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Abstract

Recently, deep neural networks have demonstrated ex-

cellent performances in recognizing the age and gender on

human face images. However, these models were applied

in a black-box manner with no information provided about

which facial features are actually used for prediction and

how these features depend on image preprocessing, model

initialization and architecture choice. We present a study

investigating these different effects.

In detail, our work compares four popular neural net-

work architectures, studies the effect of pretraining, evalu-

ates the robustness of the considered alignment preprocess-

ings via cross-method test set swapping and intuitively visu-

alizes the model’s prediction strategies in given preprocess-

ing conditions using the recent Layer-wise Relevance Prop-

agation (LRP) algorithm. Our evaluations on the challeng-

ing Adience benchmark show that suitable parameter ini-

tialization leads to a holistic perception of the input, com-

pensating artefactual data representations. With a combi-

nation of simple preprocessing steps, we reach state of the

art performance in gender recognition.

1. Introduction

Since SuperVision [20] entered the ImageNet [33] chal-

lenge in 2012 and won by a large margin, much progress has

been made in the field of computer vision with the help of

Deep Neural Networks (DNN). Improvements in network

architecture and model performance have been steady and

fast-paced since then [44, 39, 42, 41]. The use of artificial

neural networks also has revolutionized learning-based ap-

proaches in other research directions beyond classical com-

puter vision tasks, e.g. by learning to read subway plans

[15], understanding quantum many-body systems [36], de-

coding human movement from EEG signals [40, 35] and

matching or even exceeding human performance in playing

games such as Go [37], Texas hold’em poker [29], various

Atari 2600 games [25] or Super Smash Bros. [10].

Automated facial recognition and estimation of gender

and age using machine learning models has held a high level

of attention for more than two decades [21, 30, 6, 16, 13]

and has become ever more relevant due to the abundance

of face images on the web, and especially on social media

platforms. The introduction of DNN models to this domain

has largely replaced the need for hand crafted facial descrip-

tors and data preprocessing considerably increased possible

prediction performances at an incredible rate. DNN models

have been not only successfully applied for age and gen-

der recognition, but also for the classification of emotional

states [2]. In the previous three years alone, age recogni-

tion rates increased from 45.1% [8] to 64% [32] and gender

recognition rates from 77.8% to reportedly 91% [7] on the

recent and challenging Adience benchmark [8], mirroring

the overall progress on other available benchmarks such as

the Images of Groups data set [12], the LFW data set [18]

or the Ghallagher Collection Person data set [11].

Next to the indisputable performance gains across the

board, the probably most important factor for the popular-

ity of DNN architectures is the low entry barrier provided

by intuitive and generic (layer) building blocks, the one-

fits-all applicability to many learning problems and most

importantly the availability of highly performing and ac-

cessible software for training, testing and deployment, e.g.

Caffe [19], Theano [43], and Tensorflow [1], to name a few,

supported by powerful GPU-Hardware.
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However, until recently, DNNs and other complex, non-

linear learning machines have been used in a black-box

manner, providing little information about which aspect of

an input causes the actual prediction. Efforts to explain-

ing such complex models in the near past have resulted in

several approaches and methods [44, 45, 31, 14, 5, 38, 3] al-

lowing for insights beyond the performance ratings obtain-

able on common benchmarks. This is a welcome develop-

ment, as in critical applications such as autonomous driving

or in the medical domain, it is often of special importance

to know why a model decides the way it does, given a cer-

tain input, and whether it can be trusted outside laboratory

settings [22].

