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Abstract

In this paper, we investigate the problem of counting
rosette leaves from an RGB image, an important task in
plant phenotyping. We propose a data-driven approach for
this task generalized over different plant species and imag-
ing setups. To accomplish this task, we use state-of-the-
art deep learning architectures: a deconvolutional network
for initial segmentation and a convolutional network for
leaf counting. Evaluation is performed on the leaf count-
ing challenge dataset at CVPPP-2017. Despite the small
number of training samples in this dataset, as compared
to typical deep learning image sets, we obtain satisfactory
performance on segmenting leaves from the background as
a whole and counting the number of leaves using simple
data augmentation strategies. Comparative analysis is pro-
vided against methods evaluated on the previous competi-
tion datasets. Our framework achieves mean and standard
deviation of absolute count difference of 1.62 and 2.30 av-
eraged over all five test datasets.

1. Introduction

Traditional plant phenotyping, which involves manual
measurement of plant traits, is a slow, tedious and expensive
task. In most cases, manual measurement techniques use
sparse random sampling followed by the projection of those
random measurements over the whole population which
might incorporate measurement bias. Further, plant pheno-
typing has been identified as the current bottleneck in mod-
ern plant breeding and research programs [14]. Therefore,
interest in image-based phenotyping techniques have ex-
panded rapidly over the past 5 years. Automation of the es-
timation of these visual traits up to a satisfactory level of ac-
curacy using suitable computer vision techniques can boost
production speed and reduce costs since fewer field techni-
cians would be required for manual measurement each year.

In this paper, we work on estimating the number of
leaves on a plant at the rosette stage, which is an indicator of
plant health [26]. Our main objective is not only to develop
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a robust computer vision model, but also to generalize it so
that the plant breeders can use this framework regardless of
the plant species they are working on and of the quality of
the image data they have acquired. Like one of the previous
works [16], we also pose this problem as a nonlinear re-
gression problem, where given the images, our framework
approximates the count directly without segmenting indi-
vidual leaf instances. This regression hypothesis is useful
for a couple of reasons. First, although this nonlinear re-
gression problem appears to be very high dimensional, it
is usually more efficient than counting by identifying the
individual leaf instances. Second, from the perspective of
supervised machine learning, collecting ground-truth leaf
counts is much simpler than generating ground-truth seg-
mented regions for each leaf in the color images. In sec-
tion 4 of this paper, we show that the performance of the
systems developed under the regression hypothesis is com-
parable to the state-of-the-art counting by instance segmen-
tation approaches. However, unlike [16], we develop each
of the components of our complete model in such a way
that it can directly learn from the data without the need for
manual heuristics or explicit knowledge on the plant species
or other environmental factors. According to the state-of-
the-art computer vision and machine learning literature, the
best way to develop a generalized model without such prior
knowledge is to use deep learning and therefore we adopt
this paradigm in our work.

Similar to [37], we train a deep convolutional neural
network to count leaves by regression. However, the fo-
cus of our present work is to develop a single network
that can generalize across different rosette datasets, rather
than separate networks each built and tuned to maximize
performance on an individual dataset. We also develop a
deep convolutional-deconvolutional neural network for au-
tomatic whole plant segmentation and explore the effect of
using a binary segmentation mask as an additional input
channel to the leaf counting network in order to improve
generalized performance. We evaluate our method as part
of the Leaf Counting Challenge 2017 (LCC-2017) and re-
port performance across the five subsets of the competition
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dataset. Through this work, we hope to inaugurate the re-
search and development of a useful and generalized system
for plant breeders to study leaf development in individual
plants and eventually to study crop emergence in the field.

2. Related Work

We classify the recent literature performing leaf count-
ing either directly or via instance segmentation into three
categories, i.e. Leaf Segmentation Challenge in CVPPP-
2014 (LSC-2014), Leaf Counting Challenge in CVPPP-
2015 (LCC-2015), and others. Below we provide a brief
account of the methods under each of these categories.

