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Abstract

This paper considers the problem of finding a low rank

matrix from observations of linear combinations of its el-

ements. It is well known that if the problem fulfills a re-

stricted isometry property (RIP), convex relaxations using

the nuclear norm typically work well and come with theo-

retical performance guarantees. On the other hand these

formulations suffer from a shrinking bias that can severely

degrade the solution in the presence of noise.

In this theoretical paper we study an alternative non-

convex relaxation that in contrast to the nuclear norm does

not penalize the leading singular values and thereby avoids

this bias. We show that despite its non-convexity the pro-

posed formulation will in many cases have a single station-

ary point if a RIP holds. Our numerical tests show that our

approach typically converges to a better solution than nu-

clear norm based alternatives even in cases when the RIP

does not hold. 1

1. Introduction

Low rank approximation is an important tool in appli-

cations such as rigid and non rigid structure from motion,

photometric stereo and optical flow [30, 5, 31, 14, 2, 13].

The rank of the approximating matrix typically describes

the complexity of the solution. For example, in non-rigid

structure from motion the rank measures the number of ba-

sis elements needed to describe the point motions [5]. Un-

der the assumption of Gaussian noise the objective is typi-

cally to solve

min
rank(X)≤r

‖X −X0‖2F , (1)

where X0 is a measurement matrix and ‖ · ‖F is the Frobe-

nius norm. The problem can be solved optimally using SVD

[10], but the strategy is limited to problems where all matrix

1This work has been funded by the Swedish Research Council (grants

no. 2012-4213 and 2016-04445) and the Swedish Foundation for Strategic

Research (Semantic Mapping and Visual Navigation for Smart Robots).

elements are directly measured. In this paper we will con-

sider low rank approximation problems where linear com-

binations of the elements are observed. We aim to solve

problems of the form

min
X

I( rank(X) ≤ r) + ‖AX − b‖2. (2)

Here I( rank(X) ≤ r) is 0 if rank(X) ≤ r and ∞ other-

wise. The linear operator A : Rm×n → R
p is assumed to

fulfill a restricted isometry property (RIP) [29]

(1− δq)‖X‖2F ≤ ‖AX‖2 ≤ (1 + δq)‖X‖2F , (3)

for all matrices with rank(X) ≤ q. The standard approach

for problems of this class is to replace the rank function

with the convex nuclear norm ‖X‖∗ =
∑

i xi, where xi,

i = 1, ..., N are the singular values of X , [29, 6]. It was

first observed that this is the convex envelope of the rank

function over the set {X;x1 ≤ 1} in [12]. Since then a

number of generalizations that give performance guaran-

tees for the nuclear norm relaxation have appeared, e.g.

[29, 27, 6, 7]. The approach does however suffer from a

shrinking bias that can severely degrade the solution in the

presence of noise. In contrast to the rank constraint the nu-

clear norm penalizes both small singular values of X , as-

sumed to stem from measurement noise, and large singu-

lar values, assumed to make up the true signal, equally. In

some sense the suppression of noise also requires an equal

suppression of signal. Non-convex alternatives have been

shown to improve performance [26, 23, 19, 24].

In this paper we will consider the relaxation

min
X

Rr(X) + ‖AX − b‖2, (4)

where

Rr(X) = max
Z

N
∑

i=r+1

z2i − ‖X − Z‖2F , (5)

and zi, i = 1, ..., N are the singular values of Z. The min-

imization over Z does not have any closed form solution,

however it was shown in [21, 1] how to efficiently evaluate
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and compute its proximal operator. Figure 1 shows a three

dimensional illustration of the level sets of the regularizer.

In [21, 20] it was shown that

Figure 1: Level set surfaces {X | Rr(X) = α} for X =
diag(x1, x2, x3) with r = 1 (Left) and r = 2 (Middle).