In this paper, we compare the influence of model initial-

ization with weights pretrained on two real world data sets

to random initialization and analyze the impact of (artefac-

tual) image preprocessing steps to model performance on

the Adience benchmark dataset for different recent DNN

architectures. We can show that suitable pretraining can

yield a robust set of starting model weights, compensating

artefactual representation of the data, via cross-method test

set swapping. Using Layer-wise Relevance Propagation [3],

we visualize how those choices made prior to training affect

how the classifier interacts with the input on pixel level, i.e.

how the provided input is used to make a decision, and what

parts of it. We rectified the performance of [32] on gender

recognition referred to in [7] with a more likely result and

report our own result, slightly exceeding that baseline. Via

a combination of simple preprocessing steps, we can reach

state of the art performance on gender recognition from hu-

man face images on the Adience benchmark dataset.

2. Related Work

One of the more recent face image data sets is the Adi-

ence benchmark [8], which has been published in 2014,

containing 26,580 photos across 2,284 subjects with a bi-

nary gender label and one label from eight different age

groups1, partitioned into five splits. The key principle of

the data set is to capture the images as close to real world

conditions as possible, including all variations in appear-

ance, pose, lighting condition and image quality, to name

a few. These conditions provide for an unconstrained and

challenging learning problem: The first results on the Adi-

ence benchmark achieved 45.1% accuracy for age classifi-

cation and 77.8% accuracy for gender classification using

a pipeline including a robust, (un)certainty based in-plane

facial alignment step, Local Binary Pattern (LBP) descrip-

tors, Four Patch LBP descriptors and a dropout-SVM clas-

sifier [8]. For reference, the same classification pipeline

achieves 66.6% accuracy for age classification and 88.6%
accuracy for gender classification on the Ghallagher data

1(0-2, 4-6, 8-13, 15-20, 25-32, 38-43, 48-53, 60-)

set. The authors of [17] introduce a 3D landmark-based

alignment preprocessing step, which computes frontalized

versions of the unconstrained face images from [8], which

slightly increases gender classification accuracy to 79.3%
on the Adience data set, otherwise using the same classifi-

cation pipeline from [8].

The first time a DNN model was applied to Adience

benchmark was with [24]. The authors did resort to an

end-to-end training regime, e.g. the face frontalization pre-

processing from [17] was omitted and the model was com-

pletely trained from scratch, in order to demonstrate the fea-

ture learning capabilities of the neural network type clas-

sifier. The architecture used in [24] is very similar to the

BVLC Caffe Reference Model [19], with the fourth and

fifth convolution layers being removed. The best reported

accuracy ratings increased to 50.7% for age classification

and 86.6% for gender classification, using an over-sampling

prediction scheme with 10 crops taken from a sample (4

from the corners and the center crop, plus mirrored ver-

sions) instead of only the sample by itself [24].

To the best of our knowledge, the current state of the

art results for age and gender predictions are reported in

[32] and [7] with 64% and 91% accuracy respectively. The

model from [32] was the winner of the ChaLearn Looking

at People 2015 challenge [9] and uses the VGG-16 layer

architecture [39], which has been pretrained on the IMDB-

WIKI face data set. This data set was also introduced in

[32] and is comprised of 523,051 labelled face images col-

lected from IMDb and Wikipedia. Prior to pretraining on

the IMDB-WIKI data, the model was initialized with the

weights learned for the ImageNet 2014 challenge [33]. The

authors attribute the success of their model to large amounts

of (pre)training data, a simple yet robust face alignment pre-

processing step (rotation only), and an appropriate choice of

network architecture.

The 91% accuracy achieved by the commercial system

from [7] is supposedly backed by 4,000,000 carefully la-

belled but non-public training images. The authors identify

their use of landmark-based facial alignment preprocessing

as a critical factor to achieve the reported results. Unfortu-

nately no details are given about the model architecture in

use. The authors of [7] compare their results to [32] and

other systems, yet only selectively list the age estimation of

competing methods, such as [32]. The authors of [7] also

report the gender recognition performance of [32] as only

88.75%, which is rather low given the early results from

[24], the performance of [32] on age recognition and our

own attempts to replicate the models of referenced studies.

