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Abstract

In this paper, we propose an efficient variational

Bayesian (VB) solver for a robust variant of low-rank

subspace clustering (LRSC). VB learning offers automatic

model selection without parameter tuning. However, it is

typically performed by local search with update rules de-

rived from conditional conjugacy, and therefore prone to

local minima problem. Instead, we use an approximate

global solver for LRSC with an element-wise sparse term

to make it robust against spiky noise. In experiment, our

method (mean update solver for robust LRSC), outperforms

the original LRSC, as well as the robust LRSC with the stan-

dard VB solver.

1. Introduction

Subspace clustering (SC) finds a clustering structure

based not on the adjacency between samples but on the

distance to the subspaces spanned by the member sam-

ples. The method was proposed in non-Bayesian way

[6, 21, 7, 11, 13, 12] and the low-rank SC (LRSC), a variant

of SC, was subsequently casted into the Bayesian frame-

work [3, 16].

A notable advantage of Bayesian learning is that it can

be free from parameter tuning. More specifically, one can

perform model selection by minimizing the marginal likeli-

hood, computed from training data. Moreover, by using au-

tomatic relevance determination (ARD) prior, a single infer-

ence provides the inference result after model selection by

eliminating the irrelevant components automatically [4, 18].

On the other hand, one of the drawbacks of VB learn-

ing is that the inference algorithm is typically local search,

which is prone to local minima problem. However, there are

a few cases where an efficient (approximate) global solver

is available.

In probabilictic PCA or fully-observed matrix factoriza-

tion, it was shown that the VB solution can be expressed

as a truncated and shrunken singular value decomposition,

where the shrunken singular values can be analytically com-

puted from the original singular values [17]. A similar ap-

proach was applied to LRSC, and an efficient approximate

global solver has been derived [16].

The analytic solution for the fully-observed matrix fac-

torization was used for developing efficient algorithms for

more general cases, including matrix factorization with

missing entries and non-conjugate likelihood [19], and

Sparse Additive Matrix Factorization (SAMF) where the

observed matrix is expressed as a sum of various types of

factorizations and noise such that different sparsity struc-

tures are captured [14].

In this paper, we use the approximate global solver for

LRSC to solve its robust variant, i.e., robust LRSC. Ro-

bust LRSC consists of the LRSC term and an element-wise

sparse term that captures spiky observation noise. Since the

global solver is available for each of the LRSC term and the

element-wise sparse term, we can incorporate the frame-

work of mean update algorithm developed for SAMF [14]

with slight modifications.

In our experiment, our mean update solver for robust

LRSC, outperforms the plain LRSC as well as robust LRSC

solved by standard algorithm for VB learning [3].

2. Background

In this section, we summarize previous work, which are

necessary to derive our method in Section 3.

2.1. Subspace Clustering Methods

Let V ∈ R
L×M = (v1, . . . ,vM ) be L-dimensional ob-

served samples of size M . We generally denote a column

vector of a matrix by a bold-faced small letter. We assume

that each ym is approximately expressed as a linear combi-

nation of M ′ words in a dictionary, D = (d1, . . . ,dM ′) ∈
R

L×M ′
, i.e.,

V = DU + E ,

where U ∈ R
M ′×M is unknown coefficients, and E ∈

R
L×M is noise. In subspace clustering, the observed ma-

trix V itself is often used as a dictionary D. The convex
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formulation of the sparse subspace clustering (SSC) [6, 21]

is given by

min
U

‖V − V U‖2Fro + λ‖U‖1, s.t. diag(U) = 0, (1)

where U ∈ R
M×M is a parameter to be estimated, λ >

0 is a regularization coefficient to be manually tuned. ‖ ·
‖Fro and ‖ · ‖1 are the Frobenius norm and the (element-

wise) ℓ1-norm of a matrix, respectively. diag(·) extracts

the diagonal entries of a matrix, and form a vector. The

first term in Eq.(1) requires that each data point vm can be

expressed as a linear combination of a small set of other

data points {dm′} for m′ 6= m. This smallness of the set is

enforced by the second (ℓ1-regularization) term, and leads

to the low-dimensionality of each obtained subspace. After

the minimizer Û is obtained, abs(Û) + abs(Û
⊤
), where

abs(·) takes the absolute value element-wise, is regarded as

an affinity matrix, and a spectral clustering algorithm, such

as normalized cuts [20], is applied to obtain clusters.