Note that when r = 1 the regularizer promotes solutions

where only one of xk is non-zero. For r = 2 the regu-

larlizer instead favors solutions with two non-zero xk. For

comparison we also include the nuclear norm. (Right)

Rr(X) + ‖X −X0‖2F , (6)

is the the convex envelope of

I( rank(X) ≤ r) + ‖X −X0‖2F . (7)

By itself the regularization term Rr(X) is not convex, but

when adding a quadratic term ‖X‖2F the result is convex. It

is shown in [1] that (7) and (6) have the same optimizer as

long as the singular values of X0 are distinct. (When this is

not the case the minimizer is not unique.) Assuming that (3)

holds ‖AX‖2 will behave roughly like ‖X‖F for matrices

of rank less than q, and therefore it seems reasonable that

(4) should have some convexity properties. In this paper we

study the stationary points of (4). We show that if a RIP

property holds it is in many cases possible to guarantee that

any stationary point of (4) (with rank r) is unique.

A number of recent works propose to use the related

‖ · ‖r∗-norm [22, 11, 18, 17] (sometimes referred to as the

spectral k-support norm). This is a generalization of the nu-

clear norm which is obtained when selecting r = 1. It can

be shown [22] that the extreme points of the unit ball with

this norm are rank r matrices. Therefore this choice may

be more appropriate than the nuclear norm when search-

ing for solutions of a particular (known) rank. It can be

seen (e.g. from the derivations in [18]) that ‖X‖r∗ is

the convex envelope of (7) when X0 = 0, which gives

‖X‖2r∗ = Rr(X) + ‖X‖2F . While the approach is convex

the extra norm penalty adds a (usually) unwanted shrinking

bias similar to what the nuclear norm does. In contrast, our

approach avoids this bias since it uses a non-convex regu-

larizer. Despite this non-convexity we are still able to derive

strong optimality guarantees for an important class of prob-

lem instances.

1.1. Main Results and Contributions

Our main result, Theorem 2.4, shows that if Xs is a sta-

tionary point of (4) and the singular values zi of the matrix

Z = (I − A∗A)Xs + A∗
b fulfill zr+1 < (1 − 2δ2r)zr

then there can not be any other stationary point with rank

less than or equal to r. The matrix Z is related to the gra-

dient of the objective function at Xs (see Section 2). The

term ‖X − Z‖2 can be seen as a local approximation of

‖AX − b‖2 =

‖X‖2F − 〈X, (I −A∗A)X〉 − 2〈X,A∗
b〉+ b

T
b. (8)

Replacing 〈X, (I −A∗A)X〉 with its first order Taylor ex-

pansion 2〈X, (I − A∗A)Xs〉 (ignoring the constant term)

reduces (8) to ‖X − Z‖2 + C, where C is a constant.

If for example there is a rank r matrix X0 such that

b = AX0 then it is easy to show that X0 is a stationary

point and the corresponding Z is identical to X0. Since this

means that zr+1 = 0 our results certify that this is the only

stationary point to the problem if A fulfills (3) with δ2r < 1
2 .

The following lemma clarifies the connection between the

stationary point Xs and Z.

Lemma 1.1. The point Xs is stationary in F (X) =

Rr(X) + ‖AX − b‖2 if and only if 2Z ∈ ∂G(Xs), where

G(X) = Rr(X) + ‖X‖2F , and if and only if

Xs ∈ argmin
X

Rr(X) + ‖X − Z‖2F . (9)

(The proof is identical to that of Lemma 3.1 in [25].) In

[1] it is shown that as long as zr 6= zr+1 the unique solution

of (9) is the best rank r approximation of Z. When there

are several singular values that are equal to zr, (9) will have

multiple solutions and some of them will not be of rank r.

Note however, that since (9) is the convex envelope of (7)

(with X0 = Z) the solution set of (9) is the convex hull of

that of (7), and therefore there are still solutions of rank r to

(9) even when zr = zr+1.

Stationary points of F will therefore generally be rank

r approximations of Z. In this situation the first r singular

values of Z coincide with those of X while the remaining

ones are related to the residual error. Hence, loosely speak-

ing our results state that if the error residuals are small com-

pared to Xs this stationary point is likely to be unique.

