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Abstract

Video background modeling is an important preprocess-

ing stage for various applications and principal component

pursuit (PCP) is among the state-of-the-art algorithms for

this task. One of the main drawbacks of PCP is its sensitiv-

ity to jitter and camera movement. This problem has only

been partially solved by a few methods devised for jitter or

small transformations. However, such methods cannot han-

dle the case of moving or panning cameras. We present

a novel, fully incremental PCP algorithm, named incPCP-

PTI, that is able to cope with panning scenarios and jit-

ter by continuously aligning the low-rank component to the

current reference frame of the camera. To the best of our

knowledge, incPCP-PTI is the first low rank plus additive

incremental matrix method capable of handling these sce-

narios. Results on synthetic videos and CDNET2014 videos

show that incPCP-PTI is able to maintain a good perfor-

mance in the detection of moving objects even when pan-

ning and jitter are present in a video.

1. Introduction

Video background modeling consists on segmenting the

“foreground” or moving objects from the static “back-

ground”. It is an important first step in various computer

vision applications [39] such as abnormal event identifica-

tion [7] and surveillance [3].

Several video background modeling methods using dif-

ferent approaches such as Gaussian mixture models [41],

kernel density estimations [16] or neural networks [23] ex-

ist in the literature. More comprehensive surveys of other

methods are presented in [34] and [39]. Principal Com-

ponent Pursuit (PCP) is currently considered to be one of

the leading algorithms for video background modeling [5].

Formally, PCP was introduced in [38] as the non-convex

optimization problem

argmin
L,S

rank(L) + λ‖S‖0 s.t. D = L+ S, (1)

where the matrix D ∈ R
m×n is formed by the n observed

frames, each of size m = Nr×Nc×Nd (rows, columns and

number of channels, respectively), L ∈ R
m×n is a low-rank

matrix representing the background, S ∈ R
m×n is a sparse

matrix representing the foreground, λ is a fixed global regu-

larization parameter, and rank(L) is the rank of L and ‖S‖0
is the ℓ0 norm of S.

Although the convex relaxation given in (2)

argmin
L,S

‖L‖∗ + λ‖S‖1 s.t. D = L+ S , (2)

where ‖L‖∗ is the nuclear norm of matrix L (i.e.
∑

k |σk(L)|, the sum of the singular values of L), and ‖S‖1
is the ℓ1 norm of S, is at the core of most PCP algorithms

(including the Augmented Lagrange Multiplier (ALM) and

inexact ALM (iALM) algorithms, see [21, 22]), there ex-

ists several others (for a complete list, see [4, Table 4]). In

particular, we point out

argmin
L,S

1

2
‖L+S−D‖2F +λ‖S‖1 s.t. rank(L) ≤ r, (3)

where ‖ · ‖2F is the Frobenious norm, which was originally

proposed in [28], since we will use it as the starting point of

our proposed method (see Sections 2.2 and 3.1).

In [5] it was showed that PCP provides state-of-the-art

performance in video background modeling problems, but

also some of its limitations were stated.

First, PCP is inherently a batch method with high com-

putational and memory requirements. This problem has

been addressed in the past by means of solutions based on

rank-1 updates for thin SVD [32, 29] (applied to (3)), by

low-rank subspace tracking [19] (applied to (2)), stochas-

tic optimization [17] (which applies the Maximum-Margin

Matrix Factorization (M3F) method, [35], to (2)), or ran-

dom sampling [25] (also applied to (2)).

