
The Visual Object Tracking VOT2017 challenge results
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Abstract

The Visual Object Tracking challenge VOT2017 is the

fifth annual tracker benchmarking activity organized by the

VOT initiative. Results of 51 trackers are presented; many

are state-of-the-art published at major computer vision con-

ferences or journals in recent years. The evaluation in-

cluded the standard VOT and other popular methodologies

and a new “real-time” experiment simulating a situation

where a tracker processes images as if provided by a con-

tinuously running sensor. Performance of the tested track-

ers typically by far exceeds standard baselines. The source

code for most of the trackers is publicly available from the

VOT page. The VOT2017 goes beyond its predecessors by

(i) improving the VOT public dataset and introducing a sep-

arate VOT2017 sequestered dataset, (ii) introducing a real-

time tracking experiment and (iii) releasing a redesigned

toolkit that supports complex experiments. The dataset, the

evaluation kit and the results are publicly available at the

challenge website1.

1. Introduction

Visual tracking is a popular research area with over

forty papers published annually at major conferences.

Over the years, several initiatives have been established

to consolidate performance measures and evaluation pro-

tocols in different tracking subfields. The longest last-

ing PETS [78] proposed evaluation frameworks motivated

mainly by surveillance applications. Other evaluation

methodologies focus on event detection, (e.g., CAVIAR2,

i-LIDS 3, ETISEO4), change detection [22], sports analyt-

ics (e.g., CVBASE5), faces (e.g. FERET [50] and [28]),

long-term tracking 6 and multiple target tracking [35, 61]7.

Recently, workshops focusing on performance evaluation

issues in computer vision 8 have been organized and an ini-

tiative covering several video challenges has emerged 9.

In 2013, VOT — the Visual Object Tracking initiative

— was started to address performance evaluation of short-

term visual object trackers. The primary goal of VOT

is establishing datasets, evaluation measures and toolkits

as well as creating a platform for discussing evaluation-

related issues. Since 2013, four challenges have taken

place in conjunction with ICCV2013 (VOT2013 [32]),

ECCV2014 (VOT2014 [33]), ICCV2015 (VOT2015 [30])

1http://votchallenge.net
2http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1
3http://www.homeoffice.gov.uk/science-research/hosdb/i-lids
4http://www-sop.inria.fr/orion/ETISEO
5http://vision.fe.uni-lj.si/cvbase06/
6http://www.micc.unifi.it/LTDT2014/
7https://motchallenge.net
8https://hci.iwr.uni-heidelberg.de/eccv16ws-datasets
9http://videonet.team

and ECCV2016 (VOT2016 [29]) respectively.

Due to the growing interest in (thermal) infrared (TIR)

imaging, a new sub-challenge on tracking in TIR sequences

was launched and run in 2015 (VOT-TIR2015 [19]) and

2016 (VOT-TIR2016 [20]). In 2017, the TIR challenge re-

sults are reported alongside the RGB results.

This paper presents the VOT2017 challenge, organized

in conjunction with the ICCV2017 Visual Object Track-

ing workshop, and the results obtained. Like VOT2013,

VOT2014, VOT2015 and VOT2016, the VOT2017 chal-

lenge considers single-camera, single-target, model-free,

causal trackers, applied to short-term tracking. The model-

free property means that the only training information pro-

vided is the bounding box in the first frame. The short-term

tracking means that trackers are assumed not to be capa-

ble of performing successful re-detection after the target is

lost and they are therefore reset after such event. Causal-

ity requires that the tracker does not use any future frames,

or frames prior to re-initialization, to infer the object posi-

tion in the current frame. In the following, we overview the

most closely related work and point out the contributions of

VOT2017.

1.1. Related work

Performance evaluation of short-term visual object

trackers has received significant attention in the last five

years [32, 33, 30, 31, 29, 68, 60, 77, 39, 40, 45, 41].

The currently most widely used methodologies developed

from three benchmark papers: the “Visual Object Track-

ing challenge” (VOT) [32], the “Online Tracking Bench-

mark” (OTB) [77] and the “Amsterdam Library of Ordi-

nary Videos” (ALOV) [60]. The benchmarks differ in the

adopted performance measures, evaluation protocols and

datasets. In the following we briefly overview these dif-

ferences.

