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Abstract

The Dynamic Mode Decomposition (DMD) is a spatio-

temporal matrix decomposition method capable of back-

ground modeling in video streams. DMD is a regression

technique that integrates Fourier transforms and singu-

lar value decomposition. Innovations in compressed sens-

ing allow for a scalable and rapid decomposition of video

streams that scales with the intrinsic rank of the matrix,

rather than the size of the actual video. Our results show

that the quality of the resulting background model is com-

petitive, quantified by the F-measure, recall and precision.

A GPU (graphics processing unit) accelerated implementa-

tion is also possible allowing the algorithm to operate effi-

ciently on streaming data. In addition, it is possible to lever-

age the native compressed format of many data streams,

such as HD video and computational physics codes that are

represented sparsely in the Fourier domain, to massively re-

duce data transfer from CPU to GPU and to enable sparse

matrix multiplications.

1. Introduction

Matrix decompositions are of fundamental importance

for constructing subspaces for the efficient representation of

data. Indeed, matrix decomposition algorithms have dom-

inated both scientific computing and the data sciences by

allowing for the construction of low-rank features (e.g. fea-

ture engineering) that dominate the sampled data. Levering

the low-rank feature space, for instance, is at the core of sta-

tistical and machine learning methods. The singular value

decomposition (SVD) is the algorithmic workhorse for the

most common matrix decomposition methods such as prin-

ciple component analysis (PCA) and the proper orthogo-

nal decomposition (POD). An alternative to the SVD is the

Dynamic Mode Decomposition (DMD) [19] which capital-

izes on the low-rank feature extraction of SVD while aug-

menting it with an eigendecomposition in the time variable.

Thus DMD provides a decomposition of data into spatio-

temporal modes that correlates the data across spatial fea-

tures (like principal component analysis (PCA)), but also

pins the correlated data to unique temporal Fourier modes.

For the specific application of video analysis, the time snap-

shots of video streams are used to compose matrices that

are high-dimensional, but which often have a high-degree

of correlation between frames. Understanding the correla-

tion structure between time frames is fundamental for accu-

rate and real-time background modeling techniques. Specif-

ically, background variations in a video stream are highly

correlated between frames so that the low-level computer

vision task of foreground/background separation is typi-

cally an integral step in detecting, identifying, tracking, and

recognizing objects in video streams.

DMD has its roots in the fluid dynamics community,

where it was applied to the analysis of numerical simula-

tions and experimental data of fluid flows [27, 26]. Over

the past decade, its popularity has grown and it has been ap-

plied as a diagnostic tool, as a means of model order reduc-

tion, and as a component of optimal controller design for a

variety of dynamical systems. The DMD also has connec-

tions to the Koopman spectral analysis of nonlinear dynam-

ical systems [24]. In particular, the DMD shows promise

as a data-driven tool for the analysis video streams which

we consider as a dynamical systems [13, 11, 10, 21], and

for which we use the DMD architecture to approximate its

low-rank components. For computer vision applications, al-

gorithms are envisioned to be implemented in real-time on

high-definition video streams. Given the importance of this

task for surveillance and target tracking/acquisition, a vari-

ety of matrix decomposition techniques have already been

developed. For instance, a number of iterative (optimiza-

tion and gradient descent based) techniques have already

been developed in order to perform background/foreground

separation [22, 32, 23, 15, 7]. We point the reader to several

recent reviews [2, 3, 28, 29, 5] and a textbook [31] which

highlight many of the methods developed and their perfor-

mance metrics. In this work, we compare the basic DMD

architecture and its various innovations with many of the

leading background modeling methods.
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2. DMD and the optimized DMD algorithm

The DMD method provides a spatio-temporal decompo-

sition of data into a set of dynamic modes that are derived

from snapshots or measurements of a given system in time.

In this case, the snapshots are frames of a video sequence.