Our work builds on that of [25] which derives similar

results for the non-convex regularizer Rµ(X) =
∑

i µ −
max(

√
µ − xi)

2, where xi are the singular values of X .

In this case a trade-off between rank and residual error is

optimized using the formulation

min
X

Rµ(X) + ‖AX − b‖2. (10)

While it can be argued that (10) and (4) are essentially

equivalent since we can iteratively search for a µ that gives
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the desired rank, the results of [25] may not rule out the ex-

istence of multiple high rank stationary points. In contrast,

when using (4) our results imply that if zr+1 < (1−2δ2r)zr
then Xs is the unique stationary point of the problem. (To

see this, note that if there are other stationary points we can

by the preceding discussion assume that at least one is of

rank r or less which contradicts our main result in Theo-

rem 2.4). Hence, in this sense our results are stronger than

those of [25] and allow for directly searching for a matrix of

the desired rank with an essentially parameter free formula-

tion.

In [8] the relationship between minimizers of (4) and (2)

is studied. Among other things [8] shows that if ‖A‖ ≤ 1
then any local minimizer of (4) is also a local minimizer

of (2), and that their global minimizers coincide. Hence

results about the stationary points of (4) are also relevant to

the original objective (2).

Some very recent papers [4, 28, 15] parametrize X us-

ing UV T , where both U and V have r columns. They

show that it is possible to bound the distance between the

global and any local minimum in terms of the residual error

‖A(UV T )−b‖2 if a RIP holds. In contrast to our results this

does however not rule out the existence of multiple minima

(except in the noise free case).

1.2. Notation

In this section we introduce some preliminary material

and notation. In general we will use boldface to denote a

vector x and its ith element xi. Unless otherwise stated the

singular values of a matrix X will be denoted xi and the

vector of singular values x. By ‖x‖ we denote the stan-

dard euclidean norm ‖x‖ =
√
xTx. A diagonal matrix

with diagonal elements x will be denoted Dx. For matri-

ces we define the scalar product as 〈X,Y 〉 = tr(XTY ),
where tr is the trace function, and the Frobenius norm

‖X‖F =
√

〈X,X〉 =
√

∑n
i=1 x

2
i . The adjoint of the lin-

ear matrix operator A is denoted A∗. By ∂F (X) we mean

the set of subgradients of the function F at X and by a sta-

tionary point we mean a solution to 0 ∈ ∂F (X).

2. Optimality Conditions

Let F (X) = Rr(X)+‖AX−b‖2. We can equivalently

write

F (X) = G(X)− δq‖X‖2F +H(X) + ‖b‖2, (11)

where G(X) = Rr(X) + ‖X‖2F and H(X) = δq‖X‖2F +
(

‖AX‖2 − ‖X‖22
)

− 2〈AX,b〉. The function G is convex

and sub-differentiable. Any stationary point Xs of F there-

fore has to fulfill

2δqXs −∇H(Xs) ∈ ∂G(Xs). (12)

Computation of the gradient gives the optimality conditions

2Z ∈ ∂G(Xs) where Z = (I −A∗A)Xs +A∗
b.

2.1. Subgradients of G

For our analysis we need to determine the subdifferen-

tial ∂G(X) of the function G(X). Let x be the vector of

singular values of X and X = UDxV
T be the SVD. Using

Von Neumann’s trace theorem it is easy to see [21] that the

Z that maximizes (5) has to be of the form Z = UDzV
T ,

where z are singular values. If we let

L(X,Z) = −
r

∑

i=1

z2i + 2〈Z,X〉, (13)

then we have G(X) = maxZ L(X,Z). The function L is

linear in X and concave in Z. Furthermore for any given X
the corresponding maximizers can be restricted to a com-

pact set (because of the dominating quadratic term). By

Danskin’s Theorem, see [3], the subgradients of G are then

given by

∂G(X) = convhull{∇XL(X,Z), Z ∈ Z(X)}, (14)

where Z(X) = argmaxZ L(X,Z). We note that by

concavity the maximizing set Z(X) is convex. Since

∇XL(X,Z) = 2Z we get

∂G(X) = 2 argmax
Z

L(X,Z). (15)