11844



The second shortcoming of PCP, which is particularly

relevant to the present work, is its sensitivity to jitter and

its inability to cope with panning video frames. The Ro-

bust Alignment by Sparse and Low-Rank decomposition

(RASL) method [24], which used (2) as its starting point,

addressed the problem of jitter in PCP using a series of ge-

ometric transformations on the observed frame, but as orig-

inally casted it is a batch method. On the other hand, t-

GRASTA [20] and incPCP-TI [30], which used (2) and (3)

apiece as their starting point, addressed the problem of jit-

ter in a semi-incremental or fully incremental way by apply-

ing geometric transformation to the observed frames or low-

rank component, respectively. Other proposed methods are

robust against moving camera and panning [10, 40, 14], but

all of them are batch or semi-batch methods; furthermore,

all of them used (2) as their starting point and also used the

same general ideas (see (4)) as RASL. Therefore, a fully on-

line PCP algorithm able to cope with both jitter and panning

is still an open problem. This phenomenon is of particular

importance in some applications such as surveillance sys-

tems that use moving traffic or air cameras.

In the present study, we propose to address the panning

problem by modifying the optimization problem solved

by incPCP-TI [32], which in turn uses (3) as its starting

point, and applying a set of transformations to the low-

rank component that are updated with each incoming new

frame. Our computational experiments on synthetically

created datasets and publicly available videos of the CD-

NET2014 [37] dataset show that the proposed algorithm,

henceforth referred as Panning and transformation invari-

ant incPCP (incPCP-PTI), is able to correctly handle video

background modeling in panning and basic jitter conditions.

2. Previous related work

In this section, two previous on-line or partially on-line

PCP methods that work under jitter conditions are reviewed.

It should be noted that, without modification, these two

methods are not directly applicable to panning scenarios.

2.1. tGRASTA

The Grassmannian Robust Adaptive Subspace Tracking

Algorithm (GRASTA) [19] is a semi on-line method for

low-rank subspace tracking that has been applied to the

foreground-background separation problem. GRASTA is

not a fully on-line algorithm as it requires an initialization

stage to obtain an initial low-rank subspace from the first p

frames. A modification called t-GRASTA was presented in

[20] and it is based on the Robust Alignment by Sparse and

Low-Rank decomposition (RASL) algorithm [24]. RASL

tries to handle the misalignment in the video frames by solv-

ing

argmin
L,S,τ

‖L‖∗ + λ‖S‖1 s.t. τ(D) = L+ S, (4)

where τ(·) are a series of per-frame transformations that

align all the observed frames; it is straightforward to note

that (4) is an extension to (2).

The non-linearity in the transformations τ of (4) are han-

dled via a linearization using the Jacobian. The main draw-

back of t-GRASTA is that, aside from the required low-rank

subspace initialization, the initial transformation τ is esti-

mated by using a similarity transformation obtained from a

series of three points manually chosen from each of the p

initial frames. This initialization stage severely constraints

its application in automatic processes and reduces its appli-

cability in panning scenarios, as the feature points in initial

frames may not be present on subsequent frames.

2.2. incPCPTI

The incPCP-TI [30] considers the optimization problem

argmin
L∗,S,T

1
2‖D − T (L∗)− S‖22 + λ‖S‖1

s.t. rank(L∗) ≤ r, (5)

where D is the observed video sequence that suffers from

jitter, L∗ is the properly aligned low-rank representation and

T = {Tk} is a set of transformations that compensate trans-

lational and rotational jitter, i.e.:

D = T (D∗) = H ∗R(D,α), (6)

where D∗ represents the un-observed jitter-free video se-

quence, H = {hk} is a set filters that independently mod-

els translation for each frame, ∗ represents convolutiona and

R(D,α) is a set of independent rotations applied to each

frame with angle α = {αk}. It is interesting to note that

T = τ−1, i.e. the transformation used in (5) can be under-

stood as the inverse of the transformation used in RASL or

t-GRATSA (see (4)).