In another variant, called the low-rank subspace cluster-

ing (LRSC) or low-rank representation [7, 11, 13, 12], low-

dimensional subspaces are sought by enforcing the low-

rankness of U :

min
U

‖V − V U‖2Fro + λ‖U‖tr, (2)

where ‖ · ‖tr denotes the trace norm of a matrix. Thanks to

the simplicity, the global solution of Eq.(2) has been analyt-

ically obtained [7].

2.2. Variational Bayesian Low­rank Subspace Clus­
tering

We formulate the probabilistic model of LRSC, so that

the maximum a posteriori (MAP) estimator coincides with

the solution of the problem (2) under a certain hyperparam-

eter setting:

p(V |A′,B′) ∝ exp

(
− 1

2σ2
‖V −DB′A′⊤‖2Fro

)
, (3)

p(A′) ∝ exp

(
−1

2
tr(A′C−1

A A′⊤)

)
, (4)

p(B′) ∝ exp

(
−1

2
tr(B′C−1

B B′⊤)

)
. (5)

Here, we factorized U as U = B′A′⊤, as in [3], to in-

duce low-rankness through the model-induced regulariza-

tion mechanism [15]. In this formulation, A′ ∈ R
M×H and

B′ ∈ R
M×H for H ≤ min(L,M) are the parameters to be

estimated. We assume that hyperparameters

CA = diag(c2a1
, . . . , c2aH

), CB = diag(c2b1 , . . . , c
2
bH

).

are diagonal and positive definite. The dictionary D is

treated as a constant, and set to D = V , once V is ob-

served.

2.3. Variational Bayesian (VB) Learning

The Bayes posterior of the LRSC model (3)–(5) can be

written as

p(A′,B′|V ) =
p(V |A′,B′)p(A′)p(B′)

p(V )
, (6)

which is intractable because the marginal likelihood

p(V ) = 〈p(V |A′,B′)〉p(A′)p(B′) is hard to compute.

Here, 〈·〉p denotes the expectation over the distribution p.

The variational Bayesian (VB) learning [1, 4] approx-

imates the Bayes posterior with r(A′,B′) or r for short,

which minimizes the free energy

F (r) =

〈
log

r(A′,B′)

p(V |A′,B′), p(A′)p(B′)

〉

r(A′,B′)

(7)

under the independence constraint

r(A′,B′) = r(A′)r(B′). (8)

Note that the free energy (7) can be written as

F (r) =

〈
log

r(A′,B′)

p(A′,B′|V )

〉

r(A′,B′)

− log p(V ),

where the first term is the Kullback-Leibler (KL) divergence

from r(A′,B′) to the Bayes posterior, and the second term

is a constant. Therefore, minimizing the free energy (7)

amounts to finding a distribution closest to the Bayes pos-

terior from the possible functions specified by the indepen-

dence constraint (8).

2.4. Approximate VB Global Solver for LRSC

The VB solution to the LRSC model (3)–(5) under the

constraint (8) were analyzed [16], and some properties have

been revealed.

Let us transform the parameters as

A = Ω
right⊤
V A′, B = Ω

right⊤
V B′, (9)

where

V = Ωleft
V Γ V Ω

right⊤
V

is the singular value decomposition (SVD) of the observed

matrix V . Then, the following holds:

Proposition 1 [16] The VB posterior that (globally) mini-

mizes the free energy is written as

r(A) ∝ exp


−

tr
(
(A− Â)Σ̂

−1

A (A− Â)⊤
)

2


 , (10)

r(B) ∝ exp


− (b̆

′ − ̂̆b
′
)⊤ ̂̆Σ

−1

B (b̆− ̂̆b)
2


 , (11)
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where b̆ = vec(B) ∈ R
M ·H , and any global solution has its

equivalent solution with diagonal means and covariances,

i.e., all of Â, B̂, Σ̂A,
̂̆
ΣB are diagonal.