The data collection process involves two parameters:

n = number of spatial points saved per time snapshot

m = number of snapshots taken

2.1. Exact DMD

The leading algorithm for computing the DMD decom-

position is the exact DMD [33]. Exact DMD is defined

for pairs of data {(x1,y1), . . . , (xm,ym)} which we as-

sume satisfy yj = Axj , for some matrix A. Typically,

the pairs are assumed to be given by equispaced snap-

shots of some dynamical system (video stream) z(t), i.e.

xj = z((j − 1)∆t) and yj = z(j∆t), but they are not re-

quired to be of this form. For most data sets, the matrix A

is not determined fully by the snapshots. Therefore, we de-

fine the matrix A from the data in a least- squares sense. In

particular, we set

A = YX† , (2)

where X† is the pseudo-inverse of X. The matrix A above

is the minimizer of ‖AX−Y‖F in the case that AX = Y

is over-determined and the minimum norm (‖A‖F ) solu-

tion of AX = Y in the case that the equation is under-

determined [34] (‖ · ‖F denotes the standard Frobenius

norm). We may say that A is the best fit linear system map-

ping X to Y or, in the typical application, the best fit linear

map which advances z(t) to z(t + ∆t) (this map is some-

times referred to as a forward propagator). The DMD is

then defined to be the set of eigenvectors and eigenvalues of

A which can be computed using Algorithm 1.

The low-rank DMD approximation of both the eigenval-

ues and eigenvectors allows for a construction of the past,

current and future state of the system. By first rewriting for

convenience ωk = ln(λk)/∆t, where ∆t is the time be-

tween frames, then the approximate solution at all future

times, x̃(t), is given by

x̃(t)=

K
∑

k=1

bk(0)ψk(ξ) exp(ωkt)=Ψdiag(exp(ωt))b (8)

where ξ are the spatial coordinates, bk(0) is the initial am-

plitude of each mode, Ψ is the matrix whose columns are

the DMD modes ψ, diag(ωt) is a diagonal matrix whose

entries are the eigenvalues exp(ωkt), and b is a vector of

the coefficients bk.

It only remains to compute the initial coefficient values

bk(0). If we consider the initial snapshot (x1) at time t1 =

Algorithm 1 Exact DMD [33]

1. Define matrices X and Y from the data:

X = (x1, . . . ,xm) , Y = (y1, . . . ,ym) . (3)

2. Take the (reduced) SVD of the matrix X, i.e. compute

U, Σ, and V such that

X = UΣV∗ , (4)

where U ∈ C
n×r, Σ ∈ C

r×r, and V ∈ C
m×r, with r

the rank of X.

3. Let Ã be defined by

Ã = U∗YVΣ−1 . (5)

4. Compute the eigendecomposition of Ã, giving a set of

r vectors, w, and eigenvalues, λ, such that

Ãw = λw . (6)

5. For each pair (w, λ), we have a DMD eigenvalue, λ
itself, and a DMD mode defined by

ψ =
1

λ
YVΣ−1w . (7)

0, let’s say, then (8) gives x1 = Ψb. This generically is not

a square matrix so that its solution

b = Ψ†x1 (9)

can be found using a pseudo-inverse. Indeed, Ψ† denotes

the Moore-Penrose pseudo-inverse. The pseudo-inverse is

equivalent to finding the best solution b the in the least-

squares (best fit) sense. This is equivalent to how DMD

modes were derived originally.

2.2. Optimized DMD

The exact DMD algorithm gives rise to a biased estimate

for the solution [16, 9]. Specifically, the bias of the algo-

rithm can be computed analytically [9]. If m is the number

of snapshots and n is the dimension of the system, the bias

will be the dominant component of the DMD error when-

ever
√
mRSTN >

√
n, where RSTN is the signal-to-noise

ratio. The bias can be greatly suppressed using the recently

developed optimized DMD algorithm [1], making it a sub-

stantial improvement over the exact DMD algorithm.

To this end, we present a simple algorithm for comput-

ing an optimized version of the DMD, even when sampled

at different time intervals. By making use of the variable
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projection method for nonlinear least squares problems, the

algorithm is capable of solving the underlying nonlinear op-

timization problem efficiently.