Recapitulating, we can identify three major factors con-

tributing to the performance improvements among the mod-

els listed in Table 1: (1) Changes in architecture. (2) Prior

knowledge via pretraining. (3) Optional dataset preparation

via alignment preprocessing.
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gender age age (1-off)

[8] (2014) 77.8 45.1 79.5

[17] (2015) 79.3 – –

[24] (2015) 86.8 50.7 84.7

[32] (2016) – 64.0 96.6

[7] (2017) 91.0 61.3 –

Table 1. An overview over the developments for age and gender

recognition results on the Adience benchmark in recent years. Ac-

curacy values are reported in percent.

In the following sections, this paper will briefly describe

a selection of DNN architectures and investigate the in-

fluence of random weight initialization against pretraining

on generic (ImageNet) or task-specific (IMDB-WIKI) real

world data sets, as well as the impact of data preprocess-

ing by comparing affine reference frame based alignment

techniques to coarse rotation-based alignment. Due to its

size and the unconstrained nature of the data and the avail-

ability of previous results, we use the Adience benchmark

data set as an evaluation sandbox. The dataset is available

as only rotation aligned version, and as a version with im-

ages preprocessed using the affine in-plane alignment [8],

putting the shown faces closer to a reference frame of fa-

cial features. We then use Layer-wise Relevance Propaga-

tion (LRP) [3] to give a glimpse into the model’s prediction

strategy, visualizing the facial features used for prediction

on a per-sample basis in order to explain major performance

differences.

3. Architectures, Preprocessing and Model Ini-

tialization

This section provides an overview about the evalu-

ated DNN architectures, data preprocessing techniques

and weight initialization choices. All models are trained

using the Caffe Deep Learning Framework [19], with

code based on https://github.com/GilLevi/

AgeGenderDeepLearning, containing the configura-

tions to reproduce the results from [24].

3.1. Evaluated Models

We compare the architectures of the model used in [24]

(in the following referred to as AdienceNet), the BVLC

Caffe Reference Model [19] (or short: CaffeNet), the

GoogleNet [42] and the VGG-16 [39], on which state of

the art performance on age classification has been reported

in [32]. The AdienceNet is structurally similar to the Caf-

feNet, with the main difference lying in smaller convolu-

tion masks learned in the input layer (7× 7 vs 11× 11) and

two less convolution layers being present. The number of

hidden units composing the fully connected layers preced-

ing the output layer is considerably lower (512 vs 4096) for

AdienceNet. The VGG-16 consists of 13 convolution layers

of very small kernel sizes of 2 and 3, which are interleaved

with similarly small pooling operations, followed by two

fully connected layers with 4096 hidden units each, and a

fully connected output layer. The fourth model we use and

evaluate is the GoogleNet, which connects a series of in-

ception layers. Each inception layer realizes multiple con-

volution/pooling sequences of different kernel sizes (sizes

3 × 3 to 7 × 7 in the input inception module) in parallel,

feeding from the same input tensor, of which the outputs

are then concatenated along the channel axis. Compared to

the VGG-16 architecture, the GoogleNet is fast to train and

evaluate, while slightly outperforming the VGG-16 model

on the ImageNet 2014 Challenge with 6.6% vs 7.3% top-5

error in the classification task [33].

3.2. Data Preprocessing

One choice to be made for training and classification is

regarding data preprocessing. The SVM-based system from

[17] improves upon [8] by introducing a 3D face frontaliza-

tion preprocessing step, with the goal of rendering the in-

puts to the pipeline invariant to changes in pose. Landmark-

based preprocessing also is identified in [7] as an important

step for obtaining the reported model performances. Both

[24] and [32] only employ simple rotation based prepro-

cessing, which roughly aligns the input faces horizontally,

trusting the learning capabilities of neural networks to profit

from the increased variation in the data and learn suitable

data representations.

