vector. Feature vectors for two testing face images are L2

normalized and compared using a simply L2 distance (or,

equivalently, cosine similarity).

Despite the good results achieved with this basic archi-

tecture [16, 18, 13, 23], there is a fundamental mismatch be-

tween how the network is trained and how it is used during

testing. During testing in which feature vectors are com-

pared using L2 distance, the assumption is that feature vec-

tors for same-face pairs will be close in feature space while

feature vectors for different-face pairs will be farther apart.

However, this property is not being optimized during train-

ing. The property that is being optimized is that feature

vectors for a particular person are linearly separable from

feature vectors for all other people [23]. To address this

mismatch, we propose to compare feature vectors accord-

ing to their distance to hyperplanes that separate one per-

son’s feature vectors from all other person’s feature vectors.

This is in accordance with the training loss.

The basic idea is to use feature vectors for a set of nega-

tive faces, which are simply faces from a variety of different

people, and compute hyperplanes between these faces and

each of the two faces being compared. The sum of the mar-

gins to these hyperplanes from the feature vectors of the

two test faces can then be used in place of L2 distance. We

will call this similarity function hyperplane similarity, and

define it more formally in section 3. The negative faces

can be face images from the training set or a random set of

faces collected from the web, for example. The hyperplane

similarity allows us to achieve a significant improvement in

verification accuracy while using an existing deep network

trained for face identification with the simple softmax loss.

Another advantage of hyperplane similarity is that it natu-

rally extends to comparing sets of images. We will show

test results on the IJB-A face recognition test set [9] which

compares sets of images and videos of a person (called a

template) to other sets.

While the advantage of the hyperplane similarity idea is

accuracy, the main drawback is speed. The straightforward

method to estimate hyperplanes at test time is to use a lin-

ear support vector machine (SVM) solver, but this is much

slower than using L2 distance. To address this drawback,

1555



we introduce a simple algorithm to compute a separating

hyperplane that does not involve SVM optimization. In our

experiments, this simple algorithm proves to have accuracy

close to the SVM hyperplane with much greater speed.

In the remainder of the paper we will motivate and ex-

plain hyperplane similarity, show that it improves accuracy

on multiple face verification and person re-identification

test sets, and propose an approximation algorithm that com-

putes hyperplanes much faster than SVM while maintaining

improved accuracy compared to L2 distance.

2. Related Work

Recently a number of state-of-the-art papers on face

recognition have used the basic framework sketched in the

last section, namely a CNN with a fully connected last layer

that outputs a probability of each training identity, and is

trained using a softmax loss [13, 21]. Various researchers

have noted the mismatch between the training criteria and

the usage of the penultimate network layer as a feature vec-

tor with distance between feature vectors measured with L2

distance. Most previous work attempts to address this mis-

match by proposing a new loss function for training.

One of the best known alternative loss functions is the

triplet loss [6, 17]. The triplet loss takes an “anchor” face

as well as positive and negative example images of the an-

chor’s identity as an input example. The triplet loss attempts

to minimize the distance between the anchor and positive

feature vectors minus the distance between the anchor and

negative feature vectors. In other words, the triplet loss

explicitely tries to minimize the distance between same-

face pairs while maximizing distance between different-

face pairs. One difficulty with this loss is that the number of

triples of face images for training becomes very large and

some kind of hard-negative mining is needed. Another loss

function, known as contrastive loss [19, 6], has a similar ef-

fect to the triplet loss using a slightly different loss function.

The center loss proposed by [23] attempts to minimize

the distance between a face’s feature vector and the mean

feature vector for the class (the set of face images for a par-

ticular person). Using center loss plus softmax loss tends

to yield clusters of feature vectors for each person that are

compact and separable from other identities.

Three other related loss functions, A-softmax [11] (for

angular softmax), large-margin softmax [12] and L2-

constrained softmax [14] modify the standard softmax loss

function in a way that encourages feature vectors of a par-

ticular identity to cluster near each other.

A different way to formulate the face recognition prob-

lem is to formulate it as a verification problem in which

two face images are given as input and a “Siamese-network”

CNN is trained to predict whether the two face images are

of the same person or different people [21, 19].

All of these various formulations have their advantages

and disadvantages. They represent an alternative to the ap-

proach we take which is to use a CNN trained using stan-

dard softmax loss, but instead change the distance function

used to compare feature vectors.

