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Abstract

Detecting the reflection symmetry axis present in an ob-

ject has been an active research problem in computer vision

and computer graphics due to its various applications such

as object recognition, object detection, modelling, and sym-

metrization of 3D objects. However, the problem of com-

puting the reflection symmetry map for a given image con-

taining objects exhibiting reflection symmetry has received

a very little attention. The symmetry map enables us to rep-

resent the pixels in the image using a score depending on

the probability of each of them having a symmetric coun-

terpart. In this work, we attempt to compute the 2-D re-

flection symmetry map. We pose the problem of generating

the symmetry map as an intra-image dense symmetric pixels

correspondence problem, which we solve efficiently using a

randomized algorithm by observing the reflection symme-

try coherency present in the image. We introduce an appli-

cation of symmetry map called symmetry preserving image

stylization.

1. Introduction

Reflection symmetry is the most prevalent symmetry ob-

served in many natural as well as man made objects. Re-

flection symmetry is essential for physical stability of ob-

jects such as humans and it makes some objects readily rec-

ognizable. Furthermore, for some objects, it helps them

look more beautiful. Symmetry has been studied in vari-

ous branches of science such as mathematics, physics, and

chemistry. Due to the presence of reflection symmetry in

many objects, it has been one of the most active research

topics in visual neuroscience as well as in computer vision.

Detecting the reflection symmetry axis of an object

present in a given image has been an active research prob-

lem in computer vision and graphics due to its various

applications such as low-level object features, modelling

and editing of 3D models, shape database retrieval, shape

matching, shape segmentation [26, 38], symmetrization

[37], texture synthesis and manipulation [20], and depth

from symmetry [23]. However, the problem of determining

which pixel is the mirror reflection of a given pixel and with

how much confidence they qualify to be mirror reflections

of each other without explicitly knowing the symmetry axis

present in the image, has not been studied in the past. In

this work, we introduce the concept of reflection symmetry

map and design an algorithm to compute it. In the com-

putation of the reflection symmetry map (referred also as

symmetry map), we determine the mirror reflection for each

pixel (Nearest Mirror Reflection Field (NMRF)) along with

the confidence by which they are mirror reflections of each

other (Symmetry Score Map (SSM)). Given an image with

a symmetric object exhibiting reflection symmetry along k

distinct axes, there will be k NMRF and k SSM for that

image. We compute the symmetry score in addition to de-

termining the mirror reflection of each pixel because two

pixels may not be exact reflections of each other due to illu-

mination variation, viewpoint change, and imaging noise.

The main contributions of this work are listed below.

1. We introduce the idea of 2-D reflection symmetry map

which is a collection of two maps: NMRF which rep-

resents the mirror reflection of each pixel and SSM

which represents a confidence score for each pixel

which is a measure of similarity between the pixel and

its mirror reflection.

2. We exploit the reflection symmetry coherency present

in the image in order to effectively compute the sym-

metry map using an approximate nearest neighbor

search randomized algorithm.

3. We show the importance of SSM by using it in image

stylization where we try to preserve details in the sym-

metric region and remove details in the other regions.

2. Related Work

Computation of the reflection symmetry map for an in-

put image has never been attempted directly before. How-

ever, there exist some works which explicitly calculate

partial maps. Most of the existing reflection symmetry

detection methods either detect reflection symmetry axis

[41, 5, 4, 7, 15, 21, 24, 28, 32, 35, 39, 43, 48, 54] or
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the reflection symmetry region [9, 49, 56, 33, 51, 12]. In

[28], the authors proposed Hough transform and a voting

based approach to detect reflection symmetry axes through

the matching of SIFT and mirrored SIFT descriptors as

features. In [9], the authors localized and segmented bi-

laterally symmetric object based on a symmetry growing

method which uses photometric similarity and geometric

consistency present in the image. They propagated the pairs

of symmetrically matched local features to their neighbors.