1.1.1 Performance measures

The OTB- and ALOV-related methodologies, like [77, 60,

39, 40], evaluate a tracker by initializing it on the first frame

and letting it run until the end of the sequence, while the

VOT-related methodologies [32, 33, 30, 68, 31] reset the

tracker once it drifts of the target. ALOV [60] defines track-

ing performance as the F-measure at 0.5 overlap threshold

between the ground truth and the bounding boxes predicted

by the tracker. OTB [77] generates a plot showing the per-

centage of frames where the overlap exceeds a threshold,

for different threshold values. The primary measure is the

area under the curve, which was recently shown [68] to be

equivalent to the average overlap (AO) between the ground

truth and predicted bounding boxes over all test sequences.

The strength of AO is in its simplicity and ease of inter-

pretation. A downside is that, due to lack of resets, this is a
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biased estimation of average overlap with a potentially large

variance. In contrast, the bias and variance are reduced in

reset-based estimators [31].

Čehovin et al. [67, 68] analyzed the correlation between

popular performance measures and identified accuracy and

robustness as two weakly-correlated measures with high

interpretability. The accuracy is the average overlap dur-

ing successful tracking periods and the robustness measures

how many times the tracker drifted from the target and had

to be reset. The VOT2013 [32] adopted these as the core

performance measures. To promote the notion that some

trackers might perform equally well, a ranking methodol-

ogy was introduced, in which trackers are merged into the

same rank based on statistical tests on performance differ-

ence. In VOT2014 [33], the notion of practical difference

was introduced into rank merging as well to address the

noise in the ground truth annotation. For the different rank

generation strategies please see [31]. Accuracy-robustness

ranking plots were proposed to visualize the results [32].

A drawback of the AR-rank plots is that they do not show

the absolute performance. To address this, VOT2015 [30]

adopted AR-raw plots from [68] to show the absolute aver-

age performance.

The VOT2013 [32] and VOT2014 [33] selected the win-

ner of the challenge by averaging the accuracy and ro-

bustness ranks, meaning that the accuracy and robustness

were treated as equally important “competitions”. But since

ranks lose the absolute performance difference between

trackers, and are meaningful only in the context of a fixed

set of evaluated trackers, the rank averaging was abandoned

in later challenges.

Since VOT2015 [30], the primary measure is the ex-

pected average overlap (EAO) that combines the raw values

of per-frame accuracies and failures in a principled manner

and has a clear practical interpretation. The EAO measures

the expected no-reset overlap of a tracker run on a short-

term sequence. The EAO reflects the same property as the

AO [77] measure, but, since it is computed from the VOT

reset-based experiment, it does not suffer from the large

variance and has a clear relation to the definition of short-

term tracking.

In VOT2016 [29] the experiments indicated that EAO

is stricter than AO in penalizing a tracker for poor perfor-

mance on a subset of sequences. The reason is that a tracker

is more often reset on sequences that are most challenging

to track, which reduces the EAO. On the other hand the AO

does not use resets which makes poor performance on a part

of a dataset difficult to detect. Nevertheless, since the AO

measure is still widely used in the tracking community, this

measure and the corresponding no-reinitialization experi-

ment was included in the VOT challenges since 2016 [29].

VOT2014 [33] recognized speed as an important factor

in many applications and introduced a measure called the

equivalent filter operations (EFO) that partially accounts for

the speed of a computer used for tracker analysis. While this

measure at least partially normalizes speed measurements

obtained over different machines, it cannot completely ad-

dress hardware issues. In VOT2016 [29] it was reported

that significant EFO errors could be expected for very fast

MatLab trackers due to the MatLab start-up overhead.