The Adience benchmark data set provides both a ver-

sion of the data set with images roughly rotated to horizon-

tally aligned faces, as well as an affine 2D in-plane aligned

version for download. We prepare training and test sets

from both versions using and adapting the original splits and

data preprocessing code for [24] available for download on

github. We also create a mixed data set from a union of both

previous data sets, which has double the number of training

samples and allows the models to be trained on both pro-

vided alignment techniques simultaneously.

3.3. Weight Initialization

An invaluable benefit of DNN architectures is the op-

tion to use pretrained models as a starting point for further

training. Compared to random weight initialization, using

a pretrained models as starting points often results in faster

convergence and overall better model results, due to initial-

izing the model with meaningful filters.

In this paper, we compare models initialized with ran-

dom weights to models starting with weights trained on

other data sets, namely the ImageNet data set and the

IMDB-WIKI data sets, whenever model weights are read-

ily available. That is, we try to replicate the results from

[24] and train an AdienceModel only from scratch, since no
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weights for either pretraining data set are available. Instead,

we use the comparable CaffeNet to estimate the results ob-

tainable when initialzing the model with ImageNet weights.

We also train the GoogleNet from scratch and initialized

with ImageNet weights. Due to the excessive training time

required for the VGG-16 model, we only try to replicate

the results from [32] and train models both initialized with

available ImageNet and IMDB-WIKI weights.

4. Visualizing Model Perception

We complement our quantitative analysis in Section 5

with qualitative insights on the perception and reasoning of

the models by explaining the predictions made via the im-

portance of features for or against a decision at input level.

Following the success of DNNs, the desire to understand

the inner workings of those black box models has vitalized

research efforts dedicated to increasing the transparency of

complex models. Several methods for explaining individual

predictions have emerged since then, with robust yet com-

putationally expensive occlusion-based [44] and sampling-

based analysis [31, 45], (gradient-based) sensitivity analysis

[14, 5, 38] and backpropagation-type approaches [3, 44, 26]

among them. In an intensive study [34], Layer-wise Rele-

vance Propagation (LRP) was found to outperform consid-

ered competing approaches in computing meaningful expla-

nations for decisions made by DNN classifiers. Further, the

method is in contrast to sampling or occlusion-based ap-

proaches computationally inexpensive and applicable to a

wide range of architectures and classifier types [3, 22]. We

therefore use LRP to supportively complement the quanti-

tative results shown in Section 5 and visualize the percep-

tion of the model and its interaction with the input under

the evaluated training conditions. For our experiments, we

use the current version2 of the toolbox [23] provided by the

authors.

We refer the interested reader to [28] for a tutorial on

methods for understanding and interpreting deep neural net-

works.

4.1. Layer­wise Relevance Propagation for DNNs

LRP is a principled and general approach to decom-

pose the output of a decision function f , given an input

x, into so-called relevance values Rp for each component

p of x such that
∑

p Rp = f(x). The method operates it-

eratively from the model output to its inputs layer-by-layer

in a backpropagation-style algorithm, computing relevance

scores Ri for hidden units in the interim. Each Ri corre-

sponds to the contribution an input or hidden variable xi

has had to the final prediction, such that f(x) =
∑

i Ri is

true for all layers. The method assumes that the decision

2https://github.com/sebastian-lapuschkin/lrp_

toolbox/tree/caffe-wip

function of a model can be decomposed as a feed-forward

graph of neurons, e.g.

xj = σ

(

∑

i

xiwij + bj

)

, (1)

where σ is some monotonically increasing nonlinear func-

tion (e.g. a ReLU), xi are the neuron inputs, xj is the neuron

output and wij and bj are the learned weight and bias pa-

rameters. The behaviour of LRP can be described by taking

as example a single neuron j: That neuron receives a rele-

vance quantity Rj from neurons of the upper layer, which is

to be redistributed to its input neurons i in the lower layer,

proportionally to the contribution of i in the forward pass:

Ri←j =
zij

zj
Rj (2)

Here, zij is a quantity measuring the contribution of neuron

i to the activation of neuron j and zj is the aggregation of

all forward messages zij over i at j. The relevance score Ri

at neuron i is then consequently obtained by pooling all in-

coming relevance quantities Ri←j from neurons j to which

i contributes:

Ri =
∑

j

Ri←j (3)

Both the above relevance decomposition and pooling steps

satisfy a local conservation property, i.e.