The only other paper to take a similar approach to ours

(to the best of our knowledge) is an arXiv paper by Cross-

white et al. [3] that uses a technique they call template adap-

tation. While the motivation for their method is different

from ours, the technique of learning separating hyperplanes

to measure the distance between face images (or two sets of

face images) is the same. However, our work differs from

theirs in a number of ways. In addition to our alternative

justification for this formulation, we also demonstrate that

it improves verification accuracy on multiple test sets ([3]

only used IJB-A), and propose a fast approximation algo-

rithm for finding separating hyperplanes.

We should also note that various papers have replaced

the last fully connected layer of a CNN (trained for an im-

age recognition or classification task) with a support vector

machine [8, 22]. However, these are not the same as our

hyperplane similarity function. In these previous papers,

the SVM performed the same function as the last fully con-

nected layer - mapping a feature vector to one of the training

classes. In contrast, the hyperplanes we learn are not used

to classify the input as a training class, but instead are used

to define a similarity function between feature vectors.

3. SVM Face Verification

In this section, we explain the face verification method

using hyperplane similarity and the justification for the al-

gorithm. We also discuss the effect from templates with

multiple images.

3.1. Verification algorithm

For the sake of generality, we explain hyperplane simi-

larity using templates, where a template is a set of one or

more images of a particular person. This is consistent with

the terminology used for the IJB-A test set [9]. Given a pair

of templates P and Q, the goal of the verification problem is

to correctly classify whether they belong to the same iden-

tity or not. The 1:N identification problem is also solved in

a similar way by interpreting it as a combination of N veri-

fication problems and selecting the identity with the largest

similarity score.

To solve the verification problem, we assume a CNN has

already been trained in the standard way (as described in

the introduction) so that a feature vector is produced by the

output of the penultimate network layer. A template, P ,

can then be represented by the set of feature vectors, FP ,

calculated by the CNN for each image in the template. A

hyperplane is calculated to discriminate the feature vectors,

FP , from a set of negative feature vectors, FN , extracted

1556



from a set of negative images, N . N is a set of face im-

ages of many different people. Let Hp be the hyperplane

that separates FP and FN . Hp is defined by a normal vec-

tor, wp, with the same dimensionality as a feature vector

and a scalar offset, bp. All feature vectors are L2 normal-

ized before hyperplane calculation. Similarly, template Q is

represented by feature vectors FQ and hyperplane HQ.

The hyperplane similarity, S(P,Q,N), between two

templates can now be defined.

S(P,Q,N) =
1

2
M(HP , FQ) +

1

2
M(HQ, FP ), (1)

where M(HP , FQ) is the margin between the set of feature

vectors, FQ, and the hyperplane, HP , optimized to separate

Fp from FN . M(HP , FQ) is the average of all the margins

from the n ≥ 1 feature vectors in FQ. More formally,

M(Hp, FQ) =
1

n

n∑

i=1

margin(Hp, FQ(i)) (2)

margin(Hp, FQ(i)) = wp · FQ(i) + bp (3)

where wp is the normal vector for hyperplane Hp, bp is the

offset and FQ(i) is the ith feature vector in set FQ. Note

that the margin between a feature vector and a hyperplane

is the signed distance to the hyperplane, i.e. if a feature

vector is on the “negative” side of the hyperplane defined

by the normal, the margin will be negative.

3.2. Justification for the Hyperplane Similarity

If f is the feature vector for training example x taken

from the CNN layer before the last fully connected layer,

the output of the fully connected layer z is

z = W · f + b (4)

where W is the weight matrix of the last fully connected

layer and f is the vector of biases. z is a vector of length

C representing, for each of the C training identities, the

probability that img x belongs to that identity.

During training, the network parameters are optimized

the softmax loss over all training examples is minimized.

The softmax loss for training example x is near 0 (mini-

mum) when the element of z corresponding to the correct

identity is large (positive) compared to the elements of z

corresponding to the wrong identities (which optimally are

negative). This will occur if Wi (the weights for the ith

output) maps feature vectors of identity i to positive values

and feature vectors of all other identities to negative val-

ues. In other words, the softmax loss is minimized when

the columns of matrix W (along with offsets b) are separat-

ing hyperplanes for each of the different training identities.

This is the motivation for hyperplane similarity, which is to

match the criteria that is optimized during training.