The VOT2015 committee pointed out that published pa-

pers more often than not reported presented trackers as scor-

ing top performance on a standard benchmark. However,

a detailed inspection of the papers showed that sometimes

the results were reported only on a part of the benchmarks

or that the top performing method on the benchmark were

excluded from the comparison. This significantly skews the

perspective on the current state-of-the-art and tends to force

researchers into maximizing a single performance score, al-

beit only virtually by manipulating the presentation of the

experiments. In response, the VOT has started to promote

the approach that it should be sufficient to show a good-

enough performance on benchmarks and that the authors (as

well as reviewers) should focus on the novelty and the qual-

ity of the theory underpinning the tracker. VOT2015 [30]

thus introduced a notion of state-of-the-art bound. This

value is computed as the average performance of the track-

ers participating in the challenge that were published at

top recent conferences. Any tracker exceeding this perfor-

mance on the VOT benchmark is considered state-of-the-art

according to the VOT standards.

For TIR sequences, two main challenges have been or-

ganized in the past. Within the series of workshops on Per-

formance Evaluation of Tracking and Surveillance (PETS)

[78], thermal infrared challenges have taken place twice,

in 2005 and 2015. PETS challenges addressed multiple

research areas such as detection, multi-camera/long-term

tracking, and behavior (threat) analysis.

In contrast, the VOT-TIR2015 and 2016 challenges have

focused on the problem of short-term tracking [19, 20].

The 2015 challenge has been based on a specifically com-

piled LTIR dataset [3], as available datasets for evaluation

of tracking in thermal infrared had become outdated. The

lack of an accepted evaluation dataset often leads to com-

parisons on proprietary datasets. Together with inconsistent

performance measures it made it difficult to systematically

assess the progress of the field. VOT-TIR2015 and 2016

adopted the well-established VOT methodology.

In 2016, the dataset for the VOT-TIR challenge was up-

dated with more difficult sequences, since the 2015 chal-

lenge was close to saturated, i.e., near perfect performance

was reported for top trackers [20]. Since the best perform-

ing method from 2015, based on the SRDCF [15], was

not significantly outperformed in the 2016 challenge, VOT-

TIR2016 has been re-opened in conjunction with VOT2017,

and since no methodological changes have been made, the
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results are reported as part of this paper instead of a sepa-

rate one. For all technical details of the TIR challenge, the

reader is referred to [20].

1.1.2 Datasets

Most tracking datasets [77, 39, 60, 40, 45] have partially fol-

lowed the trend in computer vision of increasing the num-

ber of sequences. This resulted in impressive collections

of annotated datasets, which have played an important role

in tracker development and consistent evaluation over the

last five years. Much less attention has being paid to the

diversity of the data nd the quality of the content and anno-

tation. For example, some datasets disproportionally repre-

sent grayscale or color sequences and in most datasets an

attribute (e.g., occlusion) is assigned to the entire sequence

even if it occupies only a fragment of the sequence. We

have noticed several issues with bounding box annotation in

commonly used datasets. Many datasets, however, assume

the errors will average out on a large set of sequences and

adopt the assumption that the dataset quality is correlated

with its size.

In contrast, the VOT [31] has argued that large datasets

do not necessarily imply diversity or richness in attributes.

Over the last four years, VOT [32, 33, 30, 31, 29] has

focused on developing a methodology for automatic con-

struction and annotation of moderately large datasets from

a large pool of sequences. This methodology is unique

in that it optimizes diversity in visual attributes while fo-

cusing on sequences which are difficult to track. In addi-

tion, the VOT [32] introduced per-frame annotation with at-

tributes, since global attribute annotation amplifies attribute

crosstalk in performance evaluation [41] and biases perfor-

mance toward the dominant attribute [31]. To account for

ground truth annotation errors, VOT2014 [33] introduced

the notion of practical difference, which is a performance

difference under which two trackers cannot be considered

as performing differently. VOT2016 [29] proposed an auto-

matic ground truth bounding box annotation from per-frame

segmentation masks, which requires semi-supervised seg-

mentation of all frames. Their approach automatically esti-

mates the practical difference values for each sequence.