However, they only compute the symmetric regions which

are just binary maps. In [15], the authors used local sym-

metries such as bilateral and rotational symmetries in order

to detect and describe the local keypoints for the task of

matching urban or architectural scenes. They have also pro-

vided a symmetry distance measure for a given image only

for rotational, horizontal, and vertical symmetries. How-

ever, the symmetry present in the image may not just be

horizontal or vertical. In [47], the authors segmented a

symmetric object using a level-set based approach which

is a binary symmetry map. However, they do not com-

pute the continuous symmetry map and the NMRF. In [13],

the authors computed the continuous symmetry map using

a graph-cut based approach. However, they do not compute

the NMRF. In this paper, we compute the complete symme-

try map (NMRF and SSM) for multiple objects exhibiting

different symmetry orientations. There have also been sig-

nificant works in detecting reflection in 3D geometric mod-

els [38, 36, 45, 34, 19]. We pose the problem of finding

reflection symmetry map as an intra-image pixel correspon-

dence problem, which involves searching for the mirror re-

flection of a pixel within the image itself. There exists a

rich body of work on inter-image correspondence [14]. In

order to get faster correspondence, there exist many meth-

ods for approximate nearest neighbor (ANN) search such as

coherency sensitive hashing [22], PatchMatch [6], an opti-

mal algorithm for ANN searching [3], and fast approximate

nearest neighbors [40]. We propose a strategy similar to

PatchMatch [6] to solve this problem.

3. Estimation of Symmetry Map

Let w × h be the size of the input image I , let W =
{1, . . . , w} and H = {1, . . . , h} be two sets. We define

the reflection symmetry map to be a collection of two maps

SSM (S) and NMRF (f). Here, f : W × H → W × H
and S : W ×H → [0, 1]. If f : Q 7→ Qm, then the points

Q and Qm are mirror reflections of each other with sym-

metry score S(Q), where Q, Qm ∈ W × H. We define

S(Q) = 1−‖dm
Qm−dQ‖, where dQ is the normalized (unit

norm) SIFT descriptor [27] of the point Q, and d
m
Qm is the

normalized (unit norm) mirrored SIFT descriptor [28] of the

point Qm. Given the input image I , our goal is to compute

and visualize the pair (S, f). If we follow a brute force ap-

proach to find the mirror reflection of each point in the set

W ×H, then the computational complexity is O(d0w
2h2),

where d0 is the dimensionality of the local descriptor. The

challenge here is to estimate the symmetry map using an

algorithm with lesser computational time. We follow the

randomized PatchMatch algorithm [6] to get the symmetry

map in O(ed0wh) time, where e << min{w, h} and e is

the number of randomly sampled points in each iteration.

We use the reflection symmetry coherency present in the

image along with the PatchMatch algorithm to compute the

symmetry map (S, f) as explained in this section.

3.1. Reflection Symmetry Coherency

In order to compute the reflection symmetry map, we

exploit the reflection symmetry coherency present in the im-

age. If two points Qi and Qm
i represent a mirror symmetry,

then any other point in the image should have a mirrored

counterpart on its location reflected across the axis/line

through
Qm

i +Qi

2
with a direction perpendicular to Qm

i −Qi.

However, we observe that an image may not be fully sym-

metric, since most of the objects do not have a square or

a rectangular boundary. This is due to the fact that there

might be a background region present in the image. Due to

this fact, symmetry coherency property will not hold true at

all the pixels.

3.2. Symmetric PatchMatch

In order to compute the reflection symmetry map SSM

and NMRF (S, f), we have to determine both S and f at

every pixel location. In order to determine f, we need to

determine the mirror reflection pointQm ∈ W×H for each

point Q ∈ W × H. We pose the problem of determining

f as an intra-image dense pixel correspondence problem.

We propose a PatchMatch [6] based randomized algorithm

in order to solve this correspondence problem. There are

three steps involved in the proposed algorithm. As the first

step, for most of the points ( ≈ 99%), we initialize the mir-

ror reflection points randomly except a very few points for

which we are able to accurately estimate the mirror reflec-

tion points. In the second step, we propagate the candidate

pairs of points which are mirror reflections of each other to

their neighbors. In the third step, we improve the estimate

of mirror reflection for each point by searching for better es-

timate from a set of randomly sampled points in the neigh-

borhood region of the current estimated mirror reflection

point. We discuss each of these steps in detail below.