This proposition allows us to focus on the so-

lutions where (Â, B̂, Σ̂A,
̂̆
ΣB) are diagonal. Let

J(≤ min(L,M)) be the rank of the observed ma-

trix V , γm be the m-th largest singular value of

V , and (â1, . . . , âH), (σ2
a1
, . . . , σ2

aH
), (̂b1, . . . , b̂H),

((σ2
B1,1

, . . . , σ2
BM,1

), . . . , (σ2
B1,H

, . . . , σ2
BM,H

)) be the diag-

onal entries of Â, Σ̂A, B̂,
̂̆
ΣB , respectively. Then, the fol-

lowing holds:

Proposition 2 [16] The free energy (7) is written as

F =
1

2

(
LM log(2πσ2) +

∑J
h=1 γ

2
h

σ2
+

H∑

h=1

2Fh

)
, (12)

where

2Fh = M log
c2ah

σ2
ah

+

J∑

m=1

log
c2bh

σ2
Bm,h

− (M + J)

+
â2h +Mσ2

ah

c2ah

+
b̂2h +

∑J
m=1 σ

2
Bm,h

c2bh

+
1

σ2

{
γ2
h

(
−2âhb̂h + b̂2h(â

2
h +Mσ2

ah
)
)

+
J∑

m=1

γ2
mσ2

Bm,h
(â2h +Mσ2

ah
)
}
. (13)

Based on the propositions above, an exact global solver

based on homotopy method [10, 8] has been derived, which

however has exponential complexity with respect to J . In

this paper, we focus on an approximate global solver de-

scribed below.

We introduce an additional constraint

γ2
mσ2

Bm,h
= σ2

bh
for all m ≤ J, (14)

which makes the objective function separable for each sin-

gular component. The following holds:

Proposition 3 [16] Under the additional constraint (14),

any stationary point of the free energy (13) for each h sat-

isfies the following polynomial equation with a single vari-

able ̂̂γh:

ξ6̂̂γ
6

h + ξ5̂̂γ
5

h + ξ4̂̂γ
4

h + ξ3̂̂γ
3

h + ξ2̂̂γ
2

h + ξ1̂̂γh + ξ0 = 0,
(15)

where

ξ6 =
φ2
h

γ2
h

, (16)

ξ5 = −2
φ2
hMσ2

γ3
h

+ 2φh

γh
, (17)

ξ4 =
φ2
hM

2σ4

γ4
h

− 2φh(2M−J)σ2

γ2
h

+ 1 +
φ2
h(Mσ2−γ2

h)

γ2
h

, (18)

ξ3 = 2φhM(M−J)σ4

γ3
h

− 2(M−J)σ2

γh
+

φh((M+J)σ2−γ2
h)

γh

− φ2
hMσ2(Mσ2−γ2

h)

γ3
h

+
φh(Mσ2−γ2

h)
γh

, (19)

ξ2 = (M−J)2σ4

γ2
h

− φhMσ2((M+J)σ2−γ2
h)

γ2
h

+ ((M + J)σ2 − γ2
h)−

φh(M−J)σ2(Mσ2−γ2
h)

γ2
h

, (20)

ξ1 = − (M−J)σ2((M+J)σ2−γ2
h)

γh
+ φhMJσ4

γh
, (21)

ξ0 = MJσ4. (22)

Here, φh =
(
1− γ2

h

γ2

)
for γ2 = (

∑J
m=1 γ

−2
m /J)−1. For

each real solution ̂̂γh such that

γ̂h = ̂̂γh + γh − Mσ2

γh
, (23)

κ̂ = γ2
h − (M + J)σ2 −

(
Mσ2 − γ2

h

)
φh

̂̂γh

γh
, (24)

τ̂ = 1
2MJ

(
κ̂+

√
κ̂2 − 4MJσ4

(
1 + φh

̂̂γh

γh

))
, (25)

