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Abstract

Low-shot face recognition is a very challenging yet impor-

tant problem in computer vision. The feature representation

of the gallery face sample is one key component in this prob-

lem. To this end, we propose an Enforced Softmax optimiza-

tion approach built upon Convolutional Neural Networks

(CNNs) to produce an effective and compact vector repre-

sentation. The learned feature representation is very helpful

to overcome the underlying multi-modality variations and

remain the primary key features as close to the mean face

of the identity as possible in the high-dimensional feature

space, thus making the gallery basis more robust under vari-

ous conditions, and improving the overall performance for

low-shot learning. In particular, we sequentially leverage

optimal dropout, selective attenuation, ℓ2 normalization, and

model-level optimization to enhance the standard Softmax

objective function for to produce a more compact vectorized

representation for low-shot learning. Comprehensive eval-

uations on the MNIST, Labeled Faces in the Wild (LFW),

and the challenging MS-Celeb-1M Low-Shot Learning Face

Recognition benchmark datasets clearly demonstrate the

superiority of our proposed method over state-of-the-arts.

By further introducing a heuristic voting strategy for robust

multi-view combination, and our proposed method has won

the Top-1 place in the MS-Celeb-1M Low-Shot Learning

Challenge.

1. Introduction

Recently, deep learning techniques have made great break-

throughs in many area both academically and industrially. In

computer vision, advances of deep learning approaches have

remarkably boosted the performance of face recognition.

Several approaches claim to have achieved [21, 18] or even

surpassed [14, 19] human performance on several bench-

* indicate equal contributions. Yu Cheng, Jian Zhao, and Zhecan Wang

were interns at Panasonic R&D Center Singapore during this work. Jian

Zhao is the corresponding author.

Figure 1: Matched (bounded with green boxes) and non-

matched (bounded with red boxes) cases in the challenging

low-shot learning problem. The left most column represents

the gallery data with only 1 face image of each identity

available for training, while the right 5 columns represent

the probe (query) face images captured in different condi-

tions (poses, illumination, resolution, etc.) with those of the

gallery. Our model consistently give the correct recognition

results for all challenging scenarios (faces with occlusion,

drawings, and low-resolution). More details are presented in

Sec. 4.3.

marks. The simple yet powerful structure of Convolutional

Neural Networks (CNNs) is able to efficiently learn useful

information from real-world images and capture the intrinsic

connections beneath the big data. Recent works on CNNs

mainly focus on network architectures [20, 6], non-linear

activations[1, 23, 11], and objective function optimization

[15, 22, 16].

Theoretically, the CNNs can be regarded as a manifold
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learning scheme, which is able to approximate any function

with a certain small error [2]. Therefore, CNNs are able to

learn an ideal projection from the training data representing

the real-world data distribution to an abstract vector space

depending on the specific objective function. For instance, a

deep model will learn a ℓ2 distribution from distance-based

objective function [16, 17] and a polar distribution based on

matrix multiplication guidance, e.g., Softmax Cross-Entropy

scheme [23].

However, in practice, it is considerably difficult to develop

a perfect model due to unavoidable limitations from mod-

ern algorithms (e.g., gradient vanishing in back-propagation,

and over fitting) and those from hardware (e.g., memory and

computational consumption for huge models). Thus, the

CNNs usually learn a rough approximation instead where

many samples cannot be clearly classified. Such hard cases

of traditional methods usually result from robustless sparse

representations with sensitivity to diverse variations, which

becomes a huge barrier for the low-shot learning problem.

This is very challenging for face recognition in the wild as

the available training data for each identity is limited, as

shown in Figure 1. Different from human beings who can ef-

fortlessly recognize the identities from very few face images

by accurately capturing the intrinsic features, the data-driven

deep learning algorithms still requires quite a few training

data to achieve satisfactory performance. This problem be-

comes even exacerbated if the gallery face images is captured

under extreme conditions such as poses, illumination, and

resolution. Therefore, it becomes necessary for CNNs to

learn a compact vector representation to minimize the effect

from disturbance.

