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Abstract

In this paper we present Doppelganger mining - a

method to learn better face representations. The main idea

of this method is to maintain a list with the most similar

identities for each identity in the training set. This list is

used to generate better mini-batches by sampling pairs of

similar-looking identities (”doppelgangers”) together. It is

especially useful for methods, based on exemplar-based su-

pervision. Usually hard example mining comes with a price

of necessity to use large mini-batches or substantial ex-

tra computation and memory cost, particularly for datasets

with large numbers of identities. Our method needs only

a negligible extra computation and memory. In our experi-

ments on a benchmark dataset with 21,000 persons we show

that Doppelganger mining, being inserted in the face repre-

sentation learning process with joint prototype-based and

exemplar-based supervision, significantly improves the dis-

criminative power of learned face representations.

1. Introduction

Deep Convolutional Neural Networks have achieved

great results in face verification and recognition [38, 11, 1,

47]. The main component of this success is their ability to

benefit from large-scale training datasets [10, 25] and learn

powerful discriminative face representations [4, 43, 30].

Convolutional Neural Networks usually represent faces in

the form of embedding vectors [33], such that Euclidean

or cosine distance between two different face embeddings

of the same person is less than distances between the face

embeddings of two different persons. Training of these net-

works is based on the proper choice of network architecture,

loss function and sampling method. While there is a very

active ongoing research in the field of neural network archi-

tectures [45, 28, 13, 3, 46, 41, 52, 37, 50] and loss functions

[33, 43, 34, 24, 40, 27, 30, 42, 14, 18, 29, 20, 51, 35, 31, 7,

Figure 1. Examples of the doppelganger identities from the Low-

shot face recogntion challenge dataset (base set) [9]. Identities at

the left and their corresponding doppelgangers at the right.

2], sampling method receives less attention [44, 16].

In this paper we propose Doppelganger mining - a new

simple sampling method, which improves the training of

Deep Convolutional Neural Networks for face recognition.

The essence of this method is to keep track of a doppel-

gangers - identities in the training dataset, which are differ-

ent, but look similar and are close in the embedding space.

For this purpose we create a list, which contains IDs of the

most similar identities for each identity in the dataset. This

list is not fixed, it changes with the progress of training,

keeping doppelgangers up-to-date with the current state of

the neural network. This acquired pairwise similarity in-

formation is used at the mini-batch generation stage. Part

of the identities in the mini-batch are sampled randomly,

and the other part consists of the first part’s doppelgangers.

Mini-batches, created with this strategy, tend to contain

more hard examples, which are essential for the training of

face representations.

Doppelganger mining is particularly suitable for a joint

supervision setting, when the network is trained with a com-

bination of prototype-based loss (Softmax [38], L2-Softmax

[30], NormFace [42], A-Softmax [18], Center loss [43]) and
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exemplar-based loss (Contrastive loss [4], Triplet loss [33],

N-pair loss [34]). With this kind of supervision, Doppel-

ganger mining can obtain identitiy similarity information

with the help of prototype-based loss, use it to find doppel-

gangers, and then benefit exemplar-based loss with better

mini-batches, containing more hard examples.

2. Related work

There are two different types of loss functions usually

used for learning discriminative face representations. One

kind is prototype-based loss functions, which create pro-

totype objects for each class and then use them to train

the network to discriminate between classes (identities).

These prototype objects can be in the form of class cen-

troids [43, 29], classifier weights [28, 30, 42, 20, 18] or

proxies [24]. They evolve with the neural network and con-

tain global, dataset-wise information about classes in the

embedding space. The most popular loss function of this

kind is Softmax loss [28, 38]. However, while it encour-

ages inter-class separability, it does not ensure intra-class

compactness, and this property is important for face repre-

sentations, as we need face embeddings of one identity to be

close in embedding space. Large-Margin Softmax loss [19],

which introduces an adjustable margin between classes, was

proposed for this purpose. It encourages both intra-class

compactness and inter-class separability. Center loss [43]

is another loss function, created to make classes more com-

pact in the embedding space. It is an auxiliary loss func-

tion applied together with Softmax loss and using trainable

class centroids as the prototype objects. Center loss stim-

ulates face embeddings to be close to their corresponding

class centroid embeddings. Contrastive-Center loss [29] is

a modification of Center loss, which also stimulates face

embeddings to be far from their non-corresponding class

centers. L2-Softmax loss [30] is a modification of Softmax

loss with L2-normalized embeddings and adjustable scale

parameter. Congenerous Cosine loss [20] and NormFace

[42] L2-normalize both the face embeddings and the clas-

sifier weights. A-Softmax loss [18] is a variant of Large-

Margin Softmax loss with L2-normalized classifier weights.