LSC-2014: In total, 4 methods evolve from this compe-
tition [33]. Although the training dataset for the competi-
tion included individual leaf instances indicated by differ-
ent colors as the ground-truth, none of the 4 approaches use
that ground truth to solve the instance segmentation prob-
lem. From that standpoint, they are all are eligible for the
LCC-2017 competition also. The winner of this competi-
tion is IPK [29, 33]. This method utilizes 3D histogram of
the Lab color space of the training images to model both
plant regions and background and test pixels are inferred
non-parametrically using direct interpolation on the train-
ing data. Then, leaf centers are extracted using mathemati-
cal morphology of the distance map of the segmented fore-
ground. These centers along with the foreground segmenta-
tion are processed by heuristics-based graph algorithms to
generate final instance segmentation map. Next, comes the
unsupervised Nottingham approach [33], which segments
the foreground using seeded region growing [3] over the su-
perpixels [2] extracted from the Lab color map. For the sub-
sets of the dataset containing non-overlapping images, em-
pirical thresholds are used instead of the superpixel means
as the initial seed. Like IPK [29], they compute the dis-
tance map over the foreground pixels. Then, superpixels
with centroids nearest to the local maxima in the distance
map are chosen as the initial seeds with the assumption that
they represent leaf centers the best for watershed based in-
stance segmentation [38]. The MSU approach is adopted
from the literature on multiple leaf alignment and track-
ing [39, 40, 41] and primarily based on template matching
based on Chamfer Matching algorithm [6]. The authors use
empirical threshold on the “a” plane of the Lab image to
select foreground candidates on which template matching
is performed. The main drawbacks of this approach are
manual selection of both the threshold and the templates
and exhaustive template matching with a large number of
templates, i.e. 1080 templates for 2 subsets and 1920 for
another. The last method submitted in LSC-2014 is Wa-
geningen [33]. To segment the plant regions, the authors of
this approach train a simple artificial neural network com-
prising one hidden layer of 10 units with six pixel-based
features, i.e. red (R), green (G), blue (B), excessive green

(2G — R — B), and variance and gradient magnitude of
filtered green pixel values, and then post-process the net-
work output using morphological operations with heuristi-
cally chosen parameters. After that, watershed transform
[18] followed by empirical threshold based merging is per-
formed to produce the instance segmentation result. A lim-
itation of this method is the use of simple pixel features
for foreground segmentation without using any contextual
information in depth, resulting in the heavy usage of mor-
phology to fine-tune the network output afterward.

LCC-2015: Only the winning method of LCC-2015
competition, General Leaf Counting (GLC) [16], is pub-
lished in CVPPP-2015. To the best of our knowledge, this
is the first approach posing the leaf counting problem as a
nonlinear regression problem. The authors transform the
original RGB image into a log-polar image [4] prior to
further processing it to exploit the radial structure of the
plants. Next, from the log-polar image, they extract patches
based on the ground-truth foreground-background ratio in a
sliding window fashion. These patch features are further
vectorized with K-means [8] and triangle encoding [11].
Lastly, max-pooling over the patch features is performed
to form the final feature vector for each image and a sup-
port vector regression network [16, 13] is trained for the
prediction task. A limitation of this system is that the au-
thors use ground-truth plant segmentations in both training
and testing phases of the counting module. While approxi-
mate plant segmentations could be generated by other meth-
ods [25], the study used perfect segmentations and therefore
it is not clear how robust their counting module is to noisy or
imperfect segmentations that are typical of automatic seg-
mentation procedures.