To find the set of subgradients we thus need to determine

all maximizers of L. Since the maximizing Z has the same

U and V as X what remains is to determine the singular

values of Z. It can be shown [21] that these have the form

zi ∈











max(xi, s) i ≤ r

s i ≥ r, xi 6= 0

[0, s] i > r, xi = 0

. (16)

for some number s ≥ xr. (The case xi = 0, i > r is

actually not addressed in [21]. However, it is easy to see that

any value in [0, s] works since zi vanishes from (13) when

xi = 0, i > r. In fact, any value [−s, s] works, but we use

the convention that singular values are positive. Note that

the columns of U that correspond to zero singular values

of X are not uniquely defined. We can always achieve a

decreasing sequence with zi ∈ [0, s] by changing signs and

switching order.)

For a general matrix X the value of s can not be deter-

mined analytically but has to be computed numerically by

maximizing a one dimensional concave and differentiable

function [21]. If rank(X) ≤ r it is however clear that the

optimal choice is s = xr. To see this we note that since the

optimal Z is of the form UDzV
T we have

L(X,Z) = −
r

∑

i=1

(zi − xi)
2 +

r
∑

i=1

x2
i , (17)
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if rank(x) ≤ r. Selecting s = xr and inserting (16) into

(17) gives L(X,Z) =
∑r

i=1 x
2
i , which is clearly the maxi-

mum. Hence if rank(X) = r we conclude that the subgra-

dients of g are given by 2Z = 2UDzV
T where

zi ∈
{

xi i ≤ r

[0, xr] i ≥ r
. (18)

2.2. Growth estimates for the ∂G(X)

Next we derive a bound on the growth of the subgradi-

ents that will be useful when considering the uniqueness of

low rank stationary points.

Let x and x
′ be two vectors both with at most r non-zero

(positive) elements, and I and I ′ be the indexes of the r
largest elements of x and x

′ respectively. We will assume

that both I and I ′ contain r elements. If in particular x′ has

fewer than r non-zero elements we also include some zero

elements in I ′. We define the corresponding sequences z

and z
′ by

zi ∈
{

xi i ∈ I

[0, s] i /∈ I
, z′i ∈

{

x′
i i ∈ I ′

[0, s′] i /∈ I ′
, (19)

where s = mini∈I xi and s′ = mini∈I x
′
i. If x′ has fewer

than r non-zero elements then s′ = 0. Note that we do not

require that the elements of the x,x′, z and z
′ vectors are

ordered in decreasing order. We will see later (Lemma 2.2)

that in order to estimate the effects of the U and V matrices

we need to be able to handle permutations of the singular

values. For our analysis we will also use the quantity s =
maxi/∈I zi.

Lemma 2.1. If s < cs, where 0 < c < 1 then

〈z′ − z,x′ − x〉 > 1− c

2
‖x′ − x‖2. (20)

Proof. Since zi = xi when i ∈ I and xi = 0 otherwise, we

can write the inner product 〈z′ − z,x′ − x〉 as

∑

i ∈ I
i ∈ I′

(xi−x′
i)

2+
∑

i ∈ I
i /∈ I′

xi(xi−z′i)+
∑

i /∈ I
i ∈ I′

x′
i(x

′
i−zi).

(21)

Note that ‖x′ − x‖2 =

∑

i ∈ I
i ∈ I′

(xi − x′
i)

2 +
∑

i ∈ I
i /∈ I′

x2
i +

∑

i /∈ I
i ∈ I′

x′2
i . (22)

Since the second and third sum in (21) have the same num-

ber of terms it suffices to show that

xi(xi − z′i) + x′
j(x

′
j − zj) ≥

1− c

2
(x2

i + x′2
j ), (23)

when i ∈ I , i /∈ I ′ and j /∈ I , j ∈ I ′. By the assumption

s < cs we know that zj < cxi. We further know that

z′i ≤ s′ ≤ x′
j . This gives

xiz
′
i ≤ xix

′
j ≤

x2
i + x′2

j

2
, (24)

x′
jzj < cx′

jxi ≤ c
x2
i + x′2

j

2
, (25)

Inserting these inequalities into the left hand side of (23)

gives the desired bound.