Most closely related to the work described in this

paper are the recent VOT2013 [32], VOT2014 [33],

VOT2015 [30] and VOT2016 [29] challenges. Several nov-

elties in benchmarking short-term trackers were introduced

through these challenges. They provide a cross-platform

evaluation kit with tracker-toolkit communication proto-

col [9], allowing easy integration with third-party track-

ers, per-frame annotated datasets and state-of-the-art perfor-

mance evaluation methodology for in-depth tracker analysis

from several performance aspects. The results were pub-

lished in joint papers [32], [33], [30] and [29] with more

than 140 coauthors.

The most recent challenge contains 70 trackers evalu-

ated on primary VOT measures as well as the widely used

OTB [77] measure. To promote reproducibility of results

and foster advances in tracker development, the VOT2016

invited participants to make their trackers publicly avail-

able. Currently 38 state-of-the-art trackers along with their

source code are available at the VOT site10. These contri-

butions by and for the community make the VOT2016 the

largest and most advanced benchmark. The evaluation kit,

the dataset, the tracking outputs and the code to reproduce

all the results are made freely-available from the VOT ini-

tiative homepage11. The advances proposed by VOT have

arguably influenced the development of related methodolo-

gies and benchmark papers and have facilitated develop-

ment of modern trackers by helping tease out promising

tracking methodologies.

1.2. The VOT2017 challenge

VOT2017 follows the VOT2016 challenge and consid-

ers the same class of trackers. The dataset and evalua-

tion toolkit are provided by the VOT2017 organizers. The

evaluation kit records the output bounding boxes from the

tracker, and if it detects tracking failure, re-initializes the

tracker. The authors participating in the challenge were

required to integrate their tracker into the VOT2017 eval-

uation kit, which automatically performed a standardized

experiment. The results were analyzed according to the

VOT2017 evaluation methodology. The toolkit conducted

the main OTB [77] experiment in which a tracker is initial-

ized in the first frame and left to track until the end of the

sequence without resetting.

Participants were expected to submit a single set of re-

sults per tracker. Changes in the parameters did not consti-

tute a different tracker. The tracker was required to run with

fixed parameters in all experiments. The tracking method

itself was allowed to internally change specific parameters,

but these had to be set automatically by the tracker, e.g.,

from the image size and the initial size of the bounding box,

and were not to be set by detecting a specific test sequence

and then selecting the parameters that were hand-tuned to

this sequence. The organizers of VOT2017 were allowed

to participate in the challenge, but did not compete for the

winner of the VOT2017 challenge title. Further details are

available from the challenge homepage12.

The novelties of VOT2017 with respect to VOT2013,

VOT2014, VOT2015 and VOT2016 are the following: (i)

The dataset from VOT2016 has been updated. As in previ-

ous years, sequences that were least challenging were re-

placed by new sequences while maintaining the attribute

10http://www.votchallenge.net/vot2016/trackers.html
11http://www.votchallenge.net
12http://www.votchallenge.net/vot2017/participation.html
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distribution. The ground truth annotation has been re-

examined and corrected in the entire dataset. We call the set

of sequences “the VOT2017 public dataset”. (ii) A separate

sequestered dataset was constructed with similar statistics

to the public VOT2017 dataset. This dataset was not dis-

closed and was used to identify the winners of the VOT2017

challenge. (iii) A new experiment dedicated to evaluating

real-time performance has been introduced. (iv) The VOT

toolkit has been re-designed to allow the real-time experi-

ment. Transition to the latest toolkit was a precondition for

participation. (iv) The VOT-TIR2016 subchallenge, which

deals with tracking in infrared and thermal imagery [19] has

been reopened as VOT-TIR2017.

2. The VOT2017 datasets

Results of VOT2016 showed that the dataset was not

saturated, but that some sequences have been successfully

tracked by most trackers. In the VOT2017 public dataset

the least challenging sequences in VOT2016 were replaced.

The VOT committee acquired 10 pairs of new challenging

sequences (i.e. 20 new sequences), which had not been part

of existing tracking benchmarks. Each pair consists of two

roughly equally challenging sequences similar in content.

Ten sequences, one of each pair, were used to replace the

ten least challenging sequences in VOT2016 (see Figure 2).