In this paper, we propose an enforcing scheme for the

standard Softmax objective function by narrowing the deci-

sion boundaries of each class in order to guide the model

to produce a more compact vector representation for effec-

tively solving the challenging low-shot learning problem on

face recognition. Through the compact vector representa-

tion learning, the deep features belonged to the same class

are located closer to each other while those belonged to

different classes are separated clearer. Such compactness

results in less variation on irrelevant variables from facial

poses, illumination, resolution, etc. Therefore, it becomes

a good choice for low-shot learning problem due to the in-

creased compactness and robustness of the gallery basis and

query encoding. In particular, we sequentially leverage an

optimal dropout scheme to overcome the gradient vanishing

and over-fitting problems, a selective attenuation scheme

for the last fully connected layer of CNNs to compact the

intra-class distance and sparse the inter-class distance, a ℓ2
normalization operation to balance the decision boundaries

of majority and minority classes, and a model-level opti-

mization to learn better feature vector distribution and dense

multi-class clusters.

Comprehensive evaluations on the MNIST [12], Labeled

Faces in the Wild (LFW) [8], and the challenging MS-Celeb-

1M [4] Low-Shot Learning Face Recognition benchmark

datasets clearly demonstrate the superiority of our proposed

method over state-of-the-arts.

Moreover, we further propose a heuristic voting strategy

for robust multi-view combination, and our proposed method

has won the Top-1 place in the MS-Celeb-1M Low-Shot

Learning Challenge1.

Our contributions are summarized as follows.

• We propose a novel enforcing scheme for the standard

Softmax objective function by narrowing the decision

boundaries of each class in order to guide the model

to produce a more compact vector representation for

effectively solving the challenging low-shot learning

problem on face recognition.

• We introduce an optimal dropout scheme to overcome

the over-fitting problem; a selective attenuation scheme

for the last fully connected layer of CNNs to compact

the intra-class distance and sparse the inter-class dis-

tance; a ℓ2 normalization operation to balance the deci-

sion boundaries of majority and minority classes, and a

model-level optimization to learn better feature vector

distribution and dense multi-class clusters.

• Comprehensive evaluations on the MNIST, LFW, and

the challenging MS-Celeb-1M Low-Shot Learning Face

Recognition benchmark datasets clearly demonstrate

the superiority of our proposed method over state-of-

the-arts. Moreover, we further propose a heuristic vot-

ing strategy for robust multi-view combination, and

our proposed method has won the Top-1 place in the

MS-Celeb-1M Low-Shot Learning Challenge.

2. Related Works

Recently, several works have been devoted on optimiza-

tion of CNN objective functions to achieve better perfor-

mance on specific tasks. Center loss [22] provides an ap-

proach to cluster the samples both in the perspective of angle

and ℓ2 distance by adding a ℓ2 regularization term. With

this approach, the learned deep features are more compact

in the Rn space. Large Margin Softmax [15] proposes a loss

function which narrows the area for each class. This loss

function is able to compact the deep features of each class.

However, similar to center loss [22], it is unable to untan-

gle the unbalanced data problem in the low-shot learning

problem.

For low-shot learning, due to the extremely limited train-

ing samples for Novel set identities, most methods are focus-

ing on developing effective algorithms for feature expansion.

In [5], the authors propose a feature generating approach by

1http://www.msceleb.org/leaderboard/c2
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Figure 2: Enforcing scheme overview. The proposed Enforced Softmax scheme contains 4 main components: optimal dropout,

selective attenuation, ℓ2 normalization, and model-level optimization. Through this scheme, a model is enabled to learn a

compact vector representation, which is beneficial for solving the low-shot learning problem on face recognition. Best viewed

in color.

training a transferring Multi-Layer Perceptron (MLP) which

takes the input of (z1, z2, x) and outputs x′ by applying the

z1 → z2 transformation to x. This generating scheme is

quite helpful to expand the Novel set. However, the genera-

tor is trained based on the assumption that the nearest two

pairs have the same variation, which does not always hold

in real-world scenario. This might potentially lead to wrong

generation and could be a fetal error for certain classes, as

the gallery vectors are wrongly biased.