3.2.1 Initialization

In order to initialize the mirror reflection point to each

point, we assign a random mirror reflection points to most

of the points except a few points for which we determine

approximate mirror reflection points. We find the candi-

date pairs of points which are mirror reflections of each
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Figure 1. (a) A point may have more than one mirror reflection, (b) The mid-points of the detected pairs of mirror symmetric points without

outlier rejection, (c) The three clusters of inlier pairs of mirror symmetric points after performing the outlier rejection and clustering, and

(d) The histogram of direction of vectors joining mirror symmetric points in the orange colored cluster.

other as proposed in [28]. Let Q = {Qi}
n
i=1 be the set

of n keypoints detected using the SIFT algorithm [27].

Let {dQi
}ni=1 and {dm

Qm
i
}ni=1 be the sets which consist of

the original SIFT descriptors and the mirrored SIFT de-

scriptors of the points in the set Q respectively, where

dQi
,dm

Qm
i
∈ R

128, Qi ∈ R
2, ∀i ∈ {1, 2, . . . , n}. For

each point Qi ∈ Q, we determine the neighbors having

distances less than a predefined threshold (we set to 0.1).

Let {Qm
i1, Q

m
i2, . . . , Q

m
ini
} be the set of nearest (distance be-

tween descriptors) mirror reflections of the point Qi, then

this point Qi produces ni pairs of mirror symmetric points,

{(Qi, Q
m
i1), (Qi, Q

m
i2), . . . , (Qi, Q

m
ini

)}. We consider more

than one nearest reflection point as the point can participate

in symmetry over more than one axis. For example, con-

sider Figure 1(a) in which the point Qi has three mirror re-

flection points {Qm
i1, Q

m
i2, Q

m
i3}. In Figure 1(b), we show

the mid-points of the detected pairs of mirror symmetric

points. We observe that a significant number of pairs are

outliers. For the example image considered (having three

symmetry axes) in Figure 1, ideally the mid-points of all

such pairs should lie on three lines but they are distributed

almost throughout the image. We follow the RansaCov ap-

proach proposed in [31] for outlier rejection and clustering

of the detected pairs of mirror symmetric points.

Clustering pairs of mirror symmetric points: Let

M = {(Qi, Q
m
ij) : j ∈ {1, . . . , ni}, i ∈ {1, . . . , n}} =

{M1,M2, . . . ,Mp} be the set of detected candidate pairs

of mirror symmetric points, where Mi is a pair of mirror

symmetric points. Each symmetry axis in an image gives

us one reflection symmetry map. Hence, in order to find the

reflection symmetry map for all the symmetry axes present

in the image, we cluster these pairs such that the mid-points

of all the pairs within a cluster lie on a line and the vectors

joining the mirror symmetric points of the pairs present in

a cluster have the same direction. We observe that most of

the pairs in the setM are outliers (see Figure 1(b)). Hence,

a robust model fitting is inevitable.

There exist many methods for multiple model fitting,

such as energy based method [16], sequential RANSAC

[52], J-Linkage [50], T-Linkage [29], robust preference

analysis [30], and random cluster model simulated anneal-

ing [44]. We follow the best suitable method for our prob-

lem given by [31] and discuss the framework below.

For each pair Mi = (Qi, Q
m
i ), we find the symmetry

axis, ℓi : aix + biy + ci = 0, which is a line passing

through the mid-point
Qi+Qm

i

2
and perpendicular to the vec-

tor Qi − Qm
i . Here the mid-point and the vector joining

the mirror symmetric points are known and thereby deter-

mine the symmetry axis fully. Now, we find the pairs in

the set M\{Mi} which agree with the symmetry axis ℓi
with some tolerance (ǫd, ǫθ). A pair (Qj , Q

m
j ) agrees to the

symmetry axis ℓi if it satisfies the inequalities (1) and (2).

arccos

(

[

ai bi
]

(Qj −Q
m
j )

∥

∥

[

ai bi
]⊤ ∥

∥

2

∥

∥Qj −Qm
j

∥

∥

2

)

< ǫθ (1)

min{d1, d2}

max{d1, d2}
> 1− ǫd (2)

where d1 and d2 are the distances of the points Qj and Qm
j

from the line ℓi and ǫθ and ǫd are the tolerance parameters.