Ri =
∑

j

Ri←j and
∑

i

Ri←j = Rj (4)

ensuring f(x) =
∑

i Ri for i iterating over the neurons of

any layer of the network.

The relevance redistribution obtained from Equations 2

and 3 is a very general one, with exact definitions depending

on a neuron or input’s type and position in the pipeline [22].

All DNN models considered in this paper consist in one part

of ReLU-activated (convolutional) feature extraction layers

towards the bottom, followed by inner product layers serv-

ing as classifiers [27]. We therefore apply to inner product

layers the ǫ-decomposition

Ri←j =
xiwij

bj +
∑

i xiwij

Rj (5)

with small epsilon (ǫ = 0.01) of matching sign added to the

denominator for numeric stability, to truthfully represent the

decisions made via the layers’ linear mappings consistently.

Since the ReLU activations of the convolutional layers be-

low serve as a gate to filter out weak activations, we apply

the αβ decomposition formula with β = −1 [3]

Ri←j =

(

α
z+ij
∑

i z
+

ij

+ β
z−ij
∑

i z
−

ij

)

Rj , (6)
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which handles the activating and inhibiting parts of zij sep-

arately as z+ij and z−ij and weights them with α and β re-

spectively [3]. Since zij = z+ij + z−ij , enforcing α + β = 1
ensures the conservation property from Equation 4. Theo-

retical insights into above decomposition types can be found

in [26].

Once relevance scores are obtained on (sub)pixel level,

we sum-pool the relevance values over the color channel

axis. This leaves us with only one value Rp per pixel p.

We visualize the results using a color map centered at zero,

since Rp ≈ 0 indicates neutral or no contribution of input

component p to f(x) and Rp > 0 and Rp < 0 identify

components locally speaking for or against the global pre-

diction. All models use vastly different filter sizes (from 2

to 11) in the bottom layers. We follow [4] in distributing

Rj for all neurons of some of the lower layers uniformly

across their respective inputs, such that the granularity of

the visualizations for all models are comparable.

5. Evaluation and Results

We score all trained models using the oversampling eval-

uation scheme [24], by using the average prediction from

ten crops (four corner and one center crop, plus mirrored

versions) per sample. Results for age and gender predic-

tion are shown in Tables 2 and 3 respectively. The columns

of both tables correspond to the described models; the

AdienceNet, CaffeNet, Googlenet and VGG-16. Follow-

ing previous work we also report 1-off accuracy results –

the accuracy obtained when predicting at least the age label

adjacent to the correct one – for the age prediction task.

The row headers describe the training and evaluation set-

ting: A first value of [i] signifies the use of [i]n-plane face

alignment from [8] as a preprocessing step for training and

testing, [r] stands for [r]otation based alignment and [m]
describes results obtained when both rotation aligned and

in-plane aligned images have been [m]ixed for training and

images from the [r] test set have been used for evaluation.

Second values [n] or [w] describe weight initialization us-

ing Image[n]et and IMDB-[w]IKI respectively. No second

value means the model has been trained from scratch with

random weight initialization.

The results in above tables list the measured performance

after a fixed amount of training steps. Intermediate models

which might have shown slightly better performance are ig-

nored in favour of comparability. With our attempt to repli-

cate the results from [24] based on the code provided by

the authors, we managed to exceed the reported results in

both accuracy by (+1.2%) and 1-off accuracy (+2.7%) for

age prediction and accuracy (+1.5%) for gender prediction.