The other trend of approaches to solve the low-shot learn-

ing problem is to generalize the decision boundary of each

class. In [3], the authors proposed an Underrepresented-

classes Promotion (UP) term to achieve reasonable decision

boundaries for identities of the Novel set during training.

However, merely balancing the decision area is not enough

for low-shot learning since there still exist quite a lot hard

cases which could be easily misclassified with a high confi-

dence score.

In this paper, we propose an enforcing scheme to compact

the feature vector representation by sequentially leveraging

optimal dropout, selective attenuation, ℓ2 normalization and

model-level optimization to enhance the standard Softmax

objective function for guiding the model to produce a more

compact vectorized representation. This method is effective

for solving low-shot learning problems by normalizing their

decision boundaries and separate us well with other related

works.

3. Enforced Softmax

Our proposed Enforced Softmax scheme is able to 1)

learn discriminative yet generative compact vector represen-

tations, and 2) boost the low-shot learning face recognition

performance in presence of large multi-modality variances.

As shown in Figure 2, the Enforced Softmax scheme sequen-

tially leverages optimal dropout, selective attenuation, ℓ2
normalization and model-level optimization to enhance the

standard Softmax objective function for guiding the model

to produce a more compact vectorized representation. This

method is effective for solving low-shot learning problems

by normalizing their decision boundaries. We now present

each component in detail.

3.1. Compact Vector Representation Learning

Optimal Dropout A CNN model deployed for face recog-

nition using feature retrieval strategy can be regarded as a

feature extractor:

~v(x) = f(x), (1)

where x denotes the network input (RGB face image), f(·)
denotes the non-linear encoding function learned by a CNN

model, ~v(x) denotes the learned feature vector.

For any manifold, there exists an intrinsic dimensionality

that conforms to the following definition, as firstly intro-

duced in [24]:

Definition 3.1. Manifold A subset M ⊂ Rd is called a

p-smooth (p > 0) manifold with intrinsic dimensionality

m = m(M), if there exists a constant cP (M) such that
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Figure 3: Visualized comparison of the learned feature vectors with the proposed enforcing scheme using different attenuation

factors on MNIST [12]. The standard Softmax with attenuation factor of 1.0 (left) results in more sparse vector representation

compared with those with attenuation factor of 0.9 (middle) and 0.7 (right). The feature vectors become more compact with

the decrease of the attenuation factors. Best viewed in color.
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, where γ is a map of x ∈ R
d to

[γv∈C ] ∈ RC such that
∑

v γv(x) = 1, C is a set of an-

chor points in d-dimensional space R
d.

Thus, an approximation can be computed by maximum

likelihood estimation [13]:

m̂k(Xi) =[
1

k − 1

k−1
∑

j=1

log(
Tk(Xi)

Tj(Xi)
)]

−1

,

m̂k =
1

N

k−1
∑

j=1

m̂k(Xi).

(2)

According to Def. 3.1 and Eqn. (2), qualitatively, a dataset

intrinsically has a lower bound of feature dimensionality m

to fully express all the data samples, and for face recognition

or generic object classification, the required dimensionality

will be lower since some information will not contribute to

the overall performance.

Hence, based on optimal intrinsic dimensionality assump-

tion, we propose a drop-out scheme for training CNN models.

Since we aim to avoid the gradient vanishing and over-fitting

problem while minimizing the information loss, the dropped

vector is supposed to contain the same essential information

as the compact counterparts do. Thus, the optimal dropout

rate should reach its maximum while not hurting the ac-

curacy. The dropout of the feature layer can be regarded

as a layer assembling operation, which means we assem-

ble different parameterized layers in a dropout style. This

operation can efficiently improve the robustness of learned

feature vectors. Moreover, it is also helpful on choosing the

best Principal Component Analysis (PCA) strategy, since

the intrinsic information in different dimensions is highly

correlated after an optimal dropout.

Selective Attenuation We then define every column vec-

tor of the weights of the last fully connected layer as an

“anchor vector“ which represents the center of each class.