Others: All the methods proposed since LCC-2015, ad-
dressing either the direct counting problem or counting by
instance segmentation are found to be based on deep learn-
ing, which is not surprising given the resurgence of this sub-
field of machine learning in recent years. In the recurrent
instance segmentation (RIS) approach [3 1], the authors har-
ness the power of sequential input processing of recurrent
neural networks (RNN) [19] with the convolutional version
of LSTM cells [20] to segment out one leaf instance at a
time. Unlike the use of LSTM and RNN in natural language
processing, the idea is to use convolutional LSTM instead of
the original formulation to facilitate the training of the net-
work by mitigating the computational complexity of fully
connected layers as well as exploiting the semi-global sta-
tistical properties of images. To deal with the problem of
possible ordering of individual instances in the image, the
authors formulate the loss function based on the relaxed ver-
sion of intersection over union (IoU) [23] and cross-entropy.
The work done by Ren and Zemel [30] also use RNN sim-
ilar to RIS [31]. However, their approach is primarily fo-
cused on extracting small patches each time to segment one
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instance using a similar idea of recurrent attention model
[27] and then processing that small patch with LSTM [20]
and a deconvolutional network [28] like architecture to seg-
ment a single instance. At the time of this writing, this work
demonstrates the state-of-the-art performance for instance
segmentation. Both this work and RIS use instance-level
ground truth to train their networks and are therefore not di-
rectly comparable against ours. Nonetheless, we list their
performance results in the Experiments section. Finally,
the deep plant phenomics (DPP) approach [37] proposes a
method addressing the problem of counting directly without
both plant segmentation and instance segmentation. The au-
thors customize their architectures as well as input dimen-
sions to achieve state-of-the-art accuracy on different sub-
sets of the LCC-2015 dataset. However, it is not known if
the approach would generalize and if a single DPP network
would provide consistent results across all datasets. More-
over, their training strategy relies on certain assumptions
based on the nature of the images available in the LCC-2015
dataset; therefore, it is not clear how this approach would
perform on the new types of images in the LCC-2017 com-
petition. We will provide a detailed discussion about these
issues while comparing our framework to DPP in section 4.

e
1
.| Counting by __»
Regression

Figure 1. Block diagram of our approach.

3. Our Approach

The approach presented in this section is developed to
participate in the LCC competition [ 1] at CVPPP 2017. The
high-level design of our framework follows a traditional
computer vision workflow where the segmentation module
is followed by the counting module (Figure 1). Within each
module, we incorporate task-specific convolutional archi-
tectures, which are trained without explicit knowledge of
the plant species to develop a generalized framework able to
learn only from the data. The architectures used for segmen-
tation and counting are trained separately, but not indepen-
dently since the binary mask generated by the segmentation
model is used to train the counting model in conjunction
with the RGB channels. In the following two subsections,
we will describe the architectures along with the rationale
behind their design. Training methodologies and data aug-
mentation strategies for these models are described in the
experiments section.

Figure 2. Sample images from the training set of CVPPP-2017

dataset [1, 26, 32, 7]. Representative images are taken and scaled
from 4 training directories A1, A2, A3, and A4, respectively.

3.1. Segmentation

The segmentation problem we address is that of differen-
tiating the plant or foreground pixels, from the background.
This kind of problem is also known as semantic segmenta-
tion where the semantics of the objects are utilized to ac-
complish the task. In recent years, many papers [34, 10, 42]
have been published addressing the solution for semantic
segmentation from RGB images. Some of these architec-
tures belong to the class of neural networks called deconvo-
lutional networks [28, 5]. The main idea behind this kind
of network is to construct a compact and informative set
of feature maps or vectors from a set of input images, and
then generate class-probability maps from the feature maps.
Like other convolutional networks, construction of the fea-
ture set from the input data is done by a convolutional sub-
network comprising multiple layers of convolution, pool-
ing, and normalization operations. This convolutional sub-
network is followed by a deconvolutional sub-network con-
sisting of convolution-transpose, unpooling, and normaliza-
tion operations to generate the desired probability maps.
From the standpoint of semantic segmenatation, both height
and width of the input and the output are the same. Hence,
the deconvolutional part of the network is designed as a mir-
rored version of the convolutional part, except the input and
the output layers, irrespective of the complexity of the prob-
lem and the dimensionality of the class-space.