We set ǫd to 0.03 and ǫθ to 2◦ in our experiments. See

Figure 2 for a graphical illustration.

Qm

j
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⊤
∥

∥
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Figure 2. Illustration of a pair (Qj , Q
m
j ) agreeing to the symmetry

axis aix + biy + ci = 0 defined by the mid-point and the vector

joining the points of the pair (Qi, Q
m
i ).

Let Ii be the set of those pairs which satisfy the inequal-

ities (1) and (2) and let I = {I1, I2, . . . , Ip} be the set
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containing such sets for all the pairsMi. Here, each set Ii
represents a cluster of pairs agreeing with the symmetry axis

defined by the pairMi. However, out of these p sets only

k are desired, where k is the number of symmetric objects

present in the image. The observation is that the number of

pairs in each set are only a few. A few sets, as exceptions,

contain a sufficient number of pairs because most of them

are outliers and an outlier may not agree to the symmetry

axis defined by another outlier. Therefore, we frame this

problem of selecting k out of p sets as the maximum set

coverage problem where we try to cover as many possible

pairs as possible only using k sets.

This maximum set coverage problem can be formulated

as an integer linear program as below.

maximize

p
∑

i=1

yi

subject to

p
∑

j=1

zj ≤ k

∑

j:Ij∋Mi

zj ≥ yi, ∀Mi ∈M

0 ≤ yi ≤ 1, zj ∈ {0, 1}. (3)

Here the variable yi equals 1 if the pairMi is in one of the

returned subsets and 0 otherwise. The first constraint indi-

cates that the number of returned subsets cannot be more

than k. The second constraint indicates that if yi ≥ 0 then

at least one subset Ij is selected such that Mi ∈ Ij . To

solve the above integer linear program, we use [31].

Let C1, C2, . . . , Ck be the resulting k clusters containing

pairs of mirror symmetric points. Let Li andRi be the sets

of left and right side points of pairs in the cluster Ci, ∀i ∈
{1, 2, . . . , k}, respectively. We assume that the number of

symmetric objects, k, present in the image is known. In

Figure 1(c), we show the resulting clusters. Each cluster

represents a unique symmetry axis. Therefore. we find the

symmetry map (Sh, fh) for each cluster Ch, h ∈ {1, . . . , k},
separately. We initialize the mirror reflections of the points

in the set Lh to the points in the set Rh and vice versa. We

randomly initialize the mirror reflections for all the points

in the set {W ×H}\{Lh ∪Rh}. We further observe while

doing experiment that |Lh ∪ Rh| << |W × H|. Here, |.|
represents the cardinality of a set.

3.2.2 Propagation

Since we assign the correct mirror reflection points to some

points in the initialization step, our goal is to propagate such

initializations to the neighboring points. If these inlier pairs

were ideal, we could have directly found the mirror reflec-

tion of a point by reflecting it through any of the inlier pair.

This situation is shown graphically in light gray color in the

Figure 3(a) . However, we observe that the inlier pairs of

the mirror symmetric points are not that ideal as the mid-

points of all the mirror symmetric points are not collinear

and the vectors joining these mirror symmetric points do

not point in an identical direction. For example, consider

the histogram, shown in Figure 1(d) of the directions of the

vectors joining mirror symmetric points in the orange clus-

ter where all the directions are not identical. Therefore, we

consider more than one pair to find the correct mirror reflec-

tion point.

Let Ch be the cluster under consideration and Qi be the

point under consideration. We randomly select two points

Qj , Qk ∈ Lh. Let dij and dik be the distances of the points

Qj and Qk from the point Qi, respectively. Let Qm
i , Qm

j ,

and Qm
k be the current estimated mirror reflection points of

the points Qi, Qj and Qk, respectively. Let θij be the angle

between the vectors Qi − Qj and Qm
j − Qj and θik be the

angle between the vectors Qi−Qk and Qm
k −Qk. Now, we

consider the two points Qm
ij and Qm

ik such that the point Qm
ij

is located at distance dij and the vector Qm
ij −Q

m
j makes an

angle θij with the vector Qj −Q
m
j . Similarly, the point Qm

ik

is located at distance dik and the vector Qm
ik − Q

m
k makes

an angle θik with the vector Qk −Q
m
k . Consider the Figure

3(b) for a graphical illustration of this concept.