Therefore, the decision boundary can be derived when two

anchor vectors give the same prediction.

~p · ~a1 = ~p · ~a2, (3)

where ~a1 and ~a2 denote the anchor vectors and ~p denotes the

feature vector.

However, in such cases, the samples located closed to

the decision boundary can be wrongly classified with a high

probability. A simple yet effective solution is to compact

the intra-class distance and sparse the inter-class distance of

the feature vectors, through which the hard samples will be

adjusted and located in the correct decision area.

Therefore, we propose to impose the following regular-

ization term to the standard Softmax Cross-Entropy loss to

optimize the whole network and learn the relevant parame-

ters:

St := aSt, (4)

where a denotes the attenuation factor (margin) to control

the intra-class distance.

Note that Eqn. (4) is only applied to the confidence scores

of genuine samples. Since we have made modifications of

the standard Softmax loss to a more complicated objective

function where genuine samples are treated differently from

imposter ones, the target manifold is changed to a more

complex shape which is expected to contain more paddle

points and local minimas. Optimizers will probably face

difficulties on convergence when facing large number of

classes. Thus, during the training process, the attenuation

factor is firstly set to 1.0, so that the model is only trained

with the standard Softmax loss. After convergence, the

value is decreased step-by-step in order to gradually shift the

manifold from the standard Softmax to our target enforced

version.
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Figure 4: Illustration of decision boundaries before and after

ℓ2 normalization. The minor classes occupy a very small

decision area due to the small number of training data (left).

A more reasonable decision area can be generated after ℓ2
normalization (right).

ℓ2 Normalization For evaluation, we choose cosine sim-

ilarity as the confidence score measurement to make it as

simple as possible to advance the time efficiency of the pro-

posed approach,

Scr =
~a ·~b

||a|| ||b||
. (5)

Note that the final confidence score is relevant to the in-

ner product of two normalized vectors, which is different

from what we did during the training process. The decision

boundaries during evaluation is identical for each feature

vector, but different during training due to various of anchor

vectors, as described in Eq. (3). For unbalanced datasets,

especially the low-shot dataset, where identities of the Novel

set are provided with very few training images, the decision

areas for minorities will be compressed to extremely small,

as shown in Figure 4. Thus, the minor classes make no con-

tribution to training, and the decision areas for major classes

will become sparse. Therefore, we propose a ℓ2 normaliza-

tion pipeline as the substitution of the last fully connected

layer in the standard CNN model. The standard Softmax loss

is then changed to Eqn. (6) and the normalization pipeline is

illustrated in Figure 5.

Pi =
ef̂ ·âi

∑

j e
f̂ ·âj

. (6)

In this normalization pipeline, we can alternatively choose

to enable either one of the normalization operations or both.

Since normalizations on features does not bring any changes

to decision boundary, we focus on the normalization opera-

tion on anchor vectors (the weight matrix), as it is expected

to give a more uniform feature distribution. For consistence

with the cosine evaluation as in Eqn. (5), we normalize both

anchor vectors and feature during training.

However, considering an extreme condition that every an-

chor vector is perpendicular to each other after convergence,

the prediction score after Softmax will become:

Figure 5: Illustration of ℓ2 normalization scheme for the

last fully connected layer. It is deployed to normalize the

decision boundaries of different classes.

P =

{

e
e+

∑
n−1

1
(Genuine sample),

1

e+
∑

n−1
1

(Imposter sample),
(7)

where n denotes the number of total classes.

When n is large, it is unreasonable that there still exists a

very large gradient from back-propagation after convergence.

In order to address this issue, we multiply a scaling factor

s before Softmax to modify the predicted scores of genuine

samples:

P =
es

es +
∑

n−1
1
. (8)

Thus, our final normalized Softmax objective function is:

Pi =
esf̂ ·âi

∑

j e
sf̂ ·âj

. (9)

Model-Level Optimization As discussed in previous sec-

tions, since the Softmax loss guides the feature vector to

a weighted cosine clustering distribution, it is necessary to

modify the structure of the feature layer of the CNN model.