The above result gives an estimate of the growth of the

subdifferential in terms of the singular values. To derive a

similar estimate for the matrix elements we need the follow-

ing lemma:

Lemma 2.2. Let x,x′,z,z′ be fixed vectors with non-

increasing and non-negative elements such that x 6= x
′ and

z and z
′ fulfill (16) (with x and x

′ respectively). Define

X ′ = U ′Dx′V ′T , X = UDxV
T , Z ′ = U ′Dz′V ′T , and

Z = UDzV
T as functions of unknown orthogonal matri-

ces U , V , U ′ and V ′. If

a∗ = min
U,V,U ′,V ′

〈Z ′ − Z,X ′ −X〉
‖X ′ −X‖2F

≤ 1 (26)

then

a∗ = min
Mπ

〈Mπz
′ − z,Mπx

′ − x〉
‖Mπx

′ − x‖2 , (27)

where Mπ belongs to the set of permutation matrices.

The proof is almost identical to that of Lemma 4.1 in

[25] and therefore we omit it. While our subdifferential is

different to the one studied in [25], for both of them we have

that the z and x vectors fulfill zi ≥ xi ≥ 0 which is the only

property that is used in the proof.

Corollary 2.3. Assume that X is of rank r and 2Z ∈
∂G(X). If the singular values of the matrix Z fulfill zr+1 <
czr, where 0 < c < 1, then for any 2Z ′ ∈ ∂G(X ′) with

rank(X ′) ≤ r we have

〈Z ′ − Z,X ′ −X〉 > 1− c

2
‖X ′ −X‖2F , (28)

as long as ‖X ′ −X‖F 6= 0.

Proof. We let x,x′, z and z
′ be the singular values of the

matrices X,X ′, Z and Z ′ respectively. Our proof essen-

tially follows that of Corollary 4.2 in [25], where a similar

result is first proven under the assumption that x 6= x
′ and

then generalized to the general case using a continuity ar-

gument. For this purpose we need to extend the infeasible

interval somewhat. Since 0 < c < 1 and zr+1 < czr are

open there is an ǫ > 0 such that zr+1 < (c − ǫ)zr and
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0 < c − ǫ < 1. Now assume that a∗ > 1 in (26), then

clearly

〈Z ′ − Z,X ′ −X〉 > 1− c+ ǫ

2
‖X ′ −X‖2F , (29)

since 1−c+ǫ
2 < 1. Otherwise a∗ ≤ 1 and we have

〈Z ′ − Z,X ′ −X〉
‖X ′ −X‖2F

≥ 〈Mπz
′ − z,Mπx

′ − x〉
‖Mπx

′ − x‖2 . (30)

According to Lemma 2.1 the right hand side is strictly larger

than 1−c+ǫ
2 , which proves that (29) holds for all X ′ with

x
′ 6= x.

It remains to show that

〈Z ′ − Z,X ′ −X〉 ≥ 1− c+ ǫ

2
‖X ′ −X‖2F , (31)

for the case x
′ = x and ‖X ′ − X‖F 6= 0. Since ǫ > 0 is

arbitrary this proves the Corollary. This can be done as in

[25] using continuity of the scalar product and the Frobenius

norm. Specifically, a sequence X(t) → X , when t → 0, is

defined by modifying the largest singular value and letting

σ1(X(t)) = σ1(X)+ t. It is easy to verify that X(t) fulfills

(29) for every t > 0. Letting t → 0 then proves (31).