We search for a better estimate of the mirror reflection

point of the point Qi by exploiting the symmetry coherency

property. According to symmetry coherency property, if

(Qj , Q
m
j ) and (Qk, Q

m
k ) are good matches, then (Qi, Q

m
ij)

and (Qi, Q
m
ik) should also be good matches. Now, we have

three choices Qm
ij , Q

m
ik, and Qm

i for the mirror reflection

point of the point Qi. We choose the best reflection out

of these three choices as given in equation (4).

Q
m,p
i = argmin

Q∈{Qm
ij
,Qm

ik
,Qm

i
}

‖dQi
− d

m
Q‖2. (4)

3.2.3 Random Search

We observe that the mirror reflections of a point through all

the pairs in the nearest cluster are not identical. For exam-

ple, consider Figure 3(c). The mirror reflection of a point

Qi through all the inlier pairs are shown. In the zoomed-in

regions, it is clearly visible that the mirror reflections are

not concentrated on a single point but are rather spread out

spatially.

Therefore, after estimating a better mirror reflection

point Q
m,p
i of the point Qi in the propagation step, we try

to improve the match further. We randomly select e points

in the circular region of radius r (shown in Figure 3(b))

around the point Q
m,p
i as S = {Qm,p

i + Ri}
e
i=1 ∪ {Q

m,p
i }.

Here, Ri =
[

ρ cos(ψ) ρ sin(ψ)
]⊤

, and ρ and ψ are ran-

dom variables following uniform probability distributions,

that is ρ ∼ U(1, r), ψ ∼ U(0, 2π), where r is the radius. In
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Figure 3. (a) Consider the current estimated mirror reflections of Qi and randomly sampled two points Qj and Qk from the set Lh. Then

we search for the best mirror reflection for the point Qi among the points Qm
i , Qm

ij and Qm
ik, (b) We improve the current estimate by

searching for better reflection point from the randomly sampled points from a circle around the best estimate among the points Qm
i , Qm

ij

and Qm
ik, and (c) the mirror reflection of the point Qi through all the inlier pairs of cluster Ch mirror symmetric points.

order to update the estimate Qm
1 , we choose the best mirror

reflection point from the set S as given below.

Qm,r
i = argmin

Q∈S
‖dQi

− d
m
Q‖2. (5)

Finally, we update the reflection symmetry map as per the

equations below.

fh(Qi) = Qm,r
i , fh(Q

m,r
i ) = Qi, (6)

Sh(Qi) = e
−‖dQi

−d
m

Q
m,r
i

‖2
2
e
−

d2
Qi

(w2+h2)σ2
d (7)

Sh(Q
m,r
i ) = e

−‖dQi
−d

m

Q
m,r
i

‖2
2
e
−

d2
Q

m,r
i

(w2+h2)σ2
d . (8)

Here, dQi
and dQm,r

i
are the distances of the points Qi and

Qm,r
i from the set I, respectively. Here, we select the radius

r to be equal to the radius of the region in which the mirror

reflections of point Qi through all the inlier pairs lie. It can

be observed that r remains the same for all the points Qi.

Therefore, we calculate it once for the whole process. We

found this value on an average to be equal to 10. However,

it depends on the value of the tolerance parameters (ǫd, ǫθ)
(r increases if we increase the value of any of them or both).

We set e = 15.

The random search step is an essential part in the whole

algorithm as it helps in getting out of the local minima and

it also helps in improving the current estimate of the mirror

reflection of a point. In the worst case, the current estimate

may not get improved but it can not get worse because the

current estimate is also in the set S .

Other Schemes: Instead of the proposed iterative ran-

dom search scheme, we could use the below schemes. Let

Ch be the cluster under consideration and Qi be the point

under consideration. Let Qi
h = {Qm

i1, Q
m
i2, . . . , Q

m
i|Ch|
}

be the set containing mirror reflections of the point Qi

from all the pairs (Qj , Q
m
j ), Qj ∈ Lh, Qm

j ∈ Rh, and

j ∈ {1, 2, . . . , |Ch|}. Here, Qm
i2 is the mirror reflection of

the point Qi through the axis defined by the pair (Qj , Q
m
j ).