Let X = (z0, . . . , zm) be a matrix of snapshots, with

zj = z(tj) ∈ C
n for a set of times tj . For a target rank r,

we assume that the data is the solution of a linear system of

r differential equations (dz/dt = Az) so that

z(t) ≈ SeΛtS†z0 , (10)

where S ∈ C
n×r and Λ ∈ C

r×r. This can be rewritten as

X⊺ ≈ Φ(α)B , (11)

where

Bi,j = Sj,i

(

S†z0
)

i
(12)

and Φ(α) ∈ C
(m+1)×r with entries defined by Φ(α)i,j =

exp(αjti).
The preceding formulation gives the following definition

of the optimized DMD in terms of an exponential fitting

problem. Suppose that α̂ and B̂ solve

minimize‖X⊺−Φ(α)B‖F over α ∈ C
k,B ∈ C

l×n .
(13)

The optimized DMD eigenvalues are then defined by λi =
α̂i and the eigenmodes are defined by

ϕi =
1

‖B̂⊺(:, i)‖2
B̂⊺(:, i) , (14)

where B̂⊺(:, i) is the i-th column of B̂⊺. Execution of this

architecture is demonstrated in Algorithm 2, which is essen-

tially equivalent to that of Chen et al. [8].

If we set bi = ‖B̂⊺(:, i)‖2, then

z̃j =

r
∑

i=1

bie
λitjϕi (15)

is an approximation to zj for each j = 0, . . . ,m. There-

fore, if B̂ and α̂ are computed, the reconstruction in the

optimized DMD basis is trivial.

For a single initial guess forα, the Levenberg-Marquardt

algorithm will not necessarily converge to the global mini-

mizer of (13). It is therefore technically incorrect to claim

that Alg. 2 will always compute the optimized DMD of a

given set of snapshots. Indeed, it may be that the proper way

to view the optimized DMD algorithm is as post-processors

for the initial guess for α, which improve on α by com-

puting a nearby local minimizer. In the examples, we see

that this post-processing — even when it is unclear whether

we’ve computed the global minimizer — provides signifi-

cant improvement over other DMD methods.

Algorithm 2 Optimized DMD

1. Let the snapshot matrix X and an initial guess for α

be given.

2. Solve the problem

minimize‖X⊺−Φ(α)B‖F over α ∈ C
k,B ∈ C

l×n ,
(16)

using a variable projection algorithm.

3. Set λi = α̂i and

ϕi =
1

‖B̂⊺(:, i)‖2
B̂⊺(:, i) , (17)

saving the values bi = ‖B̂⊺(:, i)‖2.

The asymptotic cost of Alg. 2 can be estimated. For

each iteration of the variable projection algorithm, the cost

is O(r2mn). For large m and n, it is possible to compute

the optimized DMD (or an approximation of the optimized

DMD) more efficiently. Suppose that instead of comput-

ing α̂ and B̂ which solve 13, ᾰ and B̆ are computed which

solve

minimize‖X⊺

r −Φ(α)B‖F over α ∈ C
k,B ∈ C

l×n ,
(18)

where Xr is the optimal rank r approximation of X (in the

Frobenius norm). Algorithm 3 computes the solution to this

problem.

The cost of computing the rank r SVD in step 2 of

Alg. 3 is O(mnmin(m,n)) using a standard algorithm or

O(r2(m + n) + rmn) using a randomized algorithm [14]

(the constant is larger for the randomized algorithm, so de-

termining the faster algorithm can be subtle). After this is

computed once, the cost for each step of the variable pro-

jection algorithm is improved to O(r3m). This can lead to

significant speed ups over the original.

3. DMD innovations

Two additional innovations are critical for making the

DMD algorithm viable for HD video processing: (i) the

ability to significantly subsample pixel space in order to go

to scale to high-quality video streams, and (ii) the ability to

update the background model in real-time using streaming

data. The basic ideas and their performance are given in the

following subsections.

3.1. Sparse sampling

Compressed DMD provides a computationally efficient

framework to compute the dynamic mode decomposi-

tion on massively under-sampled or compressed data [6].
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Algorithm 3 Approximate optimized DMD

1. Let the snapshot matrix X and an initial guess for α

be given.

2. Compute the truncated SVD of X of rank r, i.e. com-

pute Ur ∈ C
n×r Σr ∈ C

r×r, and Vr ∈ C
(m+1)×r

such that

Xr = UrΣrV
∗
r . (19)

3. Compute ὰ and B̀ which solve

minimize‖V̄rΣ−Φ(α)B‖F over α ∈ C
r,B ∈ C

r×r ,
(20)

using a variable projection algorithm.

4. Set λi = ὰi and

ϕi =
1

‖UrB̀⊺(:, i)‖2
UrB̀

⊺(:, i) , (21)

saving the values bi = ‖UrB̀
⊺(:, i)‖2.

row comp.