Usually the design of a deconvolutional network con-
tains fully connected (FC) layers in the middle to generate
the feature vector from the pooled feature maps [28]. The
FC layers are used to extract features in the global context
for segmentation, and are therefore important if global con-
text is necessary for the segmentation task. However, we
propose that features in the semi-global context should be
sufficient to segment the leaf regions from the background
in color images, and therefore the FC layers could be omit-
ted for our application. An advantage of eliminating the FC
layers is that it considerably reduces the number of train-
able parameters without sacrificing performance. For these
reasons, we adopt the SegNet architecture [5], which omits
FC layers and has shown promising results on SUN RGB-
D [36] dataset comprising complicated indoor scenes and
CamVid [9] video dataset of road scenes. The removal of
FC layers in SegNet results in about 90% reduction of the
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Figure 3. SegNet architecture [5] used for leaf segmentation. Each of the convolution and deconvolution layers is followed by batch
normalization (BN) [21] and rectified linear unit (ReLU). All the pooling operations are 2 X 2 max-pooling with stride of 2. Similarly,
the unpooling operations are 2 X 2 max-unpooling using the pooled indices taken from their corresponding max-pooling operations in the

front-end of the network.

number of trainable parameters as well as computational
complexity. Figure 3 depicts the segmentation network we
employ. The front-end convolutional sub-structure of the
network is the VGG architecture [35] with batch normaliza-
tion followed by each convolutional layer. In the convolu-
tional front-end of SegNet, there are five 2 X 2 pooling oper-
ations with zero overlapping following multiple convolution
and rectification layers each time. Hence, the convolved
feature maps are compressed 32 times before starting the
decompression via the deconvolutional back-end. We hy-
pothesize that such level of compression or semi-global
consideration is qualitatively sufficient to solve a compar-
atively easier problem of whole plant segmentation (Figure
2) as compared to other domains of semantic segmentation.

3.2. Counting

As shown in Figure 1, we use both the RGB image and
the corresponding binary segmentation image to estimate
the number of leaves after the segmentation is done. The
rationale behind providing the counting module with the
segmentation mask and the original RGB image instead of
providing either the segmented region in the RGB image or
the binary mask alone will be evident from Figure 4. Al-
though the segmentation results generated by SegNet are
sufficiently accurate for the counting phase for many im-
ages in the dataset, our network generates spurious segmen-
tations for few of them. The poorly segmented images gen-
erally have lower average intensities and regions of leaves
where the color and texture properties are washed out or
blurred. We expect our network to do more or less accurate
segmentation for these images by using semi-global contex-
tual information, but we believe it fails due to the low num-
ber of available samples of that kind in the training dataset
both in terms of absolute count and ratio of the samples of
this particular kind to other kinds. The problem of this data
scarcity is specific to the data-hungry approaches like deep
learning, which requires a substantial number of training
instances of a particular prototype to generate an accurate
input-output mapping for that specific type.

F

Figure 4. Sample images with corresponding binary segmenta-
tions: original RGB images (top row), corresponding ground truth
segmentations (middle row), and our segmentation results gener-
ated by SegNet (bottom row).

Therefore, providing both the segmentation and the orig-
inal image as input, we hope to influence the network to
recover the missed plant regions as well as reject the false
detections from original image with the help of segmenta-
tion mask for counting. We call this four channel input as
the SRGB (Segmentation + RGB) image. We also expect
that providing the segmentation channel as input to the leaf
counting network will help to suppress bias from features
in the background of the training images, such as the soil,
moss, pot/tray color, which will vary between datasets.