The level of difficulty was estimated using the VOT2016

results [29].

In response to yearly panel discussions at VOT work-

shops, it was decided to construct another dataset, which

will not be disclosed to the community, but will be used to

identify the VOT2017 winners. This is called the VOT2017

sequestered dataset and was constructed to be close in at-

tribute distribution to the VOT2017 public dataset with the

same number of sequences (sixty).

Ten remaining sequences of the pairs added to the

VOT2017 public dataset were included to the sequestered

dataset. The remaining fifty sequences in the sequestered

dataset were sampled from a large pool of sequences col-

lected over the years by VOT (approximately 390 se-

quences) as follows. Distances between sequences in

VOT2017 public dataset and sequences in the pool were

computed. The distance was defined as Euclidean dis-

tance in the 11-dimensional global attribute space typi-

cally used in the VOT sequence clustering protocol [29].

For each sequence in the VOT2017 public dataset, all se-

quences in the pool with distance smaller than three times

the minimal distance were identified. Among these, a se-

quence with the highest difficulty level estimated by the

VOT2016 methodology [29] was selected for the VOT2017

sequestered dataset. The selected sequence was removed

from the pool and the process was repeated for the remain-

ing forty-nine sequences.

A semi-automatic segmentation approach by Vojı́r̃ and

Matas [72] was applied to segment the target in all frames

and bounding boxes were fitted to the segmentation masks

according to the VOT2016 methodology [29]. All bound-

ing boxes were manually inspected. The boxes that were

incorrectly placed by the automatic algorithm were man-

ually repositioned. Figure 1 shows the practical difference

thresholds on the VOT2017 dataset estimated by the bound-

ing box fitting methodology [29].

Following the protocol introduced in VOT2013 [32], all

sequences in the VOT2017 public dataset are per-frame

annotated by the following visual attributes: (i) occlu-

sion, (ii) illumination change, (iii) motion change, (iv) size

change, (v) camera motion. Frames that did not correspond

to any of the five attributes were denoted as (vi) unassigned.

Figure 1. Practical difference plots for all sequences in the

VOT2017 public dataset. For each sequence a distribution of over-

lap values between bounding boxes, which equally well fit the

potentially noisy object segmentations are shown. The practical

difference thresholds are denoted in red.

3. Performance evaluation methodology

Since VOT2015 [30], three primary measures are used

to analyze tracking performance: accuracy (A), robust-

ness (R) and expected average overlap (AEO). In the fol-

lowing, these are briefly overviewed and we refer to [30,

31, 68] for further details.

The VOT challenges apply a reset-based methodology.

Whenever a tracker predicts a bounding box with zero over-

lap with the ground truth, a failure is detected and the

1954



Figure 2. Images from the VOT2016 sequences (left column) that

were replaced by new sequences in VOT2017 (right column).

tracker is re-initialized five frames after the failure. Accu-

racy and robustness [68] are the primary measures used to

probe tracker performance in the reset-based experiments.

The accuracy is the average overlap between the predicted

and ground truth bounding boxes during successful track-

ing periods. The robustness measures how many times the

tracker loses the target (fails) during tracking. The potential

bias due to resets is reduced by ignoring ten frames after

re-initialization in the accuracy measure, which is quite a

conservative margin [31].

Stochastic trackers are run 15 times on each sequence

to reduce the variance of their results. Per-frame accuracy

is obtained as an average over these runs. Averaging per-

frame accuracies gives per-sequence accuracy, while per-

sequence robustness is computed by averaging failure rates

over different runs.

The third primary measure, called the expected average

overlap (EAO), is an estimator of the average overlap a

tracker is expected to attain on a large collection of short-

term sequences with the same visual properties as the given

dataset. This measure addresses the problem of increased

variance and bias of AO [77] measure due to variable se-

quence lengths. Please see [30] for further details on the

average expected overlap measure.

VOT2016 argued that raw accuracy and robustness val-

ues should be preferred to their ranked counterparts. The

ranking is appropriate to test whether performance differ-

ence is consistently in favor of one tracker over the others,

but has been abandoned for ranking large numbers of track-

ers since averaging ranks ignores the absolute differences.