All these loss functions use example embeddings with their

distances to corresponding and non-corresponding proto-

types to train the network. While global dataset-wise infor-

mation, containing in prototypes, is very important, a lot of

information is hidden in the pairwise example-to-example

relations.

The other type is exemplar-based loss functions. They

use example-to-example distance information to train the

networks. Contrastive loss [4] is one of the most famous

functions in this kind. It uses pairwise distances between

examples in embedding space and encourages the same

class examples to be close to each other, and the different

class examples to be far. The next and the most popular

in face recognition networks is Triplet loss [33] which uses

triplets of examples, containing anchor, positive and nega-

tive examples. Triplet loss stimulates the network to train

in such way that the distance between anchor and positive

example in embedding space became less than distance be-

tween anchor and negative example by some notable mar-

gin. Lifted Structured Feature Embedding [27] is another

loss function, which also encourages examples of the same

class be closer than examples of different classes, while tak-

ing into account the matrix of all pairwise distances in the

mini-batch to select better positives and negatives. This way

the training is much faster. Other examples of exemplar-

based loss functions are N-pair loss [34], Margin based

loss [44], PDDM [14], Histogram loss [40] and Range loss

[51]. To combine the advantages of prototype-based and

exemplar-based losses, it is possible to use joint supervi-

sion [36, 30], to fine-tune the trained neural network with

different loss function [28] or just to train an additional em-

bedding layer on top of the trained neural network [32].

Exemplar-based loss functions benefit heavily from bet-

ter example pairs, used in training. The most valuable pairs

are hard negatives and hard positives, i.e. examples of the

different classes that are very close in the embedding space,

and examples of the same class, that are far in the embed-

ding space. There are several different methods to acquire

such example pairs in the training. One way is online hard

example mining when the most hard example pairs, triplets

or quadruplets [14] within a mini-batch are selected. In

some cases too hard examples can prevent the network to

train properly, so there is online semi-hard example min-

ing [33, 28, 27], when example pairs are selected randomly

from the ”hard enough” pairs in the minibatch (pairs that

violate some distance margin). The network can get use-

ful information not only from hard example pairs, but also

from not-so-hard example pairs [49], so there are also meth-

ods to select a distance-weighted mix of hard and not too

hard samples [44]. All above methods are performed in-

side a mini-batch, so they are dependent on the mini-batch

size (larger size means more examples to choose from) and

mini-batch generation method (i.e. how to select what ex-

amples to include in the mini-batch in the first place). Large

mini-batches demand more memory and computation, lim-

iting the size of possible neural networks. Also when the

training dataset consists of the large number of distinct

classes, randomly chosen examples in mini-batch may con-

tain not enough hard example pairs. There are methods to

select hard examples globally [21, 6], but they work with

individual examples, not example pairs. The problem of

sampling better mini-batches for pairwise exemplar-based

learning was studied in [34]. They proposed hard class min-

ing: first, some number of random classes are selected, then

a couple of examples from each class is used to find classes

that are close to each other. Finally, more examples of these
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classes are sampled in the mini-batch. While benefiting the

performance, this method is computationally expensive and

not very good for the datasets with large number of classes.

Another way to sample better mini-batches is Smart Min-

ing with Fast Approximate Nearest Neighbour Graph [16]

which is also computationally expensive and requires the

construction of a nearest neighbour index.

3. Proposed Method

We propose a new method for mini-batch generation

called Doppelganger mining. The main motivation be-

hind this method is that to create better mini-batches for

exemplar-based face representation training, we must care-

fully select which classes to include in the mini-batch.

When the number of classes is not very large, there is a good

chance that hard class pairs will appear in the mini-batch

and create good hard example pairs for training. But when

the number of classes is large, and each of them has only

a few hard class pairs in the dataset, we must not rely on a

random sampling, but sample classes more intelligently.