In [32, 29] a computationally efficient and fully increm-

netal algorithm, based on rank-1 updates for thin SVD, was

proposed to solve (3); in [30] it was shown that, since (5)

is based on (3), such incremental solution can also be used:

letting dk k ∈ {1, 2, . . . , n} represent each frame of the ob-

served video D, and using similar relationships for sk and

l
∗
k w.r.t. S and L∗ respectively, then indeed the solution of

argmin
L,S,H,α

1

2

∑

k

‖hk ∗R(l
∗

k, αk) + sk − dk‖
2
F + λ‖S‖1

+γ
∑

k

‖hk‖1 s.t. rank(L
∗

) ≤ r; (7)

can be efficiently computed in an incremental fashion (see

[30, Section 3.3] for details).
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3. Methods

3.1. Proposed incPCPPTI Method

The proposed algorithm (named incPCP-PTI) is a modi-

fication of the previously proposed incPCP-TI [30] so that it

is able to handle panning and camera motion. The method

continuously estimates the alignment transformation T , so

that T (l∗k) = dk, i.e., the transformation that aligns the

previous low-rank representation with the observed current

frame. Thus, incPCP-PTI effectively uses T (l∗k) as a lo-

cal estimation of a composite panoramic background im-

age. After applying such transformation to L∗, the PCP

problem can be solved in the reference frame of dk. After

this initial alignment, it is considered that only minor jitter

remains in the image and so a procedure similar to incPCP-

TI is utilized by estimating a transformation ξk for the k-th

frame. However, instead of using iterative hard threshold-

ing (IHT) [18] as in the original incPCP-TI, the low-rank

approximation problem is solved in the reference frame of

dk by applying ξ−1
k to the residual dk−sk. The whole pro-

cedure is presented in Algorithm 1. This algorithm makes

use of the repSVD and downSVD operators, which corre-

spond to the thin SVD replacement and downdate operators,

respectively [32].

In line 3 of Algorithm 1, the latest low rank frame lk is

aligned to the current frame dk. The transformation is esti-

mated as the composition of a translation and rotation. Such

found align transformation Tk(L) is used then to update the

whole low rank matrix representation L to the current ref-

erence axis (lines 4 and 5 of Algorithm 1) in order to obtain

L∗. After this initial align transformation is performed, it

is assumed that only minor misalignments, modeled by ξk,

due to jitter remain (line 10 of Algorithm 1).

The ghosting suppression mentioned in line 16 is de-

tailed in subsection 3.3. The shrinkage in line 9 of Algo-

rithm 1 can be performed by either soft-thresholding or pro-

jection on the ℓ1-ball. Soft-thresholding is performed with

a simple element-wise shrinkage operator (shrink(x, λ) =
sign(x)max (0, |x| − λ)). Projection onto the ℓ1 ball is de-

tailed in subsection 3.2. For all our experiments, the latter

was chosen.

3.2. Projection on the ℓ1 ball

Although theoretical guidance is available for selecting

a minimax optimal regularization parameter λ in (2) [8],

practical problems do not fully satisfy the idealized assump-

tions, and thus λ often has to be heuristically tuned. This

problem is also observed if (3) is used instead of (2).

To tackle this problem, [33] introduced the alternative

convex relaxation of (1) given by

argmin
L,S

1
2‖L+ S −D‖2F

s.t. ‖S‖1 ≤ µ, rank(L) ≤ r, (8)

Algorithm 1: incpcp-PTI

Input: observed video D, internal parameters for

shrinkage, internal parameters for

transformation estimation, number of

innerLoops iL, background frames bl, m = k0
Initialization: L+ S = D(:, 1 : k0), initial rank r,

[Ur,Σr, Vr] = partialSVD(L, r)
1 for k = k0 + 1 : n do

2 ++m;

3 find Tk such that ||Tk(lk−1)− dk||2 is minimized

4 obtain L∗ = Tk(L) = [Tk(l1), . . . , Tk(lk−1)]
5 [Uk,Σk, Vk] = partialSVD(L∗, r)
6 [Uk,Σk, Vk] = incSVD (dk, Uk,Σk, Vk)
7 for j = 1 : iL do

8 l
∗
k = Uk(:, 1 : r) ∗ Σk ∗ (Vk(end, :)