As expected, the structurally comparable CaffeNet archi-

tecture obtains relatable results for both learning problems

with random model weight initialization. We then further

compared the relatively fast to train CaffeNet model to the

A C G V

[i] 51.4 87.0 52.1 87.9 54.3 89.1 –

[r] 51.9 87.4 52.3 88.9 53.3 89.9 –

[m] 53.6 88.4 54.3 89.7 56.2 90.7 –

[i,n] – 51.6 87.4 56.2 90.9 53.6 88.2

[r,n] – 52.1 87.0 57.4 91.9 –

[m,n] – 52.8 88.3 58.5 92.6 56.5 90.0

[i,w] – – – 59.7 94.2

[r,w] – – – –

[m,w] – – – 62.8 95.8

Table 2. Result for age classification in accuracy in percent, using

oversampling for prediction. Small numbers next to the accuracy

score show 1-off, e.g the accuracy with which at least an adjacent

age group has been predicted.

A C G V

[i] 88.1 87.4 87.9 –

[r] 88.3 87.8 88.9 –

[m] 89.0 88.8 89.7 –

[i,n] – 89.9 91.0 92.0

[r,n] – 90.6 91.6 –

[m,n] – 90.6 91.7 92.6

[i,w] – – – 90.5

[r,w] – – – –

[m,w] – – – 92.2

Table 3. Results for gender classification in accuracy, using over-

sampling for prediction. Bold values match or exceed the currently

reported state of the art results from [7] on the Adience benchmark.

GoogleNet model in all data preprocessing configurations

when trained from scratch and fine-tuned based on the Im-

ageNet weights. We try to replicate the measurements from

[32] to verify the observations made based on the other

models. Here, we did not fully manage to reach the re-

ported results, despite using the model pre-trained on the

IMDB-WIKI data as provided by the authors. However, we

closely scrape by the reported results with slight differences

in both accuracy (−1.2%) and 1-off accuracy (−0.8%), av-

eraged over all five splits of the data with a model trained

on the mixed training set. In all evaluated settings shown in

Figure 1 we can observe overall trends in choices for archi-

tecture, dataset composition and preprocessing and model

initialization.

5.1. Remarks on Model Architecture

In all settings, the CaffeNet architecture is outperformed

by the more complex and deep GoogleNet and VGG-

16 models. For gender classification under comparable

settings, the best VGG-16 models outperform the best

GoogleNet models. Figure 2 visualizes the different char-

acteristics of input faces as used by the classifiers to predict
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Figure 1. The plots are ordered column-wise over model architectures and row-wise according to prediction problem, showing model

performance over training time given different initializations and data preprocessing settings. The top and bottom dashed lines in each plot

show worst and best reference accuracy results from [24, 32] and [7], with the horizontal axis increasing with training iterations. Thick

lines show results taken by us. Color coding corresponds to data preprocessing and shading to model initialization: Blue color stands for

affine [i]n-plane alignment. Violet lines correspond to [r]otation alignment. Orange lines show the model performances for training on

the [m]ixed training set. Translucent line color stands for training with random model initialization, fully opaque and solid lines show

performance for finetuning on ImageNet weights and dashed lines correspond to model initialization using IMDB-WIKI weights, only

applied to the VGG-16 model. All results are averaged over the five splits of the Adience data set.

either male or female gender.

We observe that model performance correlates with net-

work depth, which in turn correlates with the structure ob-

servable in the heatmaps computed with LRP. For instance,

all models recognize female faces dominantly via hair line

and eyes, and males based on the bottom half of the face.

The CaffeNet model tends to contentrate more on isolated

aspects of a given input compared to the other two, espe-

cially for men, while being less certain in its prediction, re-

flected by the stronger negative relevance.