We propose to maintain a list of doppelgangers - paired

hard negative classes, one doppelganger for each identity

in the training dataset. This list is created, updated and

used through the course of neural network training with the

help of joint prototype-based and exemplar-based supervi-

sion. In this paper we use L2-Softmax loss as a prototype-

based loss and a combination of Lifted Feature Embedding

and Margin based loss as an exemplar-based loss, but the

method is general and can be used with different losses.

3.1. Mini­batch generation

To generate a mini-batch of size M first we must choose

how many classes Nc and how many examples per class it

will contain. To find Nc we sequentially randomly sam-

ple the number of examples for each prospective class in

the mini-batch from some predefined range (for example,

from 2 to 8) until total number of examples reaches M.

As the result, we determine that there will be Nc different

classes in the current mini-batch. Now we must select each

of these Nc classes from Ntotal (total number of classes in

the dataset). Nr (it is a hyperparameter) of these classes

are selected randomly from the total number of classes in

the training dataset. Another Nd = Nc-Nr classes are se-

lected with Ci = Doppelganger(Ci - Nr
). Doppelganger(x)

returns a doppelganger class (from the doppelganger list)

for the class x, or the random class from Ntotal if there is no

doppelganger yet in the list for the class x, or this doppel-

ganger class is already sampled in the current mini-batch (to

prevent cyclic doppelganger class sampling). So, basically,

first Nr classes in the mini-batch are sampled randomly, and

all other classes are their doppelgangers or doppelgangers

of their doppelgangers or random classes (if there are no

corresponding doppelganger classes, or have already been

sampled in the current mini-batch).

3.2. Doppelganger mining

At the start of the training the doppelganger list is empty.

To fill it with doppelgangers we use activation scores, com-

puted by the prototype-based loss function (in this paper

we use L2-Softmax loss). The neural network outputs the

face embedding vector, which is used for exemplar-based

and prototype-based supervision. The latter takes the form

of a classifier with Ntotal classes. Each training example,

passed through the network, outputs the scores for each

class, and the class with maximum score is used as a pre-

dicted class for this example. These scores are used by the

prototype-based loss to provide the net with supervision. To

mine doppelgangers, we just use the same already calcu-

lated scores and find the highest scored class (excluding the

correct class) for each of the Nc selected classes in the cur-

rent mini-batch. These highest scored incorrect classes are

saved in the doppelganger list as the doppelgangers for the

corresponding Nc classes.

The list of doppelgangers isn’t fixed to be one ”most

similar person in dataset per identity”. It keeps continu-

ously updating according to the current state of the neural

network. Despite that it was introduced to make benefits

mostly for exemplar-based loss training in joint supervision

settings, Doppelganger mining also helps prototype-based

loss training: if a class becomes a doppelganger to many

classes - it means that this class is hard and can easily be

confused with, so there is a need to provide more atten-

tion to this class. Because it is a doppelganger to a lot of

other classes, Doppelganger mining will sample it in mini-

batches more often, and it will help the network to train

better. But the main advantages of Doppelganger mining

still come from using exemplar-based loss functions in the

joint supervision setting together with prototype loss, espe-

cially when some batch-wise hard example mining method

also used.

The amount of doppelgangers in the mini-batch can be

controlled with Nr hyperparameter, which defines the num-

ber of random classes in the mini-batch. When Nr = Nc,

there are no doppelgangers in the mini-batch, it is just a

random sampling. However, if the doppelganger mining

is on, the doppelganger list is getting updates and collects

doppelgangers, just don’t use them for mini-batch genera-

tion. If Nr = Nc

2 , then for each random class in the mini-

batch there is one doppelganger class in the same mini-

batch. When Nr = Nc

3 , then for each random class in

the mini-batch there is a doppelganger class in the current

mini-batch, and this doppelganger class also has its own

doppelganger class in the same mini-batch. When Nr =

1, then there is just one random class, and all other classes

in the mini-batch are related to it in the doppelganger-of-
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doppelganger sense.

Doppelganger mining is easy to implement and has only

a negligible extra computation and memory cost. When

used as a part of joint supervision, it uses the result of

prototype-based loss computation, and there is only a need

to calculate the highest non-target values amongst the acti-

vation scores. Extra amount of memory, which is needed

for Doppelganger mining, is only one number per class in

the training dataset.