′)
9 sk = shrink(dk − l

∗
k)

10 ξk = argminξ ||ξ(l∗k)− (dk − sk)||2
11 if j==iL then

12 break

13 ρ = ξ−1
k (dk − sk)

14 [Uk,Σk, Vk] = repSVD (dk, ρ, Uk,Σk, Vk)

15 end

16 Apply ghosting suppression

17 if m ≥ bL then

18 downSVD (1stcolumn, Uk,Σk, Vk)
19 Update k if necessary

20 end

which can also be incrementally solved via rank-1 updates

for thin SVD (as is the case of the incPCP and related al-

gorithms [32, 29, 30]), however (8) has the advantage that a

simple heuristic can be derived for the adaptive selection of

µ for each frame. Furthermore, µ can be spatially adapted

in order to reduce ghosting effects. The algorithm they pro-

pose is very similar to incPCP, save for the shrinkage step,

which is calculated as sk = proj‖·‖1
(dk − lk, µ), where

proj‖·‖1
(u, µ) , min

x

1

2
‖x− u‖22 s.t. ‖x‖1 ≤ µ. (9)

Thus, for the shrinkage step, the solution is given by pro-

jections into the ℓ1-ball of radius µ.

While there are several well-known and efficient algo-

rithms that solve (9), such [13, 11], [33] used [27], a re-

cently published algorithm for (9) that has a better compu-

tational performance than either [13] or [11].

Furthermore, [33] also proposed a simple schema for

adapting µk with every frame, which is given by

µk = α · ‖dk − lk‖1, (10)

where α is a value between 0.5 and 0.75.
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3.3. Ghosting suppression

Ghosting refers to when the foreground estimates in-

cludes phantoms or smear replicas from actual moving ob-

jects. In [31], they proposed a procedure for ghosting sup-

pression in the incPCP algorithm which consists on using

binary masks obtained from different frames in order to re-

move the ghosts from the low-rank component. In this ap-

proach, two sparse components at different time steps n1

and n2 are used to compute respective binary masks m
(n1)
k

and m
(n2)
k . These masks will include the moving objects as

well as ghosts. A new binary mask bk = (m
(n1)
k ∩m

(n2)
k )C ,

i.e. the complement of the intersection of binary masks ob-

tained from the aforementioned two frames, will include,

with high probability, all pixels of the background that are

not occluded by a moving object. bk can then be used to

generate a modified input frame d̂
(n)
k = dk⊙bk+lk⊙(1−

bk), where ⊙ represents an Hadamard product, that is used

to update the low-rank component. Additionally, if the pro-

cedure with the ℓ1 ball projection described in 3.2 is used for

the shrinkage step, µk can be spatially adapted in order to

reduce ghosting [33]. Based on the difference between the

current and previous sparse approximation zk = sk − sk−1

a binary mask mk can be computed and then the sparse

component is modified as:

sk = (1−mk)⊙ ŝk +mk ⊙ s̃k, (11)

where ŝk = proj‖·‖1
(dk− lk, µk) and s̃k = proj‖·‖1

(mk⊙

ŝk, µ
(g)
k ) and µ

(g)
k = β · ‖mk ⊙ ŝk‖1, where prox‖·‖1

(·) is

defined in (9); β is suggested to take values between 0.1 and

0.3

4. Dataset and computational experiments de-

scription

For the evaluation of the proposed incPCP-PTI algo-

rithm, two datasets were considered. The first dataset con-

sisted on synthetic jitter and panning videos and the sec-

ond one consisted on videos of real panning taken from

the CDNet 2014 dataset [37]. Both datasets are detailed in

this section. All tests were carried out using GPU-enabled

Matlab code running on an Intel i7-2600K CPU (8 cores,

3.40 GHz, 8MB Cache, 32GB RAM) with a 12GB NVIDIA

Tesla K40C GPU card.