The design of our leaf counting by regression network
takes inspiration from the VGG architecture [35], which re-
inforces the idea of deeper architectures with a long list of
convolutional and rectification layers stacked one after an-
other with several pooling layers in between and then the
classification layer follows a couple of fully connected lay-
ers. Usually, this kind of convolutional networks use suit-
able amount of padding to maintain fixed height and width
of the feature maps. Padding the input maps serves well
when the network is trained with large-scale datasets con-
taining samples in the order of millions. However, in our
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Figure 5. Counting architecture used for estimating the number of leaves from SRGB (Segmentation + RGB) channels. Each of the

convolution blocks is a combination of convolution, local reponse normalization [

operations are 2 X 2 max-pooling with stride of 2.

case, we have a small dataset of several hundred images
to train, which is very difficult to augment beyond several
thousand images. Hence, to retain the power of deeper ar-
chitecture and to train the parameters without significant
overfitting at the same time, we reduce the number of pa-
rameters effectively by using convolution without padding
throughout the network. Moreover, we choose the filter size
of the convolutional layers in such a way that before pro-
ceeding through the fully connected layers, the feature map
turns into a vector. Thus, with zero padding and careful
choice of filter size, we are able to reduce the number of
parameters from 490/ to 300/. Implementation details for
both segmentation and regression networks are provided in
the following section.

4. Experiments

In this section, we provide a detailed account of our ex-
perimental setup. First, we describe the dataset used for
evaluation. Next, the training strategies for both networks
are specified. Finally, the performance of our framework
is analyzed and compared against state-of-the-art literature
from both quantitative and qualitative standpoints.

4.1. Dataset

The dataset we use to evaluate our framework is provided
to the teams registered for the Leaf Counting Challenge
(LCC-2017). The objective of this challenge is to come up
with the solutions able to count the number of leaves from
plant images directly via learning algorithms without de-
tecting individual leaf instances. All the RGB images in the
dataset belong to either Tobacco or Arabidopsis plants. For
the LCC competition, each RGB image is accompanied by a
binary segmentation mask with 1 and 0 indicating plant and
background pixels, respectively, and a center binary image

], and rectified linear unit (ReLU). All the pooling

with leaves centers denoted by single pixels.

The training dataset is organized into 4 directories,
namely A1, A2, A3, and A4. Directories A1 and A2 con-
tain Arabidopsis images taken from growth chamber experi-
ments with larger but different field of views covering many
plants and then cropped to a single plant. Directory A3 en-
lists the Tobacco images with the field of view chosen to
encompass a single plant. A4 is a subset of another public
Arabidopsis dataset [7] collected using a time-lapse cam-
era. In total, there are 27 Tobacco images in A3, and 783
Arabidopsis images in the rest of the directories. The or-
ganizers denote these directories along with the images as
“SPLIT” images since they are split into separate folders
according to the origin. In addition, all these directories
contain CSV files including ground truth leaf counts under
the same nomenclature.

The “SPLIT” directory structure for the testing set is the
same as training, except that it includes an extra directory
denoted by A5, enlisting images from different sources of
origin altogether with the objective to emulate a leaf count-
ing task in the wild. Hence, the organizers represent A5
images under the nomenclature “WILD”.

4.2. Training and Implementation

SegNet training: Unlike training in the original SegNet
paper [5], we trained our model from scratch without using
any pretrained weights for initialization. Also in SegNet,
the authors used different learning rates for different mod-
ules, whereas a fixed learning rate was used for all the layers
in our training.