4. Experiments

In this section, we will evaluate Doppelganger mining on

the One-shot Face Recognition [9] benchmark dataset.

4.1. Dataset and Evaluation metric

One-shot Face Recognition [9] benchmark dataset con-

sists of 20,000 persons for face feature learning (base set)

and 1,000 persons for one-shot learning (novel set). Each

person in the base set has 50-100 face images for training

and 5 images for testing. Each person in the novel set has

only one face image for training and 20 images for testing.

There is also a development part of the dataset, which has

20,000 images of persons from the base set and 5,000 im-

ages of persons from the novel set. Only base and novel set

of the training dataset can be used for training.

The task is to develop an algorithm to recognize the per-

sons in both the datasets - base set and novel set. In par-

ticular, the main focus is on the recognition accuracy for

persons in the novel set, while maintaining good recogni-

tion accuracy for those in the base set. Coverage rates at

Precision 99% and 99.9% are used as the evaluation met-

rics.

4.2. Implementation details

For this task we have trained several neural networks

with different loss functions and hyperparameters, with and

without Doppelganger mining. In the next section we will

describe our solution.

4.2.1 Architecture

We used neural network architecture, inspired by Face-

ResNet [43]. We used larger image size, more filters in

the layers, larger filter sizes in the first layers, a couple

of dilated convolution layers [48] to provide the network

with more context information, and also maxout [8] layer

to make it more robust to noisy labels [45]. Final face em-

bedding is a L2-normalized vector of dimension 512. The

architecture is summarized in the Table 1.

Output Description

259×259×3 259×259×3

128×128×64 5×5, 64 conv, stride 2

124×124×64 5×5, 64 conv

62×62×64 2×2 maxpool, stride 2

62×62×128 3×3, 128 resblock (x1)

60×60×256 3×3, 128+64+64 conv, d=1,2,3

30×30×256 2×2 maxpool, stride 2

30×30×256 3×3, 256 resblock (x2)

28×28×512 3×3, 256+256 conv, d=1,2

14×14×512 2×2 maxpool, stride 2

14×14×512 3×3, 512 resblock (x5)

12×12×1024 3×3, 1024 conv

6×6×1024 2×2 maxpool, stride 2

6×6×1024 3×3, 1024 resblock (x3)

512 fc + maxout, group = 2

512 L2-normalization

Table 1. Neural network architecture

4.2.2 Activation function

In this experiments we used a novel Adaptive Rational Frac-

tion Activation (ARFA):

F (x) =

{

kx , x > 0
kx

(a−x) , x ≤ 0
(1)

It is a variant of Hyperbolic Linear Unit (HLU) [17] with

channel-wise trainable parameter a, inspired by the PReLU

[12], and layer-wise parameter k, which is not trainable, but

initialized with LSUV [23] to make the variance of the func-

tion’s outputs closer to 1. ARFA is similar to ELU [5],

PELU [39] and SELU [15] (see Figure 2.), while being

computationally cheaper because it is not using exponen-

tiation operation. We use ARFA in all experiments in this

paper.

4.2.3 Data preprocessing and augmentation

We preprocess all face images by rescaling them to be

259×259 pixels, subtracting value 127.5 from each color

channel, and then dividing each value by 128. At the train-

ing time we augment face images with random horizontal

mirroring, random color change (add or subtract to each

color channel a random value in the range from -10 to 10),

random grayscaling (each image has 10% probability to

lose the color). At the test time we used a ”Mirror trick”:

neural network received a face image and its horizontally

mirrored copy. Two embeddings, which it produced, were

averaged (before L2-normalization) to generate one final

embedding. This trick got us slightly better results.
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Figure 2. Shapes of different activation functions

4.2.4 Loss functions

We used L2-Softmax loss [30] as the prototype-based loss

part for the joint supervision. For the exemplar-based loss

part we used Lifted Structured Feature Embedding [27]

and a modified version of Margin based loss with distance

weighted sampling [44]. We modify the Margin based loss

to work with cosine similarity measure instead of the eu-

clidean distance:

ℓmargin(i, j) := (α− yij(Sij − β))+ (2)

where β is a trainable variable that determines the boundary

between positive and negative pairs, α controls the margin

of separation, yij = 1 for positive pair and -1 for negative

pair, and Sij is cosine similarity for this pair.