Figure 1: Video compression using a sparse measurement

matrix. The compressed matrix faithfully captures the es-

sential spectral information of the video.

The method was originally devised to reconstruct high-

dimensional, full-resolution DMD modes from sparse, spa-

tially under-resolved measurements by leveraging com-

pressed sensing. However, it was quickly realized that if

full-state measurements are available, many of the compu-

tationally expensive steps in DMD may be computed on a

compressed representation of the data, providing dramatic

computational savings.

The compressed DMD algorithm proceeds similarly to

the standard DMD algorithm, either exact or optimized, at

nearly every step until the computation of the DMD modes.

The key difference is that we first compute a compressed

representation of the video sequence, as illustrated in Fig-

ure 1. Hence the algorithm starts by generating the mea-

surement matrix C ∈ R
p×n in order to compresses the data

matrices:

Y = CX, Y′ = CX′. (22)

where p is denoting the number of samples or measure-

ments. There is a fundamental assumption that the input

data are low-rank. This is satisfied for video data, because

each of the columns of X and X′ ∈ R
n×m−1 are sparse

in some transform basis Ψ. Thus, for sufficiently many

incoherent measurements, the compressed matrices Y and

Y′ ∈ R
p×m−1 have similar correlation structures to their

high-dimensional counterparts. Then, compressed DMD

approximates the eigenvalues and eigenvectors of the linear

map AY, where the estimator is defined as:

ÂY = Y′Y† (23a)

= Y′VYS−1
Y

UY
∗, (23b)

where ∗ denotes the conjugate transpose. The pseudo-

inverse Y† is computed using the SVD:

Y = UYSYVY
∗, (24)

where the matrices U ∈ R
p×k, and V ∈ R

m−1×k are the

truncated left and right singular vectors. The diagonal ma-

trix S ∈ R
k×k has the corresponding singular values as

entries. Here k is the target-rank of the truncated SVD ap-

proximation to Y. Note that the subscript Y is included

to explicitly denote computations involving the compressed

data Y.

As in the standard DMD algorithm, we typically do not

compute the large matrix ÂY, but instead compute the low-

dimensional model projected onto the left singular vectors:

ÃY = UY
∗ÂYUY (25a)

= UY
∗Y′VYS−1

Y
. (25b)

Since this is a similarity transform, the eigenvectors and

eigenvalues can be obtained from the eigendecomposition

of ÃY

ÃYWY = WYΛY, (26)

where columns of WY are eigenvectors φj and ΛY is a

diagonal matrix containing the corresponding eigenvalues

λj . The similarity transform implies that Λ ≈ ΛY . The

compressed DMD modes are consequently given by

ΦY = Y′VYS−1
Y

WY. (27)

Finally, the full DMD modes are recovered using

Φ = X′VYS−1
Y

WY. (28)

Note that the compressed DMD modes in Equation (28)

make use of the full data X′ as well as the linear trans-

formations obtained using the compressed data Y and Y′.
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Algorithm 4 Compressed Dynamic Mode Decomposition. Given a matrix D ∈ R
n×m containing the flattened video frames,

this procedure computes the approximate dynamic mode decomposition, where Φ ∈ C
n×k are the DMD modes, b ∈ C

k

are the amplitudes, and V ∈ C
k×m is the Vandermonde matrix describing the temporal evolution. The procedure can be

controlled by the two parameters k and p, the target rank and the number of samples respectively. It is required that n ≥ m,

integer k, p ≥ 1 and k ≪ m and p ≥ k.

function [Φ,b,V] = cdmd(D, k, p)

(1) X,X′ = D Left/right snapshot sequence.

(2) C = rand(p,m) Draw p×m sensing matrix.

(3) Y,Y′ = C ∗D Compress input matrix.

(4) U,S,V = svd(Y, k) Truncated SVD.

(6) Ã = U∗ ∗Y′ ∗V ∗ S−1 Least squares fit.

(7) W,Λ = eig(Ã) Eigenvalue decomposition.

(8) Φ←X′ ∗V ∗ S−1 ∗W Compute full-state modes Φ.

(9) b = lstsq(Φ,x1) Compute amplitudes using x1 as intial condition.

(10) V = vander(diag(Λ)) Vandermonde matrix (optional).