We used an input and output image size of 224 x 224
pixels in SegNet, whereas the original image size was ap-
proximately 500 x 500 and 2000 x 2500. While training
deeper networks, the obvious advantage of using smaller
input-output size than the original ones is data augmenta-
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tion up to a considerable amount. We augmented the data
and train the network in 3 stages. First, for each image, we
extracted the union of top 20 object proposals [43], flipped
top-bottom and left-right, rotated them with an angular step
size of 4 degree, cropped the largest square from the center
position to avoid dark regions due to rotation, and created
a couple of Gaussian blurred version and corresponding
sharpened images. In this way, we generated about 0.8M
augmented samples from 810 original images and trained
the network for 5 epochs with randomly cropped 224 x 224
subsamples. Second, we took the proposal images and their
flipped versions and generated nearly 0.3M subsamples of
size 224 x 224 deterministically with a fixed stride and train
the network for another 8 epochs. Finally, we generated
another 0.19M samples in a similar manner as in the sec-
ond step, but this time from the original images instead
of the proposals. Then, we fine-tuned the network with
these 0.19M samples for 37 epochs. In all stages, SGD-
momentum was used as the optimizer with initial learning
rate, momentum and weight decay of 0.01, 0.9, and 0.0001,
respectively and these parameters were changed later based
on the training statistics. Spatial cross-entropy was used as
the error criterion. The ratios of foreground to background
weights in the cross-entropy calculation for the first stage
was 2.0 and 1.2 for the later steps. In the test phase, we
took dense 224 x 224 samples deterministically with fixed
stride from each of the test images and classified each pixel
based on the aggregate probability over the samples. We
initialized the convolutional weights with Xavier [ 7] prior
to the start of training.

Figure 6. Augmentation samples for training the counting network.

Count network training: Training of the counting net-
work is fairly straightforward compared to SegNet. In this
phase, we used all the images as a whole without prior crop-
ping or sampling operation for data augmentation to ensure
that the ground truth leaf counts were valid for all aug-
mented images. Also, while designing the network archi-
tecture, we experimented with adaptive operations to deal

with variable sized images, but they did not seem to work
better than resizing the images to a fixed size. Moreover,
we had to be cautious in the choice of the size for resiz-
ing operation so that for bigger images with resolution like
2000 x 2500, properties of the small leaf regions did not
deteriorate much. Considering this fact, we chose the mod-
ified image size to be 448 x 448 preserving the aspect ratio.
Thus, the largest dimension was taken to be 448 and the
smaller one was padded with zeros afterward.

After the resize operation was performed, each of the
images was augmented 8 times using intensity saturation,
Gaussian blurring and sharpening, and additive Gaussian
noise (Figure 6). Each image was also flipped top-bottom
and left-right and rotated 180° along with similar augmenta-
tions. Thus, we generated 36 slightly different samples with
the same ground truth from each original image, resulting in
29160 training instances for the regression network.

After the data generation was done, the counting or re-
gression network was trained for 40 epochs using Adam
[22] with fixed learning rate and weight decay both set to
0.0001. Smooth-L; criterion was used as the loss function
instead of simple L criterion to prevent gradient explosions
as described in [15]. At first, we started training the model
with normalized FC layers of size 1024. However, based
upon the training statistics and to reduce the risk of overfit-
ting, we changed the size of FC layers to 512 and retrained
the model with the already trained convolutional weights.
Finally, the model trained until epoch 35 was used to gen-
erate the prediction for final submission.

Implementation: We used Torch[12] as the deep learn-
ing framework for both models. All the convolutional filters
of the segmentation network were of size 3 x 3. For regres-
sion architecture, 9 x 9 convolution was performed until the
second max-pooling operation and 5 x 5 afterward. We used
the convolutional stride of 1 throughout both networks. All
the pooling operations were 2 x 2 max-pooling with stride
of 2. The dimension of all fully connected layers in the re-
gression network was 512. Training was performed on a
single NVIDIA Quadro P6000 Dell workstation. On this
machine, training of SegNet took about 6 — 7 days, whereas
the regression network was trained within a couple of days.

4.3. Evaluation

Evaluation of our complete framework was accom-
plished in three stages. First, we assessed the segmenta-
tion network in terms of the precision and recall (equation
1) of the plant pixels. Next, we performed a head-to-head
comparison against the winner of the previous LCC com-
petition. Finally, we compared our results to the state-of-
the-art approaches. We also performed an ablation study
by training our counting network with and without the seg-
mentation channel as input, in order to cast some light on
the issue regarding the need for foreground segmentation.
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Table 1. Head-to-head comparison against LCC-2015 winner. Note that A/l refers to A1-A3 for GLC and A1-AS for Ours.