δ̂h = σ2
√
τ̂

(
γh − Mσ2

γh
− γ̂h

)−1

, (26)

are real and positive, the corresponding stationary point

candidate is given by

(
âh, σ

2
ah
, c2ah

, b̂h, σ
2
bh
, c2bh

)
=

(√
γ̂δ̂, σ2δ̂h

γh
,
√
τ̂ ,

√
γ̂/δ̂/γh,

σ2

γhδ̂h−φh
σ2
√

τ̂

,
√
τ̂ /γ2

h

)
. (27)

Given the noise variance σ2, computing the coefficients

(16)–(22) is straightforward. The approximate global solver

(Algorithm 1) solves the sixth-order polynomial equation

(15), e.g., by the ‘roots’ function in MATLAB R©, and

obtain all candidate stationary points by using Eqs.(23)–

(27). Then, it selects the one giving the smallest Fh, and

the global solution is the selected stationary point if it satis-

fies Fh < 0, otherwise the null solution given by

âh = b̂h = 0, σ2
ah
, σ2

Bm,h
, c2ah

, c2bh → 0 (28)

for m = 1, . . . ,M.

Note that, although a solution of Eq.(15) is not necessarily a

stationary point, selection based on the free energy discards

all non-stationary points and local maxima.
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Algorithm 1 Approximate Global Solver for LRSC.

1: Calculate the SVD of V = Ωleft
V ΓV Ω

right⊤
V .

2: for h = 1 to H do

3: Find all real solutions of the sixth-order polynomial

equation (15).

4: Discard prohibitive solutions such that any of

Eqs.(23)–(26) gives complex or negative number.

5: Compute the corresponding stationary point by

Eq.(27) and its free energy contribution Fh by

Eq.(13) for each of the retained solutions.

6: Select the stationary point giving the minimum free

energy contribution Fh.

7: The global solution for h is the selected stationary

point if it satisfies Fh < 0, otherwise the null local

solution (28).

8: end for

9: Compute Â
′
= Ω

right
V Â and B̂

′
= Ω

right
V B̂ .

10: Apply spectral clustering with the affinity matrix equal

to abs(B̂
′
Â

′⊤
) + abs(Â

′
B̂

′⊤
).

2.5. Mean Update Algorithm

Sparse additive matrix factorization (SAMF) [14] model

consists of multiple (additive) terms

V =

S∑

s=1

U (s) + E ,

where each term U (s) is designed as a specific type of fac-

torization to induce sparsity. For example, the Bayesian

robust PCA [5, 2] that consists of a low-rank term and an

element-wise sparse term can be modelled with

U (1) = U low-rank = BA⊤, U (2) = U element = E ∗G,
(29)

where ∗ denotes the Hadamard product.

The standard VB algorithm updates the parameters

(A,B,E,G) one by one in addition to the hyperparam-

eters. However, a better algorithm, called mean update

(MU), has been proposed by using the analytic-form VB so-

lution obtained for fully-observed matrix factorization [17].

In the MU algorithm, the set of parameters and hyperparam-

eters contained in each s-th term is updated based on the

global analytic solution, which shows faster convergence to

a better local solution than the standard VB algorithm [14].

In the next section, we apply this idea for a robust variant of

LRSC.

3. Proposed method

In this section, we introduce robust LRSC and its effi-

cient VB solver.

3.1. Robust Low­rank Subspace Clustering

We build robust LRSC in the SAMF frame work with an

LRSC term and an element-wise sparse term:

V = ULRSC +U element + E , (30)

where each term factorizes as

ULRSC = DB′A′⊤, U element = E ∗G. (31)

For the dictionary D ∈ R
L×M , we use a denoised version

of observed matrix based on the estimated spiky noise, i.e.,

D = V − Û
element

. (32)

The corresponding probabilistic model is given as

p(V |A′,B′,E,G)

∝ exp

(
− 1

2σ2
‖V −DB′A′⊤ −E ∗G‖2Fro

)
, (33)

p(A′) ∝ exp

(
−1

2
tr(A′C−1

A A′⊤)

)
, (34)

p(B′) ∝ exp

(
−1

2
tr(B′C−1

B B′⊤)

)
, (35)

p(E) ∝ exp

(
−
∑L

l=1

∑M
m=1 E

2
l,m

2(CE)l,m

)
, (36)

p(G) ∝ exp

(
−
∑L

l=1

∑M
m=1 G

2
l,m

2(CG)l,m

)
, (37)

where each entry of CE ,CG ∈ R
L×M corresponds to

the prior variance of the entry of E and G, respectively.