We also modified distance-weighted sampling procedure

[44]. For each example in the mini-batch we select one or

none positive pairs and one or none negative pairs. The

probability of the pair to be selected is determined by how

strongly it violates the margin. The violation value v for

positive pairs:

vpos = ((β + α)− Sij)+ (3)

and for negative pairs:

vneg = (Sij − (β − α))+ (4)

Probability of the positive pair t to be selected from all K

possible pairs is:

pt =
vt

∑

K

k=1 vk
(5)

the same goes for the negative pairs.

Method C@99% C@99.9%

L2S + LE 71.06% 45.70%

L2S + LE + MB 72.60% 49.62%

Table 2. Results of the initial experiment on the novel set (from the

development set) with L2-Softmax (L2S), Lifted Feature Embed-

ding (LE) and Margin Based Loss (MB), without Doppelganger

mining.

Method C@99%

SmileLab 92.64%

UP Term [9] 77.48%

SIS (our model) 73.86%

CNC240 63.17%

KATE 61.21%

Table 3. Results on the novel set from the test set

4.2.5 Initial experiment

For the initial experiment we used four networks: two with

a combination of L2-Softmax loss (loss weight 1.0, α is

trainable, initial value 16) and Lifted Feature Embedding

(loss weight 0.1, with trainable scale α like in [30], with

initial value 12) and two with a combination of L2-Softmax

loss (loss weight 1.0, α is trainable, initial value 16), Lifted

Feature Embedding (loss weight 0.1, α is trainable, initial

value 12) and Margin based loss (loss weight 1.0, α = 0.1,

β is trainable, initial value 0.5). We trained the networks on

the base set [9] for 140,000 iterations with mini-batch size

of 81, using 3 images per class (this means a total number of

classes in mini-batch is 27). We used SGDR [22] learning

rate schedule without restarts, starting from learning rate

0.01 and finishing at 0.00001. We used Nesterov Acceler-

ated Gradient [26] with momentum of 0.9 and weight decay

of 0.0005.

After the training on the base set was finished, we used

trained networks to calculate average embeddings for each

person in base set (based on all the person’s images) and

for each person in novel set (based on one image per per-

son). We used these average embeddings as a prototypes.

We classified each image in development and test sets into

21,000 classes according to the largest cosine similarity

value between image’s embedding and prototype’s embed-

ding. The results for the networks are in Tables 2 and 3: For

the test results we used averaged cosine similarity scores for

four our networks.

4.2.6 Experiments with Doppelganger mining

For the next experiments we used the same network archi-

tecture and training schedule, but trained for 300,000 iter-

ations instead of 140,000. Here we compare the training

with random sampling and with Doppelganger mining for
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Method Random DM

L2S 77.76% 78.80%

L2S + LE 79.24% 80.22%

L2S + MB 78.34% 87.74%

L2S + LE + MB 78.20% 87.50%

Table 4. Results of the Doppelganger mining experiments on the

novel set from the development set. L2S for L2-Softmax, LE for

Lifted Feature Embedding, MB for Margin based loss. DM for

Doppelganger mining. Evaluation metric is coverage rate at preci-

sion 99%

different combinations of loss functions, used with joint su-

pervision. All following results are achieved on the devel-

opment set. In these experiments we used Doppelganger

mining with Nr = 9 and Nc = 27. In other words, we sam-

pled 9 random identities in each mini-batch and used their

9 doppelgangers as the next 9 identities, and then for this

next identities we also used their 9 doppelgangers to get fi-

nal 9 identities for the mini-batch. To perform classification

of the development set we once again used cosine similarity

measure between face embeddings and identity prototypes

in the form of average embeddings for each of the 21,000

possible classes. The results are presented in the Table 4.

With this experiment we show that Doppelganger mining

improved the results for all configurations. L2-Softmax loss

doesn’t have an exemplar-based loss part, but it still gains

a couple of extra coverage percents with the usage of the

Doppelganger mining. Exemplar-based losses, especially

equipped with a good minibatch-level hard example min-

ing methods, like Margin based loss with distance-weighted

sampling, are benefitting from Doppelganger mining the

most.