The expensive SVD on X is bypassed, and it is instead per-

formed on Y. Depending on the compression ratio, this

may provide significant computational savings. The com-

putational steps are summarized in Algorithm 4 using the

exact DMD architecture for illustrative purposes. Further

numerical details are presented in [6].

In order to compare the cDMD algorithm with other

background modeling algorithms the BMC dataset has been

used with the exact DMD algorithm [10]. Table 1 shows the

evaluation results computed with the BMC wizard for all 9
videos. An individual threshold value has been selected for

each video to compute the foreground mask. For compar-

ison the evaluation results of 3 other RPCA methods are

shown [4]. Overall cDMD achieves an average F-value of

about 0.648. This is slightly better than the performance

of GoDec [35] and nearly as good as LSADM [12]. How-

ever, it is lower than the F-measure achieved with the RSL

method [17]. Figure 2 presents visual results for example

frames across 5 videos. The last row shows the smoothed

(median filtered) foreground mask.

Figure 3 shows the average frames per seconds (fps) rate

required to obtain the foreground mask for varying video

resolutions. The results illustrate the substantial computa-

tional advantage of the cDMD algorithm over the standard

DMD. The computational savings are mainly achieved by

avoiding the expensive computation of the singular value

decomposition. Specifically, the compression step reduces

the time complexity from O(knm) to O(kpm). The com-

putation of the full modes Φ in Equation 28 remain the only

computational expensive step of the algorithm. However,

this step is embarrassingly parallel and the computational

time can be further reduced using a GPU accelerated imple-

mentation. The decomposition of a HD 1280 × 720 videos

feed using the GPU accelerated implementation achieves

a speedup of about 4 and 21 compared to the correspond-

ing CPU cDMD and (exact) DMD implementations. The

speedup of the GPU implementation can even further be in-

creased using sparse or single pixel (sPixel) measurement

matrices.

3.2. Streaming data

In many applications, data is continually acquired from

sensors in a streaming fashion; new data is appended as

columns to the right of the matrix X, while old columns

may be removed from the left of X if necessary. In stream-

ing applications, such as online video processing or win-

dowed DMD on transient simulations, the cost of repeated

DMD and SVD calculations may be prohibitively expen-

sive. This motivates a suite of complementary techniques

to accelerate repeated SVD and DMD computations for

streaming data. The core of the streaming DMD algorithm

is the streaming method of snapshots SVD, whereby redun-

dant inner product computations in X∗X are reused from

one timestep to the next, reducing the SVD computational

complexity from O(mn2) to O(mn). The streaming SVD

can work both for long sequences of stored data, or for live

inputs such as a video sequence. The streaming singular

value decomposition works by reusing the majority of the

calculations in X∗X, shifting the sub-matrix (Xn
2 )

∗(Xn
2 )

up and left by one row and column.

As all but the last column of X will already have been

run through the streaming algorithm, and as X∗X is sym-
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Measure BMC real videos Average

001 002 003 004 005 006 007 008 009

RSL

De La Torre et al. [17]

Recall 0.800 0.689 0.840 0.872 0.861 0.823 0.658 0.589 0.690 -

Precision 0.732 0.808 0.804 0.585 0.598 0.713 0.636 0.526 0.625 -

F-Measure 0.765 0.744 0.821 0.700 0.706 0.764 0.647 0.556 0.656 0.707

LSADM

Goldfarb et al. [12]

Recall 0.693 0.535 0.784 0.721 0.643 0.656 0.449 0.621 0.701 -

Precision 0.511 0.724 0.802 0.729 0.475 0.655 0.693 0.633 0.809 -

F-Measure 0.591 0.618 0.793 0.725 0.549 0.656 0.551 0.627 0.752 0.650

GoDec

Zhou and Tao [35]

Recall 0.684 0.552 0.761 0.709 0.621 0.670 0.465 0.598 0.700 -

Precision 0.444 0.682 0.808 0.728 0.462 0.636 0.626 0.601 0.747 -

F-Measure 0.544 0.611 0.784 0.718 0.533 0.653 0.536 0.600 0.723 0.632

cDMD
Recall 0.552 0.697 0.778 0.693 0.611 0.700 0.720 0.515 0.566 -

Precision 0.581 0.675 0.773 0.770 0.541 0.602 0.823 0.510 0.574 -

F-Measure 0.566 0.686 0.776 0.730 0.574 0.647 0.768 0.512 0.570 0.648

Table 1: Evaluation results of nine real videos from the BMC dataset. For comparison, the results of three other leading

robust PCA algorithms are presented, adapted from [4].

metric, only the last row or column need be recalculated.