4.1. Synthetic datasets

A dataset with synthetic panning and jitter was gen-

erated from the 3rd Tower video of the USC Neovision2

dataset [36], which consists on 900 frames of size 1920 ×
1088 pixel at 25 fps. For this purpose, a subregion of 720 ×
480 pixel was selected from each frame and the centroid of

the subregion was translated with each new frame in order

to simulate an aerial panning scenario using the piecewise

linear trajectory u[n] given by :

u[n] =

{

u[n− 1] + v · (1, 1) u[n− 1]x < Q

u[n− 1] + v · (1, 0) u[n− 1]x ≥ Q
(12)

where u[0] is the initial point (in this case chosen as

(150, 688) pixel) and is the point of slope change in the

curve (chosen as Q = 500 pixel). This process is de-

picted in Figure 1. The panning velocity v was taken as

1, 3, 5 pixels per frame. A fourth case in which the velocity

changed randomly between 1 and 7 pixels per frame was

also considered. This dataset will be referred as SP (“syn-

thetic panning”) dataset. Additionally, this same procedure

was used to construct a dataset on jittered versions of the

original frames. Each frame of the 3rd Tower video was

jittered with random uniformly distributed translations on

the [−10, 10] pixels range and random uniformly distributed

rotations on the [−0.5, 0.5] degrees range. The same tra-

jectory and subregion selection of the SP dataset was used.

This second synthetic dataset will be referred as SPJ (“syn-

thetic panning and jitter dataset”) dataset. For both the SP

and SPJ datasets, the sparse approximation via the batch

iALM method [21] using 20 outer iterations was used as a

proxy ground-truth by selecting the same regions that were

selected from the original frames. The iALM was chosen

as the proxy ground-truth since, as reported in [5, Tables 6

and 7], this result is considered to be reliable. For these syn-

thetic datasets, the performance of the proposed algorithm

was measured in terms of the normalized ℓ1 distance

M(sk) =
||sgtk − sk||1

N
, (13)

where s
gt
k and sk are the groundtruth and computed sparse

components for frame k, respectively, and N is the number

of pixels of the frame. Considering images normalized be-

tween 0 and 1, the value of M(sk) varies from 0 (perfect

match with the groundtruth) to 1.

4.2. Real panning and jitter dataset

Two videos from the PTZ category of the CDNet 2014

dataset [37] were chosen:

• continuousPan(CP): 704 x 480 pixel, 1700 frames-

color video containing a continuous panning of a PTZ

camera. The video is almost jitter free.

• intermittentPan(IP): 560 x 368 pixel, 3500 frame-color

of a PTZ camera that changes between two fixed po-

sitions. The video contains intermittent panning and

additional real jitter.

For both the CP and IP videos, the binary mask ob-

tained from the incPCP-PTI algorithm was compared to the
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Figure 1. Construction of the synthetic panning and jitter dataset. The selected region (blue rectangles) were of 720 × 480 pixel and the

centroid of the region was translated at a velocity v (red vector) along a piecewise linear trajectory (green).

ground truth provided in the CDNet dataset in order to ob-

tain an F-measure, defined as

F =
2 · P ·R

P +R
, P =

TP

TP + FN
, R =

TP

TP + FP
, (14)

where P and R stands for precision and recall, respec-

tively, and TP, FN and FP are the number of true posi-

tives, false negatives and false positive pixels, respectively.

The F-measure was evaluated only on frames that contained

groudtruth motion.

4.3. Comparisons

To the best of our knowledge, no other low-rank plus ad-

ditive matrix video background modeling technique capa-

ble of handling panning has been reported in the literature.

This situation puts some constraints in our evaluations. Ac-

cordingly, for the SP dataset only the incPCP-PTI method

was evaluated. For the SPJ dataset, we evaluated incPCP-

PTI and a method consisting on a preprocessing stage using

a recent state-of-the-art video stabilization technique [12]1

followed by incPCP-PTI (this method will be denoted as

stab+incPCP-PTI). This comparison had as objective deter-

mining if jitter is handled correctly by incPCP-PTI alone.