Figure 1. Feature vectors and classification layer weights (=hyper-

planes) are trained to maximize the margin between features and

the corresponding class hyperplane. When L2 distance is used as

a verification metric, negative pair A-B has smaller distance than

positive pair B-C.

It is not guaranteed that the L2 distance between feature

vectors of the same identity is smaller than the distance be-

tween different identities. This can be seen in the example

shown in Figure 1. Features represented by blue circles are

trained to be linearly separable from the features of other

classes (represented by black triangles). In this case, all the

features and the hyperplane satisfy the training criteria, but

the L2 distance of the negative pair A-B is smaller than the

positive pair B-C. For correct verification using L2 distance,

all the features in the same class need to exist in a very tight

area, which does not directly match how the CNN is trained.

Face images in the test set contain identities not seen dur-

ing training and thus separating hyperplanes are not known

for them. However, they can be computed given one or

more feature vectors for a testing identity along with a set

of “negative” feature vectors of other identities.

Multi Image Template Intuitively, the hyperplane can

explain a class’s feature distribution better when more im-

ages are available in the template. To evaluate the im-

provement gained from the multi-image template, Table 3.2

shows the verification result on IJB-A with different tem-

plate subsets. The table contains the true acceptance rate

(TAR) for given false acceptance rates (FAR). One media

uses only one media per template where a media is defined

as either a single photo or a single video clip. Averaged

uses the average of all the feature vectors in the template as

the only positive example for hyperplane estmation. Non-

averaged uses all the template feature vectors as positive

examples for hyperplane estimation. Two different metrics

are compared, L2 distance and hyperplane similarity (HS).

Linear SVM is used for hyperplane estimation.

With both metrics, using averaged features achieved

significantly better accuracy compared with using only

one feature. Moreover, the hyperplane similarity method

achieved a better result with non-averaged features. This re-

sult shows that the hyperplane similarity method can utilize

the feature distribution information from multiple images

for better similarity estimation.

1557



IJB-A Verification (TAR@FAR)

method 0.1 0.01 0.001

l2 norm (one media) 0.834 0.545 0.287

l2 norm (averaged) 0.959 0.830 0.617

HS (one media) 0.828 0.623 0.421

HS (averaged) 0.971 0.905 0.797

HS (non-averaged) 0.980 0.924 0.830

Table 1. Verification result on IJB-A with different subset of the

template.

4. Computation Reduction

To compute the hyperplane that separates features of one

identity from others, the straightforward way is to solve lin-

ear SVM. However, solving SVM for each verification test

is computationally expensive. In this section, we propose a

computationally efficient algorithm to estimate a discrimi-

native hyperplane.

4.1. Discriminative Hyperplane Approximation

The intuition behind our fast method for finding a dis-

criminating hyperplane separating a set of positive and neg-

ative feature vectors is illustrated in Figure 2. For many dis-

tributions of positive and negative feature vectors, the vec-

tor pointing from the mean of the negative feature vectors

to the mean of the positive feature vectors is normal to a

separating hyperplane. Therefore, we set the normal of the

separating hyperplane to the difference between the mean

positive feature vector and the mean negative feature vec-

tor:

w =
1

p

p∑

i=1

FP (i)−
1

n

n∑

j=1

FN (j) (5)

where FP (i) is the ith positive feature vector, FN (j) is the

jth negative feature vector, p is the number of positive fea-

ture vectors, and n is the number of negative feature vectors.

After we have the normal for the separating hyperplane,

we just need the offset which tells the position along the nor-

mal that best separates positive from negative feature vec-

tors. This is done by computing the dot product of each

positive and negative feature vector with the normal vector.

The offset is then set to the average of the minimum positive

dot product and the maximum negative dot product.

b =
1

2
min
i
(w · FP (i)) +

1

2
max

j
(w · FN (j)) (6)

This corresponds to the midpoint between the smallest pro-

jection of positive feature vectors onto the normal and the

largest negative projection. We refer to the hyperplane de-

fined by w and b in equations 5 and 6 as the discriminative

hyperplane approximation (DHA).

Figure 2. Blue circles represent positive feature vectors, black tri-

angles represent negative feature vectors. The white circle is the

mean positive vector and the white triangle is the mean negative

vector. The vector pointing from the mean of positive vector to

the mean negative feature vector usually gives a good normal for

a separating hyperplane. The offset along the normal is then com-

puted as the average of the minumum positive projection and the

maximum negative projection.