In addition to the standard reset-based VOT experiment,

the VOT2017 toolkit carried out the OTB [77] no-reset ex-

periment. The tracking performance on this experiment was

evaluated by the primary OTB measure, the average overlap

(AO).

3.1. The VOT2017 real-time experiment

The VOT has been promoting the importance of speed

in tracking since the introduction of the EFO speed mea-

surement unit in VOT2014. But these results do not reflect

a realistic performance in real-time applications. In these

applications, the tracker is required to report the bounding

box for each frame at frequency higher than or equal to the

video frame rate. The existing toolkits and evaluation sys-

tems do not support such advanced experiments, therefore

the VOT toolkit has been re-designed.

The basic real-time experiment has been included in the

VOT2017 challenge and was conducted as follows. The

toolkit initializes the tracker in the first frame and waits for

the bounding box response from the tracker (responding to

each frame individually is possible due to the interactive

communication between the tracker and the toolkit [9]). If a

new frame becomes available before the tracker responds, a

zero-order hold model is used, i.e., the last reported bound-

ing box is assumed as the reported tracker output at the

available frame.

The toolkit applies the reset-based VOT evaluation pro-

tocol by resetting the tracker whenever the tracker bounding

box does not overlap with the ground truth. The VOT frame

skipping is applied as well to reduce the correlation between

resets.

The predictive power of his experiment is limited by fact

that the tracking speed depends on the type of hardware

used and the programming effort and skill, which is ex-

pected to vary significantly among the submissions. Never-

theless, this is the first published attempt to evaluate trackers

in a simulated real-time setup.

3.2. VOT2017 winner identification protocol

The VOT2017 challenge winner was identified as fol-

lows. Trackers were ranked with respect to the EAO mea-

sure on the VOT2017 public dataset. The top 10 track-

ers were then run on a high performance cluster using the

VOT2017 sequestered dataset and again ranked with respect

to the EAO measure. The top-performing tracker that was

not submitted by organizers was identified as the VOT2017

challenge winner. An additional requirement was that the

authors have to make the tracker source code available to

the tracking community.

Due to limited resources, the VOT2017 real-time win-

ner was not identified on the sequestered dataset, but based

on the results obtained on the VO2017 public dataset. The

EAO measure was used to rank the tracker results from the

real-time experiment. The same authorship and open source

requirements as in the VOT2017 challenge winner protocol

were applied.
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4. VOT2017 analysis and results

4.1. Trackers submitted

In all, 38 valid entries were submitted to the VOT2017

challenge. Each submission included the binaries or source

code that allowed verification of the results if required.

The VOT2017 committee and associates additionally con-

tributed 13 baseline trackers. For these, the default param-

eters were selected, or, when not available, were set to rea-

sonable values. Thus in total 51 trackers were tested on the

VOT2017 challenge. In the following we briefly overview

the entries and provide the references to original papers in

the Appendix A where available.

Of all participating trackers, 67% applied generative

and 33% applied discriminative models. Most trackers –

73% – used holistic model, while 27% of the participat-

ing trackers used part-based models. Most trackers ap-

plied either a locally uniform dynamic model 13 (53%), a

nearly-constant-velocity (20%), or a random walk dynamic

model (22%), while a few trackers applied a higher order

dynamic model (6%).