CNNs usually contain some activation functions di-

rectly or indirectly connected with the feature layer. Mod-

ern CNN models mostly adopt Rectified Linear Units

(ReLU)+Average pooling scheme. The feature vectors are

restrained in the R
+n

space and all negative activations are

canceled by force. This cancellation leads to a gradient path

for anchor vectors to distribute on the negative areas and

form obtuse angles between feature vectors. Thus, it is nec-

essary to remove the ReLU activation to facilitate the anchor

vectors converging to the centers of classes by spreading the
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feature vectors over the total space. As the feature vectors

are concentrated to the centers of classes under the Enforced

Softmax, the spreading of feature vectors would enable CNN

models with stable and fast convergence and help improve

the overall performance on low-shot learning problems.

Moreover, we further propose to change the average pool-

ing layer to a 7 × 7 depthwise convolution layer as it is

expected to learn a better pooling scheme. We also remove

the activation function of the feature layer for a better con-

vergence.

3.2. Heuristic Voting for Robust Multi­View Com­
bination

A single model is difficult to produce satisfactory results

due to the fact that hard cases appear frequently in low-shot

learning problems. We further propose a heuristic voting

strategy at the score level for robust multi-view combination

of multiple CNN models.

We first normalize all confidence scores of each trained

model to 0-1, and we assign the model with the best per-

formance as the main model while we regard the others as

auxiliary models. Then, we sum up the confidence scores

of the auxiliary models to that of the main model if they

have the same prediction. We then divide the total testing

data into multiple splits, sorted by the more reliable order

of confidence scores. Then, we take the lowest group of our

predictions as the hard cases as they are laying on the edge

of decision boundaries of each model. Hard cases are mostly

the face images from the identities whose gallery are quite

different from the query during testing. Thus, we replace the

predictions in the last split with the results from the gallery

to achieve better performance on identities of the Novel set,

and add the score by 1.0 because we strongly believe that the

hard cases are face images from identities of the Novel set.

The overall pipeline is illustrated in Figure 6. This heuris-

tic voting strategy effectively and efficiently improves the

overall performance via this hard case mining process.

4. Experiments

We verify the effectiveness of the proposed method on

MNIST [12], LFW [8], and MS-Celeb-1M [4] low-shot

learning face recognition benchmark datasets.

4.1. MNIST

We first train a toy model on the MNIST dataset [12], to

evaluate the compactness of the learned feature vectors. The

details of the network architecture is provided in Table 1.

The model is trained to distinguish 10 different handwritten

digits with various attenuation factors, and evaluated with

the inter-class and intra-class cosine similarity based on Eqn.

(5). Results are visualized in Figure 3 and listed in Table 2.

With the decreasing of the attenuation factor, the intra-

class cosine similarities become larger and the inter-class

Operation Kernel/Padding Output Activation

Convolution 5× 5/3 32 ReLU

Convolution 5× 5/2 64 ReLU

Convolution 3× 3/1 128 ReLU

Fully Connected N/A 2 None

Table 1: Toy model architecture for MNIST [12].

Attenuation Factor Inter-Class Intra-Class

1.0 (Standard Softmax) 0.054 0.864

0.9 0.11 0.90

0.8 0.107 0.927

0.7 0.132 0.943

Table 2: Comparison of cosine similarity for inter-class and

intra-class with different attenuation factors on MNIST [12].

The increase of intra-class similarity ensures more compact

feature vector representation.

similarities become smaller. Thus, the model has learned

a more compact vector representation with the proposed

Enforced Softmax strategy, which is significantly helpful to

achieve better performance in feature retrieval with cosine

similarity evaluation.

4.2. LFW

In order to measure the reliability (i.e., the model should

give a high recall at low fall-out) of the learned feature

vectors, we then perform evaluation on the Open Testing set

of LFW [8]. The Open set is composed of 596 gallery face

images and 10, 090 probe face images, where 9, 494 of them

are distractors. The evaluation protocols are determined by

True Positive Rate (TPR)@False Positive Rate (FPR)=0.01
and Top-1 accuracy.