We treat (A′,B′,E,G) as (unknown) parameters and

(CA,CB ,CE ,CG, σ
2) as hyperparameters, and apply VB

learning to estimate all of them from the observed matrix V .

3.2. Mean Update Algorithm for robust LRSC

Let Θ = (A′,B′,E,G) summarize the parameters. We

approximate the Bayes posteterior with the VB posterior

that minimizes the free energy

F (r) =

〈
log

r(Θ)

p(V ,Θ)

〉

r(Θ)

(38)

under the independence constraint:

r(Θ) = r(A′)r(B′)r(E)r(G). (39)

Because of the imposed independence between (A′,B′)
and (E,G), the VB posterior for (A′,B′) depends on

the VB posterior for (E,G) only through the means, i.e.,

(Ê, Ĝ). The opposite also holds. Consequently, we can

easily obtain the following theorems (the proof is given in

Appendix A):
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Theorem 1 Given the means (Ê, Ĝ) of the posteriors

r(E), r(G) and the noise variance σ2, the VB posteriors

r(A′), r(B′) for (A′,B′) along with the hyperparameters

(CA,CB) can be obtained by minimizing the free energy

(7) for (original) LRSC with D̂ = V − Ê ∗ Ĝ substituted

for the observed matrix V .

Theorem 2 Given the means (Â
′
, B̂

′
) of the posteriors

r(A′), r(B′), the dictionary D̂, and the noise variance σ2,

the VB posteriors r(E), r(G) for (E,G) along with the

hyperparameters (CE ,CG) can be obtained by minimiz-

ing the free energy for the element-wise matrix factorization

with V − D̂B̂
′
Â

′
substituted for the observed matrix V .

Here, the element-wise matrix factorization denotes

V = E ∗G+ E (40)

with the corresponding priors (36) and (37), for which an

analytic-form VB solution is available:

Proposition 4 [17] The VB solution for the element-wise

matrix factorization (40), (36), (37) (where E is indepen-

dent Gaussian noise with mean 0 and variance σ2) is given

by

(Û
element

)l,m = (Ê ∗ Ĝ)l,m

=





0 if |Vl,m| < σ
√

(1 + τ)(1 + τ−1),

Vl,m

(

1− 2σ2

V 2
l,m

+
√

1− 4σ2

V 2
l,m

)

2 otherwise,

where τ can be approximated by τ ≈ 2.5129.

Based on the theorems above, we propose to compute the

VB solution of RLRSC by iterating the update for the LRSC

part r(A′), r(B′) with the approximate global solver (Al-

gorithm 1) and for the element-wise sparse part r(E), r(G)
with its analytic-form solution (Proposition 4). We can

also estimate the noise variance σ2 by using the following

lemma:

Lemma 1 Given the VB posteriors r(A′), r(B′), r(E),
r(G),1 the noise parameter σ2 that minimizes the free en-

ergy is given by

σ2 = 1
LM

{
‖V −DB̂

′
Â

′⊤ − Ê ∗ Ĝ‖2

+ 〈‖DB′A′⊤ −DB̂
′
Â

′⊤‖2〉r(A′)r(B′)

+ 〈‖E ∗G− Ê ∗ Ĝ)‖2〉r(E)r(G)

}
. (41)

1Based on Theorem 1 and Theorem 2, we can completely specify the

VB posteriors [16, 17].

Algorithm 2 Mean Update Solver for Robust LRSC.

1: Initialize Û
element

= 0, σ2 = ‖V ‖2Fro/(LM).
2: while until convergence do

3: Compute Â
′

and B̂
′

by the approximate global

solver (Algrithm 1 up to Step 9) with the denoised

dictionary D̂ = V − Û
element

substituted for the ob-

served matrix V .

4: Set Û
LRSC

= D̂B̂
′
Â

′⊤
.