Additionally, we include a baseline comparison with the

sparse components obtained with incPCP on the full Neovi-

sion Tower video and then segmented used the same proce-

dure described in subsection 4.1.

For the real videos, we also included a comparison with

the Edge Based Foreground Background Segmentation and

Interior Classification (EFIC) [1] and its color version, C-

EFIC [2]. These methods were chosen as they obtained the

second and third best F-measure in the PTZ category of the

CDNET2014 dataset results [26]. The top performer in the

1The authors of the paper provide a binary executable version of the

algorithm in real-timedvs.blogspot.pe

category was not selected as it corresponded to a supervised

convolutional neural network that needs proper training be-

fore classification. Unfortunately, no open code is avail-

able for EFIC and C-EFIC, and we only had access to the

segmented binary masks submitted to the challenge [15, 6].

Due to this limitation, only a referential F-measure could be

computed. The absence of open code makes it difficult to

ascertain if EFIC and C-EFIC can be implemented in a fully

incremental way and to compare them in terms of compu-

tational performance. Additionally, EFIC and C-EFIC in-

clude a post-processing step on the binary mask. Therefore,

it was considered appropriate to also compare incPCP-PTI

and stab+incPCP-PTI with a simple post-processing of the

binary mask that corresponds to the computation of the con-

vex hull of the connected objects [9]. For completeness, this

post-processing after EFIC is also reported but, as noted,

this method already entails a post-processing technique. For

all incPCP-PTI variants, three inner loops and a window

size of 30 background frames. For the ℓ1 ball projection, α

was set to 0.75 and the ghosting suppression n2 − n1 was

set to 20 frames. α controls the adaptation of τ , with lower

α forcing a sparser solution, whereas the difference n2−n1

controls the number of frames used for ghosting suppres-

sion.

5. Results

5.1. Synthetic datasets

5.1.1 SP dataset

The distance M(sk) (see (13)) computed for each frame of

the different videos of the SP dataset are shown in Figure 2.

Table 1 shows the average distance M(sk) and average time

for processing one frame along with a baseline metric, de-

scribed in Section 4.3. It can be noticed that the distance

tends to increase as the panning velocity increases but the
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Frame number

100 200 300 400 500 600 700 800

M
(s

k
)

0
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0.008
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0.012

0.014

0.016

0.018

0.02

v=1

v=3

v=5

changing v

Figure 2. Value of distance δ between binary mask and groundtruth

frames for incPCP-PTI on the SP dataset

Table 1. Value of average distance M(sk) between binary mask

and groundtruth frames for incPCP-PTI and baseline incPCP (see

Section 4.3) on the SP dataset. Computational time per frame for

incPCP-PTI is also shown.

Dataset
incPCP-PTI

M(sk)

incPCP-PTI

average time

per frame

(seconds)

Baseline

incPCP

M(sk)

v=1 0.0028 2.10 0.0024

v=3 0.0053 2.10 0.0047

v=5 0.0064 2.11 0.0054

Changing v 0.0055 2.09 0.0029

distance in all cases maintains relatively small (below 0.01).

5.1.2 SPJ dataset

Representative frames of the SPJ video with changing ve-

locity and the segmented sparse components with incPCP-

PTI and stab+incPCP-PTI are shown in Figure 3. The

distance M(sk) computed for each frame of the different

videos of the SPJ dataset are shown in Figure 4 and Fig-

ure 5 for incPCP-PTI and stab+incPCP-PTI, respectively.

Table 2 exhibits the average distance M(sk) for the SPJ

dataset for both methods along with a baseline metric, de-

scribed in Section 4.3. In general, the distance for these

videos is higher than the distance obtained for their non-

jitter counterparts.