For example, consider the SVD of Xn−1
1 :

(Xn−1
1 )∗Xn−1

1 =










〈x1,x1〉 〈x1,x2〉 · · · 〈x1,xn−1〉
〈x2,x1〉 〈x2,x2〉 · · · 〈x2,xn−1〉

...
...

. . .
...

〈xn−1,x1〉 〈xn−1,x2〉 · · · 〈xn−1,xn−1〉











(29)

The entries indicated in blue will be redundant inner-

products in the next SVD of the matrix Xn
2 :

(Xn
2 )

∗Xn
2 =











〈x2,x2〉 · · · 〈x2,xn−1〉 〈x2,xn+1〉
...

. . .
...

...

〈xn−1,x2〉 · · · 〈xn−1,xn−1〉 〈xn−1,xn〉
〈xn,x2〉 · · · 〈xn,xn−1〉 〈xn,xn〉











(30)

This cuts the computational complexity down from

O(n2m) to O(nm). As this is the slowest part of the

method of snapshots [33], a large performance gain is re-

alized here.

The streaming dynamic mode decomposition relies

on the streaming SVD in order to process data in se-

quence [25], but is also able to realize speed-ups from

reusing intermediate steps from the SVD, and by only re-

turning the last column of the matrix S in the case of

background subtraction. Background subtraction with the

streaming dynamic mode decomposition is performed by

sliding the DMD forward by as many frames as the user

wants to keep each iteration. We tested the algorithm with a

step width of 1 frame against the non-streaming DMD slid

forward by the width of X frames. When the step size is

equal to the width of X, no computations can be reused;

thus the streaming and non-streaming DMD become equiv-

alent in execution time. The smaller the number of frames

incremented each iteration, the higher the quality of back-

ground subtraction and the longer the execution time. This

means that the streaming DMD realizes the largest perfor-

mance improvement for higher-quality small steps. Frames

early in the window often have ”ghosting” issues not present

when they are the last frame in the input sequence.

Figure 4 shows comparisons of the CPU, GPU, stream-

ing CPU (SCPU) and streaming GPU (SGPU) implementa-

tions for the SVD, DMD and DMD background subtraction.

This test shows streaming to significantly benefit the CPU

implementation, putting it on par with that of the GPU. In

real world applications, this is promising as it could reduce

the need for a dedicated GPU, while still netting a large per-

formance improvement and eliminating memory transfers.

Further, the streaming GPU is significantly faster than the

other three versions, and scales more favorably for large in-

put dimensions (i.e., resolution m and number of frames n).

When the resolution is kept constant, we see that the

scaling of both streaming algorithms is more favorable than

that of the non-streaming algorithms. This is as expected,

since that the cost to update X∗X is on the order of O(mn)
when streaming, rather than O(mn2). Of particular note is

the large jump in time from resolution 1440 to 2160 on all

three varying height graphs (left column): this jump shows

when the memory available to the GPU becomes an issue.

Due to its reduced memory footprint, the streaming ver-

sions of each algorithm do not suffer from this memory

bottleneck and associated reduction in performance. With

regards to the graphs of varying width, we see that both

streaming algorithms grow far more slowly than their non-

streaming counterparts. This shows that in all cases the

streaming CPU and GPU implementations of all 3 algo-

rithms are faster than their traditional counterparts, at both

high resolution and frame counts. Additionally, the stream-

ing GPU versions of the SVD, DMD and DMD background

subtraction algorithms all show the best potential for scaling
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Figure 2: Visual evaluation results for 2 example frames

corresponding to the BMC Videos: 003 and 006. The top

row shows the original grayscale images (moving objects

are highlighted). The second row shows the differencing

between the reconstructed cDMD background and the orig-

inal frame. Row three shows the thresholded and row four

the in addition median filtered foreground mask.

to even higher-dimensional inputs.

4. Conclusions and Outlook

Matrix decompositions, such as the singular value de-

composition (SVD) and dynamic mode decomposition

Figure 3: CPU and GPU algorithms runtime (including the

computation of the foreground mask) for varying video res-

olutions (200 frames). The optimal target rank is automati-

cally determined and p = 1000 samples are used.