5: Compute Ê and Ĝ by using the analytic-form solu-

tion (Proposition 4) with V − Û
LRSC

substituted for

the observed matrix V .

6: Set Û
element

= Ê ∗ Ĝ.

7: Update the noise variance σ2 by Lemma 1.

8: end while

9: Apply spectral clustering with the affinity matrix equal

to abs(B̂
′
Â

′⊤
) + abs(Â

′
B̂

′⊤
).

Our proposed algorithm, called mean update solver

(MUS) for robust LRSC is summarized in Algorithm 2.

The mean update algorithm finds the global solution for

Û
LRSC

= D̂B̂
′
Â

′⊤
given Û

element
= Ê ∗ Ĝ, and vice

versa, in each iteration. Although this procedure is not guar-

anteed to find the joint global solution over all unknowns,

it has empirically shown significantly better performance in

SAMF than the standard VB iteration where each parameter

is updated one by one [14]. In the next section, we show its

good performance in robust LRSC.

4. Experiment

In this section, we experimentally evaluate the per-

formance of our method, mean update solver for robust

LRSC (MUS-RobustLRSC). We compare it with the orig-

inal LRSC solved by approximate global solver (AGS-

LRSC), and the robust LRSC solved by the matrix variate

Gaussian approximation algorithm (MVGA-RobustLRSC),

which is the practical standard VB algorithm developed for

LRSC [3, 16].

We apply the methods to the Hopkins 155 motion

database [22], where each sample corresponds to a trajec-

tory of a point in a video, and clusteirng the trajectories

amounts to finding a set of rigid bodies. We always use

the full-rank model, i.e., H = min(L,M), and expect VB

learning to automatically find the true rank without any pa-

rameter tuning.

Figure 1 shows the clustering errors over the first 20

sequences. We observed improvement with our MUS-

RobustLRSC against the baselines—the average accuracies

are 0.0575 (MUS-RobustLRSC), 0.0837 (AGS-LRSC), and

0.3297(MVGA-RobustLRSC), respectively. This shows

that, although it is said that outliers have been removed
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Figure 1. Clustering errors on the first 20 sequences of Hopkins 155 dataset.

Figure 2. Clustering errors on the first 20 sequences of Hopkins 155 dataset with additional spiky noise.

from the Hopkins 155 motion dataset, they still contain

some spiky noise, and removing the effect of them im-

proves the accuracy. To see the performance dependent

on the spiky noise, we also conducted the same experi-

ment with artificially added spiky noise, which is created

by V = V ∗ + U element∗, where V ∗ is the original Hop-

kins motion data, and the additional spiky noise U element∗

has ρLM for ρ = 0.1 non-zero entries, and each non-zero

entry follows the Gaussian distribution with mean zero and

variance η2‖V ‖2Fro/(LM) for η2 = 0.1.

Figure 2 shows the clustering errors. As expected, the

non-robust variant, AGS-LRSC, performs worse in this

case, while our MUS-RobustLRSC shows good perfor-

mance. MVGA-RobustLRSC cannot be trained well in

both cases. The average accuracies are 0.0681 (MUS-

RobustLRSC), 0.1206 (AGS-LRSC), and 0.3034 (MVGA-

RobustLRSC), respectively.

As a visual experimental example, we applied the meth-

ods to the Yale Database [9].2 We selected first 5 classes

(persons), and for each class 18 bright frontal images. Each

image is resized to M = 48 × 42 = 2016. After that, we

added 5 different spiky noise for each image. In total, our

data set contains L = 5× 18× 5 = 450 images. We inves-

tigated two cases for spiky noise, i.e., η = 0.5, ρ = 0.1, and

η = 1, ρ = 0.2, which correspond to the top and the bottom

rows in Figure 3, respectively.

2 The Extended Yale Face Database B, used in previous works [9, 3],

is no longer available. We made a data set by adding spiky noise.

The observed matrix is shown in the left most, and

the decompositions by MVGA-RLRSC, AGS-LRSC, and

MUS-RLRSC are shown in the other columns. As expected,

our proposed MUS-RLRSC can cope with the spiky noise,

and extracts the noiseless face image as the low-rank com-

ponent.