Mean mirror pixel (MMP): Assign mirror reflection of the

point Qi to the mean of the points {Qm
i1, Q

m
i2, . . . , Q

m
i|Ch|
}.

Best mirror pixel (BMP): Assign mirror reflection of the

point Qi to argmaxQ∈Qi
h
‖di − d

m
P ‖2. We compare our

main approach (termed Iterative Random Search (IRS))

with these schemes in the Section 4 and show that IRS per-

forms better.

Algorithm 1 Symmetric PatchMatch

Input: Image I containing an object with k symmetry axes.

1: Find the set M and the clusters C1, C, . . . , Ck as dis-

cussed in Section 3.

2: for all the clusters (h ∈ {1, 2, . . . , k}) do

3: Initialize the mirror reflections of points in set Lh

to the points in the setRh and vice versa.

4: Randomly initialize the mirror reflections for the

points in set {W ×H}\{Lh ∪Rh}.
5: while not converged do

6: For the point Qi ∈ W ×H randomly select two

points Qj , Qk from the cluster Ch.

7: For the point Qi, select the best mirror image

estimate Q
m,p
i . Q

m,p
i ← argmin

Q∈{Qm
ij
,Qm

ik
,Qm

i
}

‖dQi
− d

m
Q‖2.

8: Randomly sample e points from a circle around

point Q
m,p
i .

S ← {Qm,p
i } ∪ {Q

m,p
i +Ri}

e
i=1.

9: Improve Q
m,p
i : Qm,r

i ← argmin
Q∈S

‖dQi
− d

m
Q‖2.

10: Update the symmetry map (Sh, fh) using Equa-

tions (6), (7), and (8).

11: end while

12: end for

Output: Symmetry maps (S1, f1), . . . , (Sk, fk).
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4. Results and Evaluation

4.1. Results

In Algorithm 1, we present the complete symmetric-

PatchMatch algorithm. We represent the NMRF (f) by a

HSV color image where at each pixel Q, we set the hue

equal to the angle made by vectorQ−f(Q) from the origin,

saturation equal to the magnitude of the vector Q − f(Q),
and value equal to the symmetry score S(Q). Equivalently,

mirror image of the pixel Q is located in the the direction

equal to the hue (H) at pixel Q, at a distance equal to the

saturation (S) at pixel Q, and with a symmetry score equal

to the value (V) at pixel Q. We represent the SSM (S) by

a gray-scale image. In Figure 4, we show an improvement

in the computed symmetry map over the iterations. We ob-

serve that even in one iteration we get many good matches,

but still it improves more as more number of iterations are

completed. In order to measure the quality, we generate a

new image, Im, by replacing each pixel by its estimated mir-

ror reflection. We also weigh the intensity with the symme-

try score. Therefore, Im(Q) = S(Q)f(Q), ∀Q ∈ W ×H.

For the image given in Figure 4(a), we represent the SSM

S in the first row and the NMRF f in the second row for

the iterations 1

2
, 2, 4, 6, and 10. In the third and the fourth

row, we present the zoomed-in window (shown in red color

in (a)) from the SSM and NMRF. And in the row five, we

represent the zoomed-in window from the image Im. Now

we measure the improvement over the iterations by mea-

suring the structural similarity (SSIM) [53] and PSNR be-

tween the window from the image from Im and the original

window from the original image. We report the SSIM and

PSNR against the iteration number in the Figure 4(b). We

observe that both SSIM and PSNR increase as the number

of iterations increases. We observe that while doing experi-

ment on more images, 6 iterations are sufficient for the con-

vergence. In Figure 5, we show the computed reflection

symmetry maps for five example images from the dataset

provided in this challenge [25].