2.3. Uniqueness of Low Rank Stationary Points

In this section we show that if a RIP (3) holds and the

singular values zr and zr+1 are well separated there can

only be one stationary point of F that has rank r. We first

derive a bound on the gradients of H . We have

∇H(X) = 2δqX + 2(A∗A− I)X − 2A∗
b. (32)

This gives 〈∇H(X ′)−∇H(X), X ′ −X〉 =

2δq‖X ′−X‖2F +2(‖A(X ′−X)‖2−‖X ′−X‖2F ). (33)

By (3)
∣

∣‖A(X ′ −X)‖2 − ‖X ′ −X‖2F
∣

∣ ≤ δq‖X ′ −X‖2F ,
if rank(X ′ −X) ≤ q which gives

〈∇H(X ′)−∇H(X), X ′ −X〉 ≥ 0 (34)

This leads us to our main result

Theorem 2.4. Assume that Xs is a stationary point of

F , that is, (I − A∗A)Xs + A∗
b = Z, where 2Z ∈

∂G(Xs), rank(Xs) = r and the singular values of Z fulfill

zr+1 < (1−2δ2r)zr. If X ′
s is another stationary point then

rank(X ′
s) > r.

Proof. Assume that rank(X ′
s) ≤ r. Since both Xs and X ′

s

are stationary we have

2δ2rX
′
s −∇H(X ′

s) = 2Z ′, (35)

2δ2rXs −∇H(Xs) = 2Z, (36)

where 2Z ∈ ∂G(Xs) and 2Z ′ ∈ ∂G(X ′
s). Taking the dif-

ference between the two equations yields

2δ2r(X
′
s−Xs)−∇H(X ′

s)+∇H(Xs) = 2Z ′−2Z, (37)

which implies

2δ2r‖V ‖2F − 〈∇H(X ′
s)−∇H(Xs), V 〉 = 2〈Z ′ − Z, V 〉,

(38)

where V = X ′
s − Xs has rank(V ) ≤ 2r. By (34) the left

hand side is less than 2δ2r‖V ‖2F . However, according to

Corollary 2.3 (with c = 1−2δ2r) the right hand side is larger

than 2δ2r‖V ‖2F which contradicts rank(X ′
s) ≤ r.

Remark. Note that as mentioned in Section 1.1 the exis-

tence of a second stationary point of rank larger than r also

implies the existence of a second rank r stationary point.

Therefore under the conditions of the theorem Xs will be

unique over all ranks.

3. Implementation and Experiments

In this section we test the proposed approach on some

simple real and synthetic applications (some that fulfill (3)

and some that do not). For our implementation we use the

GIST approach from [16] because of its simplicity. Given a

current iterate Xk this method solves

Xk+1 = argmin
X

Rr(X) + τk ‖X −Mk‖2 , (39)

where Mk = Xk− 1
τk
(A∗AXk−A∗

b). Note that if τk = 1
then any fixed point of (39) is a stationary point by Lemma

1.1. To solve (39) we use the proximal operator computed

in [21].

Our algorithm consists of repeatedly solving (39) for a

sequence of {τk}. We start from a larger value (τ0 = 5 in

our implementation) and reduce towards 1 as long as this

results in decreasing objective values. Specifically we set

τk+1 = τk−1
1.1 + 1 if the previous step was successful in

reducing the objective value. Otherwise we increase τ ac-

cording to τk+1 = 1.5(τk−1)+1. We outline the approach

in Algorithm 1.

3.1. Synthetic Data

We first evaluate the quality of the relaxation on a num-

ber of synthetic experiments. We compare the two formula-

tions (4) and

min
X

µ‖X‖∗ + ‖AX − b‖2. (40)

In Figure 2 (a) we tested these two relaxations on a num-

ber of synthetic problems with varying noise levels. The

data was created so that the operator A fulfills (3) with

δ = 0.2. By column stacking an m × n matrix X the lin-

ear mapping A can be represented with a matrix A of size
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(a) (b) (c)
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‖ · ‖∗

A− 400× 400 with δ = 0.2 A− 300× 400 (unknown δ)

Figure 2: (a) - Noise level (x-axis) vs. data fit ‖AX − b‖ (y-axis) for the solutions obtained with (4) and (40). (b) - Fraction

of instances where the solution of (4) could be verified to be globally optimal. (c) - Same as (a). (a) and (b) uses 400× 400
A with δ = 0.2 while (c) uses 300× 400 A.