The trackers were based on various tracking prin-

ciples: 17 trackers (31%) were based on CNN match-

ing (ATLAS (A.26), CFWCR (A.14), CRT (A.2),

DLST (A.15), ECO (A.30), CCOT (A.36), FSTC (A.33),

GMD (A.29), GMDNetN (A.9), gnet (A.16),

LSART (A.24), MCCT (A.4), MCPF (A.18), RCPF (A.34),

SiamDCF (A.23), SiamFC (A.21) and UCT (A.19)),

25 trackers (49 %) applied discriminative correlation

filters (ANT (A.1), CFCF (A.10), CFWCR (A.14),

DPRF (A.27), ECO (A.30), ECOhc (A.31), gnet (A.16),

KCF (A.8), KFebT (A.12), LDES (A.32), MCCT (A.4),

MCPF (A.18), MOSSE CA (A.35), RCPF (A.34),

SiamDCF (A.23), SSKCF (A.25), Staple (A.20),

UCT (A.19), CSRDCF (A.38), CSRDCFf (A.39),

CSRDCF++ (A.40), dpt (A.41), SRDCF (A.50),

DSST (A.42) and CCOT (A.36)), two (4%) trackers

(BST (A.17) and Struck2011 (A.51)) were based on

structured SVM, 5 trackers (10%) were based on Mean

Shift (ASMS (A.6), KFebT (A.12), SAPKLTF (A.13),

SSKCF (A.25) and MSSA (A.49)), 5 trackers (10%) applied

optical flow (ANT (A.1), FoT (A.7), HMMTxD (A.11),

FragTrack (A.43) and CMT (A.37)), one tracker was based

on line segments matching (LTFLO (A.5)), one on a gen-

eralized Hough transform (CHT (A.28)) and three trackers

(HMMTxD (A.11), KFEbT (A.12) and SPCT (A.22)) were

based on tracker combination.

13The target was sought in a window centered at its estimated position

in the previous frame. This is the simplest dynamic model that assumes all

positions within a search region contain the target have equal prior proba-

bility.

4.2. The baseline experiment

The results are summarized in the AR-raw plots and

EAO curves in Figure 3 and the expected average overlap

plots in Figure 4. The values are also reported in Table 1.

The top ten trackers according to the primary EAO

measure (Figure 4) are LSART (A.24), CFWCR (A.14),

CFCF (A.10), ECO (A.30), gnet (A.16), MCCT (A.4),

CCOT (A.36), CSRDCF (A.38), SiamDCF (A.23),

MCPF (A.18). All these trackers apply a discriminatively

trained correlation filter on top of multidimensional fea-

tures. In most trackers, the correlation filter is trained in

a standard form via circular shifts, except in LSART (A.24)

and CRT (A.2) that treat the filter as a fully-connected layer

and train it by a gradient descent.

The top ten trackers vary significantly in features. Apart

from CSRDCF (A.38) that applies only HOG [47] and

color-names [65], the trackers apply CNN features, which

are in some cases combined with hand-crafted features. In

almost all cases the CNN is a standard pre-trained CNN for

object class detection except in the case of CFCF (A.10)

and SiamDCF (A.23) which use feature training. Both of

these trackers train their CNN representations on a tracking

task from many videos to learn features that maximize dis-

criminative correlation filter response using the approaches

from [23], [75] and [5]. The CFCF (A.10) uses the first,

fifth and sixth convolutional layers of VGG-M-2048 fine-

tuned on the tracking task in combination with HOG [47]

and Colour Names (CN) [65].

The top performer on public dataset LSART (A.24) de-

composes the target into patches and applies a weighted

combination of patch-wise similarities into a kernelized

ridge regression formulated as a convolutional network.

Spatial constraints are used to force channels in specializ-

ing to different parts of the target. A distance transform

pooling is used to merge the channels. The network uses

pre-learned VGG16 [59] layers 4-3, HoG [47] and colour

names as low-level filters.

The top trackers in EAO are also among the most ro-

bust trackers, which means that they are able to track

longer without failing. The top trackers in robustness (Fig-

ure 3) are LSART (A.24), CFWCR (A.14), ECO (A.30) and

gnet (A.16). On the other hand, the top performers in ac-

curacy are SSKCF (A.25), Staple (A.20) and MCCT (A.4).

The SSKCF and Staple are quite similar in design and apply

a discriminative correlation filter on hand-crafted features

combined with color histogram back-projection.

The trackers which have been considered as baselines

even five years ago, i.e., MIL (A.48), and IVT (A.44) are

positioned at the lower part of the AR-plots and at the

tail of the EAO rank list. It is striking that even trackers

which are often considered as baselines in recent papers,

e.g., Struck [24] and KCF [26] are positioned in the lower

quarter of the EAO ranks. This speaks of the significant
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