4.2. Evaluation of NMRF

Correspondences Rate. Let Qem
i be an estimated mir-

ror reflection of the pointQi and letQ
gm
i be the ground-truth

mirror reflection of the point Qi. We decide whether the es-

timated mirror reflection Qem
i of the point Qi or the corre-

spondence (Qi, Q
em
i ) is correct based on a distance thresh-

old τ . If the distance ‖Qem
i − Q

gm
i ‖2 between the points

Qem
i and Q

gm
i is less than the distance threshold τ , then the

correspondence (Qi, Q
em
i ) is correct and otherwise incor-

rect. For a given threshold τ , we count the correspondences

(Qi, Q
em
i ) for which the condition ‖Qem

i −Q
gm
i ‖2 < τ holds

true. We manually extracted 130 ground truth pairs of mir-

ror symmetric points from an image in the dataset of this

challenge [25]. In Figure 6, we show the correspondences

(a)

(b) (c) (d) (e) (f) (g)
Figure 4. Improvement in symmetry map (first row:f, second row:

S) over the iterations. (c) Iteration 1

2
(d) Iteration 2, (e) iteration 4,

(f) iteration 6, and (g) iteration 10. In the third and the fourth rows,

we show the zoomed-in window in S and Im, respectively. Plots in

(b) represent the SSIM and PSNR vs iteration number curves for

the window in Im shown in the fourth row.

(a) (b) (c) (d) (e)

Figure 5. (a) Images, (b) Pairs of mirror symmetric points (differ-

ent colors represent different clusters), (c) S, (d) f, and (e) Im.

rate against the distance threshold τ for the schemes: Iter-

ative random search (IRS), mean mirror pixel (MMP), and

best mirror pixel (BMP). We observe that the correspon-

dences rate for IRS is higher than that of the MMP and

BMP.

SSIM and PSNR. The similarity between the images I and

Im represents the quality of estimated NMRF. The more

similar the images I and Im, the better will be the quality

of NMRF. In order to measure the similarity between the
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Figure 6. Fraction of correct mirror symmetric correspondences vs

the distance threshold τ curve for the methods IRS (iterative ran-

dom search), MMP (Mean Mirror Pixel), and BMP (Best Mirror

Pixel).
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Figure 7. SSIM and PSNR vs the iteration number curve for the

methods IRS, MMP , and BMP.

images I and Im, we use SSIM and PSNR. In Figure 7, we

plot SSIM and PSNR against the iteration number for the

schemes IRS, MMP, and BMP from the images with sin-

gle symmetry axis taken from the dataset [25]. Since there

are no iterations for the schemes MMP and BMP, SSIM and

PSNR remain constant for them. For IRS, both SSIM and

PSNR increase as the number of iterations increase.

4.3. Evaluation of SSM

In order to evaluate the SSM, we follow a method similar

to what is adopted to evaluate a saliency algorithm. First, to

get the ground truth symmetry map (binary), we manually

select 76 images which contain objects exhibiting reflec-

tion symmetry in the dataset [8], which also has the ground

truth binary segmentation maps. Let G denote a ground

truth map. We also manually segment 64 images from [25]

containing symmetric objects to augment this dataset with

more images. To compare with the binary symmetry map,

denoted as Φ, we threshold the estimated symmetry score

map with different thresholds (with a step size of 12.8 in the

range [0, 255]) as proposed in [1]. We find the precision and

recall rates (
|Φ∧G|
|Φ| and

|Φ∧G|
|G| , respectively). In Figure 8, we

plot the precision vs recall curve. We also compute the AUC

Recall/False Positive Rate
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Figure 8. The Precision Vs Recall curve (red) and the ROC curve

(blue) for the threshold with step size 12.8 in the range 0 to 255,

on 140 images.

for the false positive rate (FPR) vs true positive rate (TPR)

curve. The true positive rate measures the fraction of sym-

metric pixels which are correctly labelled
|Φ∧G|
|G| . The false

positive rate measures the fraction of non-symmetric pixels

which are classified as symmetric pixels
|Φ∧¬G|
|¬G| . The AUC

and the mean precision, mean recall, and Fβ scores are re-

ported in Table 1 for the threshold value Tf = 100. Our

method takes on an average 2.5 minutes for an image (of

size approximately equal to 640 in both the dimensions) to

compute the reflection symmetry map (NMRF and SSM) in

Intel Core i5 processor with 8 GB RAM.

Table 1. Precision, Recall and Fβ (β = 0.3) at Tb = 100, and the

area under the FPR vs TPR curve.