Data: A,b, imax

Result: Xk

Xk := 0, τ := 5;

for i = 1, ..., imax do

Mk := Xk − 1
τ (A∗AXk −A∗

b);

Xk+1 = argminX Rr(X) + τk ‖X −Mk‖2;

if F (Xk+1) > F (Xk) then

τ := 1.5(τ − 1) + 1;

else

τ := τ−1
1.1 + 1;

Xk = Xk+1;

end

end

Algorithm 1: Optimization of (4).

p × mn. It is easy to see that if we let p = mn the term

(1 − δq) of (3) will be the same as the smallest singular

value of A squared. (In this case the RIP constraint will

hold for any rank and we therefore suppress the subscript

q and only use δ.) For the data in Figure 3 (a) we selected

400×400 matrices A with random N (0, 1) (gaussian mean

0 and variance 1) entries and modified their singular values.

We then generated 20×20 matrices X of rank 5 by sampling

20× 5 matrices U and V with N (0, 1) entries and comput-

ing X = UV T . The measurement vector b was created by

computing b = AX + ǫ, where ǫ is N (0, σ2) for varying

noise levels σ between 0 and 1. In Figure 2 (a) we plotted

the measurement fit ‖AX − b‖ versus the noise level σ for

the solutions obtained with (4) and (40). Note that since the

formulation (40) does not directly specify the rank of the

sought matrix we iteratively searched for the smallest value

of µ that gives the correct rank, using a bisection scheme.

The reason for choosing the smallest µ is that this reduces

the shrinking bias to a minimum while it still gives the cor-

rect rank.

In Figure 2 (b) we computed the Z matrix and plotted the

fraction of problem instances where its singular values ful-

filled zr+1 < (1− 2δ)zr, with δ = 0.2. For these instances

the obtained stationary points are also globally optimal ac-

cording to our main results.

In Figure 2 (c) we did the same experiment as in (a) but

with an under determined A of size 300× 400. It is known

[29] that if A is p × mn and the elements of A are drawn

from N (0, 1
p ) then A fulfills (3) with high probability. The

exact value of δq is however difficult to determine and there-

fore we are not able to verify optimality in this case.

3.2. Non­Rigid Structure from Motion

In this section we consider the problem of Non-Rigid

Structure from Motion. We follow the aproach of Dai. et

al. [9] and let

X =























X1

Y1

Z1

...

XF

YF

ZF























and X# =







X1 Y1 Z1

...
...

...

XF YF ZF






, (41)

where Xi,Yi,Zi are 1×m matrices containing the x-,y- and

z-coordinates of the tracked points in images i. Under the

assumption of an orthographic camera the projection of the

3D points can be modeled using M = RX , where R is

a 2F × 3F block diagonal matrix with 2 × 3 blocks Ri,

consisting of two orthogonal rows that encode the camera

orientation in image i. The resulting 2F ×m measurement
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Figure 3: Four images from each of the MOCAP data sets.

Figure 4: Results obtained with (44) (blue dots) and (45) (orage curve) for the four sequences. Data fit ‖RX−M‖F (y-axis)

versus rank(X#) (x-axis).

Figure 5: Results obtained with (44) (blue dots) and (45) (orage curve) for the four sequences. Distance to ground truth

‖X −Xgt‖F (y-axis) versus rank(X#) (x-axis).

Figure 6: Results obtained with (46) (blue dots) and (47) (orage curve) for the four sequences. Data fit ‖RX−M‖F (y-axis)

versus rank(X#) (x-axis).