Directories CountDiff AbsCountDiff PercentAgreement [%] MSE
GLC[16] Ours GLC[16] Ours GLC[16] Ours GLC[16] Ours
Al -0.79(1.54) -0.33(1.38) | 1.27(1.15) 1.00(1.00) 27.3 30.3 291 1.97
A2 -2.44(2.88) -0.22(1.86) | 2.44(2.88) 1.56(0.88) 44.4 11.1 13.33 3.11
A3 -0.04(1.93) 2.71(4.58) | 1.36(1.37) 3.46(4.04) 19.6 7.1 3.68 28.00
A4 - 0.23(1.44) - 1.08(0.97) - 29.2 - 2.11
A5 - 0.80(2.77) - 1.66(2.36) - 23.8 - 8.28
All -0.51(2.02) 0.73(2.72) | 1.43(1.51) 1.62(2.30) 24.5 24.0 4.31 7.90

Table 2. Comparison against state-of-the-art literature. Note that All refers to A1-A3 for previous work and A1-AS5 for Ours.

Methods CountDiff AbsCountDiff
Al A2 A3 A4 AS All Al A2 A3 A4 A5 All
IPK[20] -1.8(1.8) | -1.0(1.5) | -2.0(3.2) - - -192.7) | 22(1.3) | 1.2(1.3) | 2.8(2.5) - - 24(2.1)
Nottingham[33] | -3.5(2.4) | -1.9(1.7) | -1.9(2.9) - - -2.4(2.8) | 3.8(1.9) | L.9(1.7) | 2.5(2.4) - - 2.9(2.3)
MSU[33] -2.5(1.5) | -2.0(1.5) | -2.3(1.9) - - -2.3(1.8) | 2.5(1.5) | 2.0(1.5) | 2.3(1.9) - - 2.4(1.7)
Wageningen[33]| 1.3(2.4) | -0.2(0.7) | 1.8(5.5) - - 1.5(4.4) | 2.2(1.6) | 0.4(0.5) | 3.0(4.9) - - 2.5(3.9)
GLC[16] -0.79(1.54)|-2.44(2.88)|-0.04(1.93) - - -0.51(2.02)|1.27(1.15)|2.44(2.88)|1.36(1.37) - - 1.43(1.51)
DPP[37] - - - - - - 0.41(0.44)0.61(0.47)[0.61(0.54)| - - -
RIS+CRF[31] - - - - - 0.2(1.4) - - - - - 1.1(0.9)
EERA[30] - - - - - - - - - - - 0.8(1.0)
Ours -0.33(1.38)|-0.22(1.86)| 2.71(4.58) |0.23(1.44)|0.80(2.77)| 0.73(2.72) | 1.00(1.00)| 1.56(0.88)|3.46(4.04)| 1.08(0.97)| 1.66(2.36)| 1.62(2.30)
Table 3. Possible interpretation of the performance measures.
Measures Possible Interpretation
CountDiff | The model is less biased towards overestimate or underestimate.
AbsCountDiff | Average performance is better.
PercentAgreement 1 Number of accurate predictions is higher.
CountDiff |, AbsCountDiff | Less bias with better performance. Desirable properties of an ideal nonlinear regression model.
CountDiff |, AbsCountDiff 1 High positive and negative errors cancel out. Model behaviour tends to be linear than usual.
PercentAgreement |, AbsCountDiff | Although many predictions are not F:xactly accurate, all of the predictions are close to the original;
therefore, model performance is uniform over the samples.
PercentAgreement 1, AbsCountDiff 1 Although many predictions are exact, wrong predictions are far from the original;
therefore, model performance is not uniform over