In practice, to compute the normal w, we found that L2

normalizing the average positive feature vector (which were

already individually L2 normalized) but not normalizing the

average negative feature vector (which were individually L2

normalized) gave the best results.

This method can fail to find a hyperplane that separates

the positive and negative feature vectors well, although it

will always yield a valid hyperplane. Mainly, the failure

mode occurs when the positive or negative data has a strong

cluster of feature vectors plus some outliers. The strong

cluster will be well separated, but the outliers may not be.

The DHA is very fast to compute and our experiments

will show that it works well in practice.

4.2. Data Reduction

In this section we discuss other methods for speeding

up computation that can be used in conjunction with any

method for computing separating hyperplanes. We discuss

two data reduction methods and combine them with hyper-

plane similarity to validate the effect on the calculation time

and the accuracy.

The first method is to reduce the number of samples in

the negative data. The k negative feature vectors closest

to the mean positive data are extracted from the negative

data by nearest neighbors. Since the SVM computation in-

creases at least quadratically [1] with the number of sam-

ples, this method can greatly reduce the SVM calculation

time. At the same time, until a certain number of nearest

neighbors, this method only eliminates the feature vectors

that do not support the separating hyperplane, and thus have

no influence on the accuracy.

The second method is to reduce the dimension of the fea-

ture space. The principal components are extracted from

the negative data and all feature vectors are projected onto

1558



these principal components. The principal components and

the dimension reduced negative data need only be calcu-

lated once for the verification test. Thereby, the only addi-

tional calculation for testing is the projection of the positive

feature vectors onto the principal components, which is rel-

atively fast.

5. Datasets and Evaluation Protocols

IARPA Janus Benchmark-A (IJB-A) IJB-A [9] is a face

verification and identification dataset, containing images

captured from unconstrained environments with wide vari-

ations of pose and imaging conditions. There are 500 iden-

tities with a total of 25,813 images (5,397 still images and

20,412 video frames sampled from 2,042 videos).

A set of images for a particular identity is called a tem-

plate. Each template can be a mixture of still images and

sampled video frames. The numbers of images (or frames)

in a template ranges from 1 to 190 with approximately 10

images per template on average. There are 10 training and

testing splits. Each split contains 333 training and 167 test-

ing identities. The training data are not used to train the

CNN, but used as the negative data for hyperplane estima-

tion.

As a feature extractor for IJB-A images, we used the

VGG-Face CNN architecture and parameters from Parkthi

et al. [13]. This network produces feature vectors of length

4096. The dataset provides a ground truth bounding box

for each face with 3 landmarks: center of both eyes and a

nose base. For our results, we cropped the images with the

bounding box enlarged by 1.1 from the provided size. No

2D face alignment is applied, since it had a negligible effect

on the accuracy. Input images are first resized to 256x256

and cropped to 224x224 from the image center to match the

CNN input size, and the mean pixel value of the VGG Face

training dataset [13] is subtracted from each pixel.

YouTubeFaces YouTubeFaces[24] is a video-based face

recognition dataset. It contains 3425 videos of 1595 people

collected from YouTube, with an average of 2 videos per

identity and 181.3 frames per video. It contains 10 folds of

500 video pairs. One fold is chosen as test data, while others

are used as the negative data for hyperplane estimation.

As a feature extractor, we used the same VGG-Face

model that we used for IJB-A. The dataset provides a

ground truth bounding box for each face. We cropped the

face with the given bounding box, and did not apply any 2D

face alignment. Input images are resized to 256x256 and

cropped to 224x224 from the image center, and the mean

pixel value of the training data, VGG Face dataset [13], is

subtracted from each pixel.

When testing, all the features from the same video se-

quence are averaged due to computational efficiency. We

also tested sampling multiple frames from the video, and

dividing video frames into subsets of frames and averaging

the features from each subset, but both did not give any im-

provement to the result.

CUHK03 CUHK03 [10] is a pedestrian re-identification

dataset that contains 14,097 cropped images of 1,467 iden-

tities. Each identity is observed by two camera views and

has 4.8 images on average for each view. The dataset pro-

vides two kinds of bounding boxes, automatically detected

and manually labeled. We evaluated our model with the

manually labled bounding boxes. The dataset is randomly

split into test data with 100 identities and train data with

1,367 identities. The experiment is repeated with 10 random

splits. We tested with the multi-shot protocol, where multi-

ple images from one camera view are used as one query.