5.2. Observations on Preprocessing

For all three models, we can observe the overall trend for

both prediction problems, that the in-plane alignment pre-

processing step is not beneficial to classifier performance,

compared to rotation alignment. The only exception to this

trend is the randomly initialized GoogleNet model, which

loses one percent accuracy for age prediction under rotation

alignment albeit still gaining performance in measured 1-off

prediction. We reason the better performance on only rota-

tion aligned images to be justified in the potential of and for

DNNs to learn for the domain of face images canonically

meaningful sets of features. For the face images aligned

using the technique presented in [8], this is more difficult.

Especially for images of children, the faces aligned to refer-

ence frames suitable for adults result in head shapes of un-

characteristic aspect ratios for the age group or even faulty

alignments. Figure 3 demonstrates the nature of this artefac-

tual noise introduced to the data by unsuitable alignment.

All models benefit the most from combining both the ro-

tation aligned and the landmark aligned data sets for train-

ing. For one, this effectively doubles the training set sizes,

but also – perhaps more importantly – allows the learning

of a more robust feature set: The models trained on a com-
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Figure 2. From top to bottom: Input image, followed by relevance

maps for the best performing CaffeNet, GoogleNet and the VGG-

16 model for gender prediction. Hot colors identify parts of the

image contributing to the predicted class. Cold hues show evi-

dence contradicting the predicted class, as perceived by the model.

Smoother heatmaps are a consequence of smaller filters and stride

in the bottom layers.

bination of both the landmark aligned and rotation aligned

images perform well on test sets resulting from both prepro-

cessing techniques. Tables 2 and 3 show results for models

trained on the combined set which were evaluated on the

rotation aligned test set. Performance measurements on in-

plane aligned data are with < 1% only insignificantly lower.

In order to underline the effect of increased robust-

ness of the models trained on the more diverse [r]oration

aligned training set we evaluated models trained on [i]n-

plane aligned images with [r]otation aligned test images and

vice versa. Corresponding model performances are listed

in Tables 4 and 5. Some models trained on data prepared

with one alignment technique evaluated against the test set

of the other perform even worse than the early SVM-based

models from [8], despite their competitive results from the

combined training set. The models trained on the in-plane

aligned images have more difficulty predicting on the un-

seen setting than the models trained on the only rotated im-

ages, where the original facial pose and the proportions of

the face image are mostly preserved.

For the VGG-16 model, we compared the in-plane align-

ment to the mixed training set – the worst to the best ex-

pected results. Here again, the mixed training data results

in a better model than when only in-plane alignment is used.

Figure 1 shows an overview of all results over training time.