Figure 7: Results obtained with (46) (blue dots) and (47) (orage curve) for the four sequences. Distance to ground truth

‖X −Xgt‖F (y-axis) versus rank(X#) (x-axis) is plotted for various regularization strengths.
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matrix M consists of the x- and y-image coordinates or the

tracked points. Under the assumption of a linear shape basis

model [5] with r deformation modes, the matrix X# can be

factorized into X# = CB, where the r×3m matrix B con-

tain the basis elements. It is clear that such a factorization

is possible when X# is of rank r. We therefore search for

the matrix X# of rank r that minimizes the residual error

‖PX −M‖2F .

The linear operator defined by A(X#) = RX does by

itself not obey (3) since there are typically low rank matrices

in its nullspace. This can be seen by noting that if Ni is the

3 × 1 vector perpendicular to the two rows of Ri, that is

RiNi = 0 then




Xi

Yi

Zi



 = NiCi, (42)

where Ci is any 1 × m matrix, is in the null space of Ri.

Therefore any matrix of the form

N(C) =











n11C1 n21C1 n31C1

n12C2 n22C2 n32C2

...
...

...

n1FCF n2FCF n3FCF











, (43)

where nij are the elements of Ni, vanishes under A. Setting

everything but the first row of N(C) to zero shows that there

is a matrix of rank 1 in the null space of A. Moreover, if

the rows of the optimal X# spans such a matrix it will not

be unique since we may add N(C) without affecting the

projections or the rank.

In Figure 4 we compare the two relaxations

Rr(X
#) + ‖RX −M‖2F (44)

and

µ‖X#‖∗ + ‖RX −M‖2F (45)

on the four MOCAP sequences displayed in Figure 3, ob-

tained from [9]. These consist of real motion capture data

and therefore the ground truth solution is only approxima-

tively of low rank.

In Figure 4 we plot the rank of the obtained solution ver-

sus the datafit ‖RX −M‖F . Since (45) does not allow us

to directly specify the rank of the sought matrix, we solved

the problem for 50 values of µ between 1 and 100 (orange

curve) and computed the resulting rank and datafit. Note

that even if a change of µ is not large enough to change the

rank of the solution it does affect the non-zero singular val-

ues. To achieve the best result for a specific rank with (45)

we should select the smallest µ that gives the correct rank.

Even though (3) does not hold, the relaxation (44) consis-

tently gives better data fit with lower rank than (45). Fig-

ure 5 also shows the rank versus the distance to the ground

truth solution. For high rank the distance is typically larger

for (44) than (45). A feasible explanation is that when the

rank is high it is more likely that the row space of X# con-

tains a matrix of the type N(C). Loosely speaking, when

we allow too complex deformations it becomes more diffi-

cult to uniquely recover the shape. The nuclear norm’s built

in bias to small solutions helps to regularize the problem

when the rank constraint is not discriminative enough.

One way to handle the null space of A is to add addi-

tional regularizes that penalize low rank matrices of the type

N(C). Dai et al. [9] suggested to use the derivative prior

‖DX#‖2F , where the matrix D : R
F → R

F−1 is a first

order difference operator. The nullspace of D consists of

matrices that are constant in each column. Since this im-

plies that the scene is rigid it is clear that N(C) is not in the

nullspace of D. We add this term and compare

Rr(X
#) + ‖RX −M‖2F + ‖DX#‖2F (46)

and

µ‖X#‖∗ + ‖RX −M‖2F + ‖DX#‖2F . (47)

Figures 6 and 7 show the results. In this case both the data

fit and the distance to the ground truth is consistently bet-

ter with (46) than (47). When the rank increases most of

the regularization comes from the derivative prior leading

to both methods providing similar results.

4. Conclusions

In this paper we studied the local minima of a non-

convex rank regularization approach. Our main theoreti-

cal result shows that if a RIP property holds then there is

often a unique stationary point. Since the proposed relax-

ation (4) and the original objective (2) is shown to have the

same global minimizers if ‖A‖ ≤ 1 in [8] this result is also

relevant for the original discontinuous problem. Our ex-

perimental evaluation shows that the proposed approach of-

ten gives better solutions than standard convex alternatives,

even when the RIP constraint does not hold.
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