The ResNet-50 architecture [7] is used as a feature ex-

tractor. We took the parameters pre-trained on ImageNet

[4], and fine-tuned with CUHK03 and Market1501 [27],

which is another re-id dataset. We trained on two similar

datasets to overcome the limited amount of training data in

CUHK03 alone. Images are resized to 224x224 to match

the CNN input size, and the mean image of the ImageNet

data is subtracted from the resized image.

6. Results

In this section, we first show the verification results on

IJB-A, YTF, and CUHK03 using L2 distance as well as hy-

perplane similarity (HS). Results from both linear SVM and

the discriminative hyperplane approximation (DHA) are re-

ported. We evaluate the relation between accuracy and cal-

culation time among the different methods including the ef-

fect of the data reduction methods described in Section 4.2.

6.1. Hyperplane similarity

IJB-A Figure 3 shows the ROC curves (showing true ac-

ceptance rate (TAR) versus false acceptance rate (FAR)) on

the IJB-A dataset for three different verification methods:

L2 distance, and hyperplane similarity using linear SVM

and using DHA. Numbers from the figure are given in Ta-

ble 2 along with calculation times. The table also shows

results from some state-of-the-art methods.

The calculation time is the time spent to calculate the

similarity scores of all the test template pairs. It does not in-

clude the feature extraction time, since all the methods share

the same process. Experiments were processed on the sys-

tem equipped with Intel Xeon CPU (E5-2650 v4/2.20GHz),

256GB memory, and Ubuntu 14.04.4. All the processes

were run with a single core. The algorithms were imple-

mented in Python 2.7.2, and the sklearn package was used

for solving linear SVM.

Both hyperplane similarity methods, SVM and DHA,

achieved better results compared with the L2 distance. The

1559



Figure 3. ROC curves for IJB-A dataset. Both hyperplane similar-

ity methods achieve much better results than L2 distance for lower

false acceptance rates (which are the preferred operating regime).

improvement is greatest for lower FAR rates, which are

more useful in practice. At FAR of 0.001, the true accep-

tance rate increases from 61.7% for L2 distance to 83.0%

(+21.3%) for hyperplane similarity using SVM or 77.7%

(+16%) for hyperplane similarity using DHA. This is a sub-

stantial increase for a face verification system.

Although the result using DHA degrades somewhat com-

pared with SVM, the computation time is significantly less

(from 450.7 seconds for SVM to 27.8 seconds for DHA).

Compared with the state-of-art results, hyperplane similar-

ity achieves comparable results especially considering that

the network was trained with regular softmax loss.

method Verification (TAR@FAR) time

0.1 0.01 0.001 (sec)

L2 distance 0.959 0.830 0.617 9.6

HS+SVM 0.980 0.924 0.830 450.7

HS+DHA 0.971 0.894 0.777 27.8

VGG-Face [13] 0.937 0.805 0.604 -

Crosswhite et al. [3] - 0.939 - -

TPE [15] 0.964 0.900 0.813 -

NAN [26] 0.978 0.941 0.881 -

Table 2. Results on IJB-A dataset. The hyperplane similarity meth-

ods have higher accuracy than L2 distance. The result on DHA

degrades compared with SVM, but the computation speed is sig-

nificantly faster. The hyperplane similarity methods are compet-

itive with the current state-of-the-art results shown in the bottom

part of the table.

YouTubeFaces Figure 4 shows the ROC curve on the

YTF dataset with three verification methods. In Table 3,

TAR for each given FAR, equal error rate (EER), and the

calculation time are reported.

Again, we see that hyperplane similarity is significantly

more accurate than the L2 distance for low false acceptance

rates. For FAR equal to .001, the true acceptance rate in-

creases by about 13 percentage points over the L2 norm for

hyperplane similarity with SVM and by about 10 percent-

age points with DHA. There is not much difference in EER

among the three verification methods since the EER occurs

at a relatively large FAR. Also, as with the results on IJB-A,

the accuracy with DHA degrades compared with SVM but

the computation time is significantly shorter.

Table 4 shows the results from state-of-art methods.

VGG-Face [13] with no embedding learning is using the

exact same CNN feature extractor and distance metric (L2

distance) as we use in our results. We suppose the differ-

ence in our results is caused by a difference in the 2D face

alignment and the frame selection within a video sequence.