We conducted several experiments with different network

architectures to study the effect of our proposed enforcing

scheme on face recognition task. The experiments are per-

formed based on 3 different magnitudes of training data and

3 different network architectures. All results consistently

show that our proposed enforcing strategy gives better perfor-

mance compared with the standard Softmax Cross-Entropy

loss, as shown in Table 3.

4.3. MS­Celeb­1M Low­Shot Learning

The MS-Celeb-1M [4] Low-Shot Learning Challenge pro-

vides a new benchmark dataset for face recognition, which

contains two subsets: Base set and Novel set. Base set con-

tains 20k identities with 50 to 70 images for each. Novel set

contains 1k identities with only 1 image for each. The evalu-

ation protocol is determined by Coverage@Precision=0.99
on Novel set. During evaluation, the predictions are sorted

by the confidence scores predicted by deep models in de-

scending order. Then we take the Top-x images, where 99%
of them are correctly recognized, to compute the coverage:

x divided by the number of all testing images. For validity

61929



Figure 6: Heuristic voting for robust multi-view combination overview. We first redistribute the confidence scores by the

number of deep models. Then, we replace the low confidence scores with the results from the 1k gallery comparison. We

then perform a pull-down operation to the samples where the predictions of the 21k gallery are different from those of the 1k

gallery. Such samples are regarded as the Base set data.

Figure 7: Coverage@Precision curves on MS-Celeb-1M Low-Shot Learning Challenge Development set. The performance

of separate model (left) is satisfactory on Development set but varies dramatically due to different network architectures

(views). The proposed heuristic voting strategy combines the strengths of each model with compensation to each other. Thus,

it provides better performance (right). Best viewed in color.

Network Training ID TPR@FPR=0.01 Top-1 Scheme

ResNet-18 [6] 10k 0.201 - None

ResNet-18 [6] 10k 0.343 - At

ResNet-50 [6] 10k 0.315 - None

ResNet-50 [6] 10k 0.437 - At

ResNet-50 [6] 50k 0.686 - None

ResNet-50 [6] 50k 0.758 - At

ResNet-50 [6] 50k 0.857 - L2

ResNet-50 [6] 50k 0.896 0.9908 At+L2

ResNet-50 [6] 80k 0.824 - At

ResNet-50 [6] 80k 0.903 0.9913 At+L2

Light-CNN-29 [23] 80k 0.889 - None

Light-CNN-29 [23] 80k 0.929 0.993 At

Light-CNN-29 [23] 80k 0.917 - At+L2

Table 3: Comparison of TPR@FPR=0.01 and Top-1 accu-

racy on LFW [8] Open set verification protocol. At and ℓ2
denote selective attenuation and ℓ2 normalization, respec-

tively.

of the testing results, the performance of Top-1 accuracy on

Base set is also monitored and required to be better than

99%.

Since the magnitude of the Base set is not enough for

training a well generalized CNN model as the feature ex-

tractor for effectively solving the low-shot learning problem

on face recognition in the wild, we construct an extended

training dataset using the face images of the identities from

MS-Celeb-1M Challenge 12. In particular, we filtered out

the identities overlapped with the 1k identities of the Novel

set according to the MIDs, and we only keep the identities

with more than 20 face images to construct a well balanced

training dataset. The final constructed training dataset con-

tains 80k identities in total where 60k of them are from our

extension and the other 20k are from the original Base set.

We also build an additional Testing set using the data from

challenge 1 as the Validation set in our early work to tune

the hyper parameters. The Validation set comprises 5 images

2http://www.msceleb.org/celeb1m/1m
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for each identity from the Base set and 20 images for each

identity from the Novel set.

We trained 4 models with different architectures and

then predict the final recognition results using our proposed

heuristic voting strategy for robust multi-view combination.