5.2. Real panning and jitter dataset

Representative frames of the video and the segmented

sparse components for the CP and IP video are shown in

Figures 6 and 7, respectively. Figure 8 shows the F-measure

(with no post-processing) for incPCP-PTI (grayscale and

color versions) and EFIC and C-EFIC on the frames of the

CP video, while Figure 9 shows the same metric for all

methods on the frames of the IP video. Tables 3 and 4 show

Original video incPCP-PTI Stab+incPCP-PTI

Original video incPCP-PTI Stab+incPCP-PTI

Figure 3. Representative frames of the video and the segmented

sparse components for the SPJ dataset. Frame 100 is shown in the

top row and frame 355 is shown in the bottom row

Frame number

100 200 300 400 500 600 700 800

M
(s

k
)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

v=1

v=3

v=5

changing v

Figure 4. Value of distance M(sk) between binary mask and

groundtruth frames for incPCP-PTI on the SPJ dataset

Frame number

100 200 300 400 500 600 700 800

M
(s

k
)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

v=1

v=3

v=5

changing v

Figure 5. Value of distance M(sk) between binary mask and

groundtruth frames for stab+incPCP-PTI on the SPJ dataset

the average F-measure and computational time obtained

over all frames. The F-measures with post-processing are

shown in brackets. For stab+incPCP-PTI the computational

time is shown as (Total stabilization time) + (incPCP-PTI
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Table 2. Value of average distance M(sk) for incPCP-PTI,

stab+incPCP-PTI and baseline incPCP (see Section 4.3) on the

SPJ dataset.

Dataset incPCP-PTI stab+incPCP-

PTI

Baseline

incPCP

v=1 0.0057 0.0038 0.0015

v=3 0.0064 0.0064 0.0021

v=5 0.0071 0.0079 0.0022

Changing v 0.0066 0.0065 0.0024

Original video incPCP-PTI

Original video incPCP-PTI

Figure 6. Representative frames of the video and the segmented

sparse components for the CP video obtained with both incPCP-

PTI and Stab+incPCP-PTI. Frame 90 is shown in the top row and

frame 988 is shown in the bottom row.

Original video incPCP-PTI Stab+incPCP-PTI

Original video incPCP-PTI Stab+incPCP-PTI

Figure 7. Representative frames of the video and the segmented

sparse components for the IP video obtained with both incPCP-

PTI and stab+incPCP-PTI. Frame 1260 is shown in the top row

and frame 1870 is shown in the bottom row.

time per frame)

6. Discussion

It is observed in the results of subsection 5.1.1 that, as

expected, the distance M(sk) increased, i.e. the sparse ap-

proximation was worse, as the panning velocity increased.
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Figure 8. Value of F-measure and computational time per frame for

the CP video. NOTE: shown only for available frames (restriction

of dataset).

Frame number

1200 1400 1600 1800 2000 2200

F
-m

e
a

s
u

re

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

gray incPCP-PTI

color incPCP-PTI

gray stab+incPCP-PTI

color stab+incPCP-PTI

EFIC

C-EFIC

Figure 9. Value of F-measure and computational time per frame for

the IP video. NOTE: shown only for available frames (restriction

of dataset).

Table 3. Value of F-measure for grayscale and color incPCP-PTI

and for EFIC and C-EFIC on the CP video. The F-measure after

post-processing with the convex hull is shown in square brackets.

Method F-measure

Average time

per frame

(seconds)

grayscale

incPCP-PTI
0.45 [0.50] 2.10

color

incPCP-PTI
0.47 [0.49] 3.58

EFIC 0.42 [0.42] -

C-EFIC 0.40 [0.46] -

On the contrary, velocity changes did not seem to have a

large impact on the sparse estimation. Also expected is

the fact that adding jitter to the panning scenario (subsec-

tion 5.1.2) increased the distance M(sk) for all panning ve-

locities with respect to their jitter-free counterparts. The

overall stability of the estimated distance also decreased, as

evidenced in the higher variability of the curves in Figure 4.