Unfortunately, other papers do not report TAR and FAR on

this dataset.

Figure 4. ROC curves for YTF dataset. Both hyperplane similarity

methods achieve higher accuracy for lower FAR.

method EER TAR@FAR time(sec)

0.1 0.01 0.001

L2 distance 0.899 0.893 0.678 0.470 0.3

HS+SVM 0.892 0.888 0.738 0.604 89.6

HS+DHA 0.893 0.885 0.694 0.569 0.7

Table 3. Results on YTF dataset. Once again, hyperplane similar-

ity is significantly more accurate than L2 distance for low FAR.

Using DHA greatly improves speed over SVM with a modest loss

of accuracy.

CUHK03 Figure 5 shows the ROC curves on the

CUHK03 dataset with three verification methods. In Table

5, the TAR for given FAR, rank-1 identification accuracy,

and the calculation time are reported. Since CUHK03 is an

identification problem, one probe identity is compared with

100 gallery identities. TAR is calculated by regarding them

as 100 verification problems.

1560



method EER ACC

VGG-Face* [13] 0.928 0.916

VGG-Face [13] 0.974 0.973

NAN [26] - 0.957

FaceNet [16] - 0.951

SphereFace [11] - 0.950

L2 distance 0.899 0.905

HS+SVM 0.892 0.908

HS+DHA 0.893 0.902

*Result without embedding learning.

Table 4. Comparison with state-of-art results on YTF dataset. TAR

for low FAR, for which hyperplane similarity works well, cannot

be directly compared since other methods do not report these num-

bers. EER and ACC measures emphasize higher FAR, for which

hyperplane similarity does not improve over L2 distance.

For each hyperplane similarity method, results with two

different negative sets are reported. One is the gallery

data of the test set. The other is a subset of the training

data. From the training data, we only used images from the

gallery camera view, and discarded images from the probe

camera view.

The results on CUHK03 are similar to results on YTF,

where both hyperplane similarity methods achieve better

TAR accuracy with FAR lower than 0.1, but the improve-

ment over L2 distance is smaller than with YTF.

Using gallery data as the negative set yields better accu-

racy compared to using training data in this case. By using

the gallery data, the hyperplane estimation can take advan-

tage of the latent information in the distribution of the can-

didate identities. The usage of this approach (negative data

= gallery) is limited to applications in which a fixed and

reasonably large gallery set can be defined such as for face

identification applications, but not typically for face verifi-

cation applications.

Table 6 shows the results from the state-of-art methods.

True acceptance rates for low false acceptance rates cannot

be directly compared since they are not reported by most of

the methods.

method rank1 TAR@FAR time

0.1 0.01 0.001 (sec)

L2 distance 0.743 0.963 0.782 0.460 0.9

HS+SVM (train) 0.758 0.968 0.821 0.501 137.5

HS+SVM (gal) 0.741 0.963 0.838 0.567 17.2

HS+DHA (train) 0.759 0.971 0.816 0.464 5.1

HS+DHA (gal) 0.741 0.977 0.843 0.476 2.7

Table 5. Results on CUHK03 dataset. The SVM method has

higher accuracy for lower FAR, but the improvement over L2 dis-

tance is smaller than with the other two datasets.

Figure 5. ROC curves on CUHK03 test set for L2 distance and

both hyperplane similarity methods. Once again, we see improve-

ments over L2 distance mainly for lower false acceptance rates.

Improvements are greatest when the gallery set is used as the neg-

ative set for hyperplane estimation.

method rank1 rank5 rank10

Zheng et al. [28] 0.883 0.957 0.978

Deep Transfer Learning [5] 0.854 - -

LSRO [29] 0.846 0.976 0.989

CRAFT [2] 0.843 0.971 0.983

Domain Guided Dropout [25] 0.805 0.949 0.971

L2 distance 0.743 0.963 0.973

HS+SVM (train) 0.758 0.968 0.966

HS+SVM (gallery) 0.741 0.963 0.959

HS+DHA (train) 0.759 0.971 0.972

HS+DHA (gallery) 0.741 0.977 0.971

Table 6. State-of-art results on CUHK03 dataset. Hyperplane sim-

ilarity is mainly effective at improving TAR for low FAR and not

at improving rank-N recognition rates. Unfortunately, results on

CUHK03 typically only report rank-N recognition rates.