The 4 models are Light-CNN-29 [23], DenseNet [7], ResNet-

50 [6] and GoogLeNet [20] with Bach Normalization [10],

respectively. For evaluation, we random crop and flip the

face images of the 1k identities of the Novel set up to 42
times and compute the corresponding mean encoding to con-

struct a more generalised basis feature vector representation

for gallery retrieval.

We first evaluate the performance of separate model,

as shown in Table 4 and Figure 7 (left). With the pro-

posed enforcing scheme, all models achieve satisfactory

performance and the best model achieves 91.5% when

Coverage@precision=0.99, outperforming the state-of-the-

art by 14.02%.

We then evaluate the performance of combined models,

as shown in Table 5 and Figure 7 (right). Firstly, the fea-

ture vectors are compressed by Whiten PCA to our opti-

mal dimensionality (i.e. 512 by cross-validation). Then

we perform the proposed heuristic voting strategy step-by-

step. For MS-Celeb-1M Challenge 2, as the evaluation pro-

tocol separately tests the Top-1 accuracy on the Base set

and Coverage@Precision=0.99 on the Novel set, it is nec-

essary to divide the testing data into the Base set data and

the Novel set data. Motivated by this, we “pull down" the

confidence score where the current result is different from

the prediction of the 1k gallery. Hereby we have divided the

whole Testing set into 6 splits, where the Base set images are

separated from Novel set images to the negative side. This

hard case mining strategy is proved to be a good solution for

unbalanced data.

As can be seen, every step gives an improvement and

finally we achieve 99.56% when Coverage@precision=0.99.

After applying Joint Bayes [9] metric learning strategy to

DenseNet and GoogLeNet by cross-validation, we finally

achieve 100% on the Development set (outperforming the

state-of-the-art by 22.52%) and 99.01% on the Testing set

when Coverage@precision=0.99 while keeping 99.74% Top-

1 accuracy on the Base set, which significantly outperforms

other state-of-the-arts. This results have won the Top-1 place

in the MS-Celeb-1M Low-Shot Learning Challenge (Chal-

lenge 2). Please refer to MS-Celeb-1M Low-Shot Learning

Challenge official leaderboard3 for fully detailed results.

5. Conclusion

In this paper, we propose a novel enforcing scheme for

the standard Softmax objective function by narrowing the

decision boundaries of each class in order to guide the model

3http://www.msceleb.org/leaderboard/c2

Model Validation Development

Guo et al. [3] - 77.48%

GoogLeNet [20] 75.20% 76.34%

ResNet-50 [6] 80.30% 80.74%

DenseNet [7] 82.00% 82.30%

Light-CNN-29 [23] 90.30% 91.50%

Table 4: Comparison of Coverage@Precision=0.99 of sepa-

rate model on MS-Celeb-1M [4] Low-Shot Learning Chal-

lenge Validation and Development set.

Step Validation Development Testing

Guo et al. [3] - 77.48% -

Original 91% 91.5% -

Voting 95.7% 96.26% -

Replacement 97.84% 98.34% -

Pulling Down 99.1% 99.56% 98.57%

Optimal Combination 99.63% 100% 99.01%

Table 5: Comparison of Coverage@Precision=0.99 of each

combination step on MS-Celeb-1M [4] Low-Shot Learning

Challenge Validation, Development and Testing sets. The

proposed heuristic voting strategy significantly improves

the overall performance from 91.5% to 99.56%. With the

DenseNet and GoogLeNet incorporated with Joint Bayes

metric learning strategy, our optimal combination perfor-

mance (highlighted in bold) achieves 100% on the Develop-

ment set and 99.01% on the Testing set.

to produce a more compact vector representation for effec-

tively solving the challenging low-shot learning problem on

face recognition. Our framework can be easily extended

to other generic object classification tasks. Comprehensive

evaluations on the MNIST, LFW, and the challenging MS-

Celeb-1M Low-Shot Learning Face Recognition benchmark

datasets clearly demonstrate the superiority of our proposed

method over state-of-the-arts. Moreover, we further propose

a heuristic voting strategy for robust multi-view combination,

and our proposed method has won the Top-1 place in the

MS-Celeb-1M Low-Shot Learning Challenge.
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