5. Conclusion

In this paper, we developed mean update algorithm for

variational Bayesian (VB) learning in robust low-rank sub-

space clustering (LRSC), based on the global solvers for

LRSC and matrix factorization. In the experiment on Hop-

kins 155 motion database, our proposed method outper-

formed baseline methods, and demonstrated its usefulness.

In our future work, we further explore efficient algorithms

for approximate Bayesian learning.
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Figure 3. Spiky noise removal on Yale Database.

A. Proof of Theorem 1, Theorem 2 and

Lemma 1

By applying the calculus of variations to the free energy

(38) with the independence constraint (39), we can obtain

the general update rule:

r(θi) ∝ exp〈log p(V ,Θ)〉r(Θ\θi). (42)

Here, θ is either A′,B′,E, or G.

Since

log p(V ,Θ) = p(V |A′,B′,E,G)p(A′)p(B′)p(E)p(G)

= − 1
2σ2 ‖V −DB′A′⊤ −E ∗G‖2Fro

− 1
2 tr(A′C−1

A A′⊤)− 1
2 tr(B′C−1

B B′⊤)

−
∑L

l=1

∑M
m=1 E2

l,m

2(CE)l,m
−
∑L

l=1

∑M
m=1 G2

l,m

2(CG)l,m
,

Eq.(42) implies that the VB posteriors can be written as fol-

lows:

r(A′) ∝ exp
(
− 1

2 tr
((

A′ − Â
′)

Σ̂
−1

A′

(
A′ − Â

′)⊤))
,

(43)

r(B′) ∝ exp
(
− 1

2

(
b̆
′ − ̂̆b

′)⊤ ˘̂
Σ

−1

B′

(
b̆
′ − ̂̆b

′))
, (44)

r(E) ∝ exp

(
−∑L

l=1

∑M
m=1

(El,m−Êl,m)2

2σ̂2
El,m

)
, (45)

r(G) ∝ exp

(
−
∑L

l=1

∑M
m=1

(Gl,m−Ĝl,m)2

2σ̂2
Gl,m

)
. (46)

Therefore, the free energy (38) can be explicitly written

as

2F = LM log σ2 +M log |CA′ |
|Σ̂A′ |

+ log |CB′⊗IM |
| ˘̂ΣB′ |

+
∑L

l=1

∑M
m=1

(
log

(CE)l,m
σ̂2
El,m

+ log
(CG)l,m
σ̂2
Gl,m

)

+ tr(C−1
A′ (Â

′⊤
Â

′
+MΣ̂A′))

+ tr((C−1
B′ ⊗ IM )(

̂̆
b
′̂̆
b
′⊤

+
˘̂
ΣB′))

+
∑L

l=1

∑M
m=1

(
Ê2

l,m+σ̂2
El,m

(CE)l,m
+

Ĝ2
l,m+σ̂2

Gl,m

(CG)l,m

)

+ ‖V −DB̂
′
Â

′⊤−Ê∗Ĝ‖2

σ2

+
〈‖DB

′
A

′⊤−DB̂
′
Â

′⊤‖2〉r(A′)r(B′)
σ2

+
〈‖E∗G−Ê∗Ĝ)‖2〉r(E)r(G)

σ2 + const.. (47)

If σ2, Ê, and Ĝ are given, and the dictionary is set by

Eq.(32), then, the free energy (47) coincides with the free

energy (7) for original LRSC (see [16] for the explicit form)

as a function of the means and the covariances of the VB

posteriors (43) and (44) with V − Ê ∗ Ĝ substituted for V .

This completes the proof of Theorem 1.

Similarly, if σ2, Â
′
, and B̂

′
are given, then, the free en-

ergy (47) coincides with the free energy for element-wise

matrix factorization (see [17] for the explicit form) as a

function of the means and the covariances of the VB pos-

teriors (45) and (46) with V −DB̂
′
Â

′⊤
substituted for V .

This completes the proof of Theorem 2.

Finally, by taking the derivative of (47) with respect to

σ2, we obtain the update rule (41), which completes the

proof of Lemma 1. �
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