6.2. Data Reduction

To evaluate the relation between accuracy and calcula-

tion time, we experimented with two data reduction meth-

ods on the IJB-A dataset: PCA and nearest neighbors (NN).

With PCA, results are reported with the feature dimension

reduced to d = 32, 64, 128, 256, 512, and 1024. With NN,

results are reported with the number of negative feature vec-

tors reduced to 32, 64, 128, 256, 512, and 1024. For both

data reduction methods, we tested using both hyperplane

estimation methods: SVM and DHA. The calculation time

does not include the feature extraction, the calculation of

principal components, nor the time of dimension reduction

of the negative data, since all the methods share the same

process or need to be processed only once before the eval-

uation. Figure 6 is the plot of the TAR for FAR=0.001 and

1561



Figure 6. The verification accuracy and the calculation time on IJB-A with negative data reduction.

the calculation time for all the experimental results. Table 7

shows some of the results in detail.

SVM+NN with K=256 achieved the best accuracy of all

experiments, 83.5%, and reduced 74.3% of the computa-

tion time compared with using all the data. When NN is

performed with SVM, it does not reduce accuracy until a

certain point, 256 in this case, since it only eliminates the

negative data that do not support the hyperplane anyway.

The accuracy of SVM+PCA gradually decreases as the

number of dimensions gets smaller, due to the lower ex-

plained variance. Most results are inbetween the SVM (all

data) and DHA (all data) results considering both verifica-

tion accuracy and the calculation time.

DHA+PCA with d=1024 gave a small benefit for

both accuracy and calculation time. The combination of

DHA+NN had a longer calculation time compared with us-

ing all the negative data, since the NN calculation time was

larger than what was reduced by data reduction.

As a whole, the combination of the hyperplane calcula-

tion method and the data reduction method gives a range of

options to trade-off between accuracy and calculation time.

The suitable option should be selected depending on the re-

quirements of the application and the system setup.

method TAR@FAR time

0.1 0.01 0.001 (sec)

L2 distance 0.959 0.830 0.617 9.6

HS+SVM 0.980 0.924 0.830 450.7

HS+SVM (NN K=256) 0.980 0.923 0.835 116.1

HS+SVM (PCA d=512) 0.979 0.924 0.829 134.7

HS+DHA 0.971 0.894 0.777 27.8

HS+DHA (NN K=128) 0.971 0.907 0.809 119.4

HS+DHA (PCA d=1024) 0.972 0.898 0.786 22.1

Table 7. Results on IJB-A dataset with data reduction.

6.3. Discussion

The IJB-A dataset showed the biggest improvement in

accuracy using hyperplane similarity compared to YTF and

CUHK03. The major difference between these datasets are

the separability of two templates in the feature space.

An IJB-A template consists of images from multiple

randomly-selected media. Therefore, two same-identity

templates include a wide variety of imaging conditions and

are more likely to have large overlap in the distributions of

their feature vectors. The estimated hyperplanes for each

template will be more similar and achieve high hyperplane

similarity. On the other hand, YTF is a verification be-

tween two video sequences, each video containing frames

that are very similar to each other and thus contain less

variety. This implies that two videos of the same person

are less likely to have overlapping feature vector distribu-

tions. As a result, two templates from the same person are

likely to be more separable in feature space implying that

the hyperplane similarity will be smaller. It is similar with

CUHK03, in which the probe and gallery are always from

different camera views. However, for all the datasets we

experimented on, hyperplane similarity achieved higher ac-

curacy for low FAR compared with L2 distance. Very low

FAR is preferred in most verification applications such as

export control and building security.

7. Conclusion

We have shown that using hyperplane similarity is an

effective method to improve the accuracy of a previously

trained CNN for face verification or person re-id. We

demonstrated a fast algorithm for computing separating hy-

perplanes that is much faster than solving a linear SVM

problem without sacrificing much accuracy. We also ex-

plored the speed versus accuracy trade-off using two data

reduction methods. These techniques allow researchers to

improve the accuracy of existing networks while taking into

account computational efficiency.

1562



References

[1] L. Bottou and C. Lin. Support vector machine solvers. In

Large scale kernel machines 3, no. 1, pages 301–320, 2007.

[2] Y. C. Chen, X. Zhu, W. S. Zheng, and J. H. Lai. Person re-

identification by camera correlation aware feature augmen-

tation. IEEE Transactions on Pattern Analysis and Machine

Intelligence, PP(99):1–1, 2017.