4.2.7 Experiments with the random class ratio

In this section we present experiments with a network,

trained by joint supervision (L2-Softmax + Margin based

loss) and Doppelganger mining with different values of Nr

(or, more precisely, with different random class ratios Nr

Nc

).

The results are in Table 5. As we can see, even a small frac-

tion of doppelgangers in the mini-batch considerably im-

proves the results.

4.2.8 Experiments with classifier learning

In the previous experiments we used simple cosine similar-

ity measure to classify images in test and development sets.

Only the base set images were used to train the network.

For the next experiments we also use novel set images (one

training image per class) to train 21,000-way classifiers on

top of the trained networks. For each network we remove

the 20,000-way L2-Softmax layer, which was used to train

Random class ratio C@99% C@99.9%

1 / 27 88.16% 64.68%

2 / 27 87.84% 75.68%

3 / 27 87.66% 72.38%

6 / 27 88.32% 65.06%

9 / 27 87.74% 70.98%

15 / 27 87.84% 68.50%

21 / 27 85.06% 53.68%

27 / 27 78.34% 44.00%

Table 5. Results of the experiments with different random class

ratios. The network is trained with L2-Softmax + Margin based

loss. Evaluation metric is coverage rate at precision 99% and at

precision 99.9%

Method (random ratio) C@99% C@99.9%

L2S + MB (1 / 27) 98.9% 94.1%

L2S + MB (2 / 27) 98.88% 94.6%

L2S + MB (3 / 27) 98.76% 94.18%

L2S + MB (6 / 27) 98.74% 93.2%

L2S + MB (9 / 27) 99% 94.92%

L2S + MB (15 / 27) 98.76% 93.02%

L2S + MB (21 / 27) 99.2% 94.74%

L2S + MB (27 / 27) 97.8% 91.8%

L2S + LE + MB (9 / 27) 98.72% 93.76%

L2S + LE + MB (27 / 27) 98.5% 90.42%

Ensemble (only nets with DM) 99.78% 96.7%

Ensemble (all nets) 99.84% 95.76%

Table 6. Results with classifier training. L2S for L2-Softmax loss,

MB for Margin based loss, LE for Lifted Feature Embedding.

the network on the base set, and switch it to the new 21,000-

way L2-Softmax layer. Classifier weights are initialized

with average embeddings for each person. In the next ex-

periments we train only this last classifier layer. The train-

ing is performed for 500 iterations with initial learning rate

of 0.001 and final learning rate of 0.0001. For these exper-

iments we don’t use Doppelganger mining and exemplar-

based losses. Also we sample one image per class to create

mini-batches with the largest possible number of different

classes (Nr = Nc = 81 for a mini-batch of size 81). The re-

sults are presented in the Table 6. On the development base

set all these networks achieve more than 99.88% classifica-

tion accuracy, so the fine-tuning with the novel set doesn’t

hurt performance on the base set.

As we can see from the result tables, Doppelganger min-

ing significantly improves learned face representations. In

our experiments we have achieved 99.2% coverage at 99%

precision with a single network and 99.84% coverage at

99% precision with an ensemble of several networks on the

one-shot face recognition benchmark with 21,000 persons.
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5. Conclusions

In this paper, we have presented a novel method called

Doppelganger mining, which improves the training of face

representations with neural networks by the generation of

more useful mini-batches. This method provide the most

benefits in the joint supervision settings with the help of

prototype-based and exemplar-based losses. The core idea

of this method is to maintain a list of hard class pairs for

each identity in the dataset. Prototype-based losses (e.g.

L2-Softmax loss) produce scores, which can be interpreted

as a similarity measure between current example and all

identities, presented in the dataset. We can use these scores

to find hardest identity pairs in the dataset almost without

extra computational cost. These paired identities are later

sampled together in the mini-batch, providing it with bet-

ter candidates for hard example mining methods. It helps

exemplar-based losses to train better face representations.

Doppelganger mining needs only a small amount of extra

memory and is easy to implement. Experiments on the one-

shot face recognition benchmark dataset with 21,000 per-

sons show that Doppelganger mining significantly improves

face recognition results.
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