1850



Table 4. Value of F-measure for grayscale and color incPCP-PTI

and stab+incPCP-PTI on the IP video. The F-measure after post-

processing with the convex hull is shown in square brackets.

Method
Average

F-measure

Average time

per frame

(seconds)

grayscale

incPCP-PTI
0.62 [0.69] 1.41

color

incPCP-PTI
0.64 [0.70] 2.31

grayscale

stab+incPCP-

PTI

0.57 [0.63] (89) + (1.41)

color

stab+incPCP-

PTI

0.59 [0.64] (89) + (2.31)

EFIC 0.68 [0.72] -

C-EFIC 0.64 [0.67]
-

The inclusion of a video stabilization preprocessing tech-

nique (Stab+incPCP-PTI) seemed to decrease such vari-

ability Figure 5. Nevertheless, even with jitter, standalone

incPCP-PTI maintained a low average M(sk) distance and

its performance is comparable with stab+incPCP-PTI, as

can be observed in Table 2. Furthermore, although incPCP-

PTI obtained higher distances than baseline incPCP, values

tend to be close to each other and, for all tested veloci-

ties, incPCP-PTI managed to maintain a very small distance

from the ground truth (below 0.01 for all cases).

The results of subsection 5.2 show that incPCP-PTI can

perform adequately in real panning videos. The representa-

tive frames of Figures 6 and 7 exhibit different positions of

the PTZ camera and thus evidence the ability of incPCP-PTI

of handling the panning movements in the scene. IncPCP-

PTI presents a relatively good F-measure for both videos.

This metric tended to be higher for the color version of

the algorithm. In Figure 9, it can be observed that the F-

measure suffers decays at specific intervals of the video that

coincide with sudden movements of the PTZ camera. How-

ever, after these sudden movements, the algorithm is able to

re-stabilize and perform correctly.

For both the CP and IP videos, incPCP-PTI showed a

higher F-measure than stab+incPCP-PTI, although a pos-

sible explanation is the misalignment of the ground truth

reference frame and the reference frame of the stabilization

algorithm. Nevertheless, the visual inspection of the frames

and the results from the SPJ dataset suggest that incPCP-

PTI is able to handle the presence of jitter in a panning sce-

nario, and that it does not need a stabilization preprocessing

step. Compared to EFIC, IncPCP-PTI showed superior per-

formance in F-measure in the CP videos, even without the

post-processing stage. In the IP video, incPCP-PTI + post-

processing is comparable or superior in F-measure when

compared with EFIC. As mentioned, the absence of open

code for EFIC makes it difficult to make a more through-

out comparison and to draw further conclusion from these

comparisons.

7. Conclusion

We have presented a novel algorithm, incPCP-PTI, and

have shown with artificial datasets and real videos from

the CDNET2014 dataset that it can adequately detect mov-

ing objects in scenarios with simultaneous panning and jit-

ter. To the best of our knowledge, this is the first PCP

like method able to handle the panning conditions. For the

synthetic datasets, the algorithm maintained a low distance

with respect to the ground truth iALM sparse matrix and

for the real videos, it maintained an adequate F-measure

and was able to stabilize after sudden panning of the cam-

era. Additionally, the comparisons with stab+incPCP-PTI

(independent video stabilization followed by incPCP-PTI)

suggests that a stabilization stage preceding incPCP-PTI is

not needed, as it is able to handle the jitter present in the

camera motions. The evaluations on real videos show the

incPCP-PTI might be comparable or superior, depending on

the case, to state-of-the-art non-PCP like foreground sepa-

ration methods.

Further improvements of the algorithm might focus on

(i) making it able to handle other types of distortions like

perspective changes or zooming in/out of the camera, and

(ii) reduce the time it takes per frame in order to make it

more readily accessible for high frame rate real-time appli-

cations.
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