[3] N. Crosswhite, J. Byrne, O. M. Parkhi, C. Stauffer, Q. Cao,

and A. Zisserman. Template adaptation for face verification

and identification. CoRR, abs/1603.03958, 2016.

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database.

In Computer Vision and Pattern Recognition, 2009. CVPR

2009. IEEE Conference on, pages 248–255. IEEE, 2009.

[5] M. Geng, Y. Wang, T. Xiang, and Y. Tian. Deep transfer

learning for person re-identification. CoRR, abs/1611.05244,

2016.

[6] R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduc-

tion by learning and invariant mapping. In IEEE Transac-

tions on Computing, 2006.

[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

770–778, 2016.

[8] F. J. Huang and Y. LeCun. Large-scale learning with svm and

convolutional nets for generic object categorization. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2006.

[9] B. F. Klare, B. Klein, E. Taborsky, A. Blanton, J. Cheney,

K. Allen, P. Grother, A. Mah, and A. K. Jain. Pushing

the frontiers of unconstrained face detection and recognition:

Iarpa janus benchmark a. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

1931–1939, 2015.

[10] W. Li, R. Zhao, T. Xiao, and X. Wang. Deepreid: Deep filter

pairing neural network for person re-identification. In CVPR,

2014.

[11] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song.

SphereFace: Deep Hypersphere Embedding for Face Recog-

nition. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2017.

[12] W. Liu, Y. Wen, Z. Yu, and M. Yang. Large-margin soft-

max loss for convolutional neural networks. In Proceedings

of The 33rd International Conference on Machine Learning,

pages 507–516, 2016.

[13] O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep face

recognition. In BMVC, volume 1, page 6, 2015.

[14] R. Ranjan, C. D. Castillo, and R. Chellappa. L2-constrained

softmax loss for discriminative face verification. arXiv

preprint arXiv:1703.09507, 2017.

[15] S. Sankaranarayanan, A. Alavi, C. D. Castillo, and R. Chel-

lappa. Triplet probabilistic embedding for face verification

and clustering. In 2016 IEEE 8th International Conference

on Biometrics Theory, Applications and Systems (BTAS),

pages 1–8, Sept 2016.

[16] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A uni-

fied embedding for face recognition and clustering. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 815–823, 2015.

[17] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A uni-

fied embedding for face recognition and clustering. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 815–823, 2015.

[18] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014.

[19] Y. Sun, Y. Chen, X. Wang, and X. Tang. Deep learning face

representation by joint identification-verification. In Pro-

ceedings of the 27th International Conference on Neural In-

formation Processing Systems (NIPS), 2014.

[20] Y. Sun, X. Wang, and X. Tang. Deep learning face represen-

tation from predicting 10,000 classes. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 1891–1898, 2014.

[21] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface:

Closing the gap to human-level performance in face verifi-

cation. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2014.

[22] Y. Tang. Deep learning using linear support vector machines.

In Proceedings of the International Conference on Machine

Learning, 2013.

[23] Y. Wen, K. Zhang, Z. Li, and Y. Qiao. A discriminative fea-

ture learning approach for deep face recognition. In Euro-

pean Conference on Computer Vision (ECCV), pages 499–

515, 2016.

[24] L. Wolf, T. Hassner, and I. Maoz. Face recognition in uncon-

strained videos with matched background similarity. In Com-

puter Vision and Pattern Recognition (CVPR), 2011 IEEE

Conference on, pages 529–534. IEEE, 2011.

[25] T. Xiao, H. Li, W. Ouyang, and X. Wang. Learning deep

feature representations with domain guided dropout for per-

son re-identification. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 1249–

1258, 2016.

[26] J. Yang, P. Ren, D. Zhang, D. Chen, F. Wen, H. Li, and

G. Hua. Neural aggregation network for video face recogni-

tion. In Proceedings of the 32th IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2017.

[27] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian.

Scalable person re-identification: A benchmark. In Com-

puter Vision, IEEE International Conference on, 2015.

[28] Z. Zheng, L. Zheng, and Y. Yang. A discriminatively

learned CNN embedding for person re-identification. CoRR,

abs/1611.05666, 2016.

[29] Z. Zheng, L. Zheng, and Y. Yang. Unlabeled samples gen-

erated by GAN improve the person re-identification baseline

in vitro. CoRR, abs/1701.07717, 2017.

1563