5.3. Observations on Initialization

We find that the GoogleNet model responds well to fine-

tuning on the weights pre-trained on ImageNet and re-

sponds with an increase in performance for both classifi-

cation problems and in all dataset configurations. The Caf-

feNet, however, slightly loses performance when fine tuned

for age group prediction, while benefiting in gender predic-

tion. The better response of the GoogleNet compared to the

CaffeNet, when initialized with their respective ImageNet

weights might be caused by the quality of the initial pa-

rameters: While the GoogleNet achieves a 6.6% top-5 error

on ImageNet, the CaffeNet only reaches 19.6%. Evaluat-

ing on the incorrect test data (Tables 4 and 5), both fine

tuned models trained on rotation aligned images manage

to recover their respective performance ratings compared

to models trained from scratch and being evaluated on the

correct data. The GoogleNet model even exceeds the per-

formance of the same architecture initialized randomly but

both trained and evaluated on the rotated images. The mea-

surable beneficial effect of appropriate pretraining is visu-

alized in Figures 4 and 5. ImageNet pretraining leads to the

use of larger and meaningful parts of the face for prediction

for the GoogleNet, while the randomly initialized model

picks out single characteristics during training which corre-

late the most with the target class. This includes eyebrows

and lips defining female faces and nose, chin and uncov-

ered ears for men for gender recognition. We see compara-

ble results for the VGG-16 on age group estimation when

comparing pretraining on ImageNet and IMDB-WIKI. The

model initialized with IMDB-WIKI weights, with the pre-

training task being age estimation on 101 age categories,

concentrates more on the facial features themselves, while

the ImageNet-initialized one is more prone to distraction

from background elements and clothing items. Facial fea-

tures seen in examples of opposing classes of the respec-

tively weaker models in both figures – independent of the

ensemble of facial features – leads to less certain, noisy de-

cisions. For the problem of gender recognition, the VGG-

16 is affected less from weight initialization than from the

quality of data preprocessing. Here, IMDB-WIKI pretrain-

ing might have an only diminished effect due to firstly the

ImageNet weights providing an already good set of starting

weights and secondly, the pretraining objective (age recog-

nition) being orthogonal to the task of gender recognition.

In fact, other than for age recognition, the VGG-16 mod-

els initialized with ImageNet weights converged to better

parameters than their counterparts.

Figure 1 reports the prediction performances of the Caf-

feNet, the GoogleNet and the VGG-16 model in all evalu-

ated settings, averaged over the five splits of the Adience

data set. The recorded model scores over time illustrate that

suitably initializing a model largely outweighs the problems

introduced with artefactual data in our experiments. Next

to the overall better model obtained after convergence, we

also observe a considerably faster increase in the learning

progress early in training.
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Figure 3. Top: Samples taken from the only rotation aligned variant of the Adience data set. Bottom: In-plane aligned samples. The left

five image pairs show faces taken from the age group of (0-2) which are classified correctly under rotation alignment and are placed at

least one age group above by the predictor under landmark-based alignment, with the middle image to the left being predicted as age group

(8-13) by the GoogleNet. The in-plane alignment technique applied to one variant of the Adience data set tends to elongate faces vertically.

The remaining image show misclassified and misaligned samples picked at random.

Figure 4. Heatmaps for GoogleNet models and gender recogni-

tion. Input images are shown above heatmaps for a DNN pre-

trained on Imagenet, which are shown above heatmaps for a DNN

initialized randomly. The finetuned model predicts based on an en-

semble of facial features, whereas the model starting with random

weights has overfit on an isolated set of features characteristic to

the target classes.

Figure 5. Heatmaps for VGG-16 and age prediction. Input images

are shown above heatmaps for a DNN pretrained on IMDB-WIKI,

which are shown above heatmaps for a DNN pretrained on Ima-

geNet.

A C G

[i] 40.8 75.4 40.3 76.3 44.6 80.8

[r] 46.9 82.8 46.1 82.5 46.4 83.2

[i,n] – 45.2 82.02 49.4 87.2

[r,n] – 48.8 84.9 53.6 89.9

Table 4. Test set swapping results for age prediction. Performance

is considerably worse when the incorrect preprocessing is used for

testing, due to overfit feature sets. Pretraining can yield robust

model parameters, compensating for the deviating test statistics.

A C G

[i] 81.1 80.5 83.5

[r] 81.3 84.6 86.0

[i,n] – 84.5 89.6

[r,n] – 88.5 90.0

Table 5. Test set swapping results for gender prediction.

6. Conclusion

Recent deep neural network models are able to accu-

rately analyze human face images, in particular recognize

the persons’ age, gender and emotional state. Due to their

complex non-linear structure, however, these models often

operate as black-boxes and until very recently it was un-

clear why they arrived at their predictions. In this paper we

opened the black-box classifier using Layer-wise Relevance

Propagation and investigated which facial features are ac-

tually used for age and gender prediction. We compared

different image preprocessing, model initialization and ar-

chitecture choices on the challenging Adience dataset and

discussed how they affect performance. By using LRP to

visualize the models’ interactions with the given input sam-

ples, we demonstrate that appropriate model initialization

via pretraining counteracts overfitting, leading to a holistic

perception of the input. With a combination of simple pre-

processing steps, we achieve state of the art performance for

gender classification on the Adience benchmark data set.
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