(DMD), are the cornerstones of numerical linear alge-

bra and data analysis methods. However, these meth-

ods typically become computationally intractable for high-

dimensional data, and this cost is compounded in stream-

ing applications, where a new matrix decomposition is re-

quired for each new measurement in time. These com-

putational issues hinder efforts for real-time processing of

high-dimensional data, such as HD and 4K videos, which

will only get worse with growing big data volumes. More

broadly, the emergence of the big data era across the physi-

cal, biological, social and engineering sciences has severely

challenged our ability to extract meaningful features from

data in a real-time manner. Critical technologies such as

LIDAR, 4K video streams, computer vision, high-fidelity

numerical simulations, sensor networks, brain-machine in-

terfaces, internet of things, and augmented reality will all

depend on scalable algorithms that can produce meaningful

decompositions of data in real time.

By interpreting video streams as a dynamical system, the

DMD algorithm can be leveraged to decompose video data

into a set of dynamic modes that are derived from individ-

ual snap shots. We introduce a new optimized version of

the DMD which removes many of the known problems as-

sociated with bias from the standard exact DMD algorithm.

Moreover, we show that by using innovations in randomized

linear algebra and streaming SVD architectures, significant

enhancements in performance can be gained. We document

these performance gains on challenge data sets in computer

vision and demonstrate that the DMD algorithm is a viable

technology for real-time video processing. Importantly, the

innovations presented are modular and can be jointly inte-

grated in order to boost performance gains.

Specific algorithmic improvements made to the DMD in-
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Figure 4: Comparison of CPU, streaming CPU (SCPU),

GPU and streaming GPU (SGPU) versions of the SVD,

DMD and DMD background subtraction. Times represent

a one-frame update from steady state with all singular val-

ues in use. In the case of background subtraction, only the

closest single or complex conjugate pair of λ to 1 is used.

Timings are a best of 5 mean with memory transfers to and

from the GPU excluded. Tests were run on PEViD “Walk-

ing Day Indoor 4” [18].

clude a streaming architecture that exploits redundant com-

putations and that may be readily parallelized on a graph-

ics processing unit (GPU), providing significant accelera-

tion of the algorithm. We have developed and analyzed

streaming singular value and dynamic mode decomposition

algorithms and their GPU implementations. In addition, we

show performance benefits for streaming video background

subtraction. In all cases, a large number of calculations are

able to be carried forward from frame to frame by exploiting

the structure of the method of snapshots SVD. This allows

both the SVD and DMD to process large data streams in

real-time, whether for video or otherwise. We have evalu-

ated the proposed algorithms on multiple datasets, demon-

strating the significantly improved computational perfor-

mance for stream processing with negligible loss in accu-

racy.

We have also demonstrated that randomized sampling

via the cDMD algorithm remains competitive with other

leading algorithms in the quality of the decomposition it-

self. Our results show, that for both standard and challeng-

ing environments, the cDMD’s background subtraction ac-

curacy in terms of the F-measure is competitive to leading

RPCA based algorithms [4]. Though, the algorithm cannot

compete, in terms of the F-measure, with highly specialized

algorithms, e.g. optimized Gaussian mixture-based algo-

rithms for background modeling [30]. The main difficulties

arise when video feeds are heavily crowded or dominated

by non-periodic dynamic background objects. Overall, the

trade-off between speed and accuracy of compressed DMD

is compelling.

Future work will aim to improve the background sub-

traction quality as well as to integrate a number of innova-

tive techniques. One technique that is particularly useful

for object tracking is the multi-resolution DMD [20]. This

algorithm has been shown to be a potential method for tar-

get tracking applications. Thus one can envision the inte-

gration of multi-resolution ideas with cDMD, i.e. a multi-

resolution compressed DMD method, in order to separate

the foreground video into different dynamic targets when

necessary.
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[24] I. Mezić. Analysis of Fluid Flows via Spectral Properties of

the Koopman Operator. Annual Review of Fluid Mechanics,

45:357–378, 2013.

[25] S. D. Pendergrass, J. N. Kutz, and S. L. Brunton. Streaming

gpu singular value and dynamic mode decompositions. arXiv

preprint arXiv:1612.07875, 2016.
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