Measure Precision Recall Fβ AUC

Score 0.6880 0.60 0.6794 0.8531

4.4. Evaluation of Symmetry Axes Detection

We detect the symmetry axes using the estimated corre-

spondences between the mirror symmetric pixels. We use

the framework proposed in Section 3 to cluster the corre-

spondences and estimate the axes parameters. We compare

our results with the methods given in [5] and [28] by com-

puting the precision and the recall values. In Figure 9 we

represent the precision and the recall values. Our perfor-

mance is comparable to that of [5] and [28].
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Figure 9. The Precision and the Recall values on the dataset [46].

Here, RS: real images single axis, RM: real images with multi-

ple axes, SS: synthetic images with single axis, and SM: synthetic

images with multiple axes.

5. Application: Symmetry Preserving Styliza-

tion

Energy guided or structure preserving stylization of im-

ages has been an interesting application in computer graph-

ics, especially in non-photorealistic rendering. DeCarlo and

Santella stylized image by preserving more details in the re-

gion where the eye-tracker responses were high and fewer

details in the regions where eye-tracker responses were low

[10]. There are various methods preserving structures such

as saliency, shape, flow, texture, and gradient while styliz-

ing ([11, 55, 18, 42, 17, 57]). We propose a simple method

to stylize the input image while preserving the abstract de-

tails in symmetric regions and removing details in the non-

symmetric regions. We process only the SSM component

of the reflection symmetry map for this application. We

first over-segment the image into superpixels by using SLIC

[2]. We merge the superpixel (let us denote it by si) having

the minimum average symmetry score to its adjacent super-

pixel (let us denote it by sj) which has the next higher aver-

age symmetry score. In order to do this, we first construct

a graph where each superpixel is a vertex and there is an

edge between the two vertices if the corresponding super-

pixels are neighbors of each other. The superpixel merging

is equivalent to edge contraction in the resulting graph. Let

ui be the vertex corresponding to the superpixel si and let

the set Nui
be the set of neighborhoods of the vertex ui,

and uj be the vertex corresponding to the superpixel sj and

let the set Nuj
be the set of neighborhoods of the vertex

uj . Here, we observe that ui ∈ Nuj
and uj ∈ Nui

. Con-

tracting the edge eij = (ui, uj) results in a new vertex w

and the set of neighbors of the resulting vertex w becomes

Nw = {Nui
\{uj}} ∪ {Nuj

\{ui}}. After merging the su-

perpixels si and sj , we set the average symmetry score of

the new superpixel to be the average of the symmetry scores

of si and sj . We keep merging superpixels till the minimum

average symmetry score over the remaining superpixels is

above a predefined threshold. We then smooth each super-

pixel by replacing the color of each pixel by the average

color within the superpixel.

In Figure 10, we present the results of the stylization of

few images. We also present the results of other popular

structure preserving stylization methods ([42],[55]) to vi-

sually compare our results. We are able to preserve more

details in the symmetric regions and fewer details in the

non-symmetric regions as compared to these methods. We

observe from the results of these methods (shown in Figure

10 (e) and (f)) that these methods retain a significant amount

of details in the non-symmetric regions, but our method re-

moves most of the details from the non-symmetric regions.

(a) (b) (c) (d) (e) (f)
Figure 10. Results of stylization (a) Input images, (b) [42],

(c) [55], (d) Superpixel over-segmentation (green colored bound-

aries), (e) Computed reflection symmetry map, (f) Proposed

method.

6. Conclusion

We have presented a novel definition and description of

the concept of reflection symmetry map for a given image

containing a symmetric object. This concept has been re-

alized using a randomized algorithm which enables us to

compute the reflection symmetry map. In this work, for a

given image containing an object exhibiting reflection sym-

metry, we have computed the symmetry map which is a

collection of two maps: NMRF and SSM. To estimate the

symmetry map, we have exploited the reflection symmetry

coherency present in the image and efficient approximate

nearest neighbor search methods. We have shown the im-

portance of symmetry map by using it in an important appli-

cation - symmetry preserving image stylization. As a future

work, we would like to compute the symmetry map without

any computation of candidate pairs of points which are mir-

ror reflections of each other. We also would like to use the

symmetry map for more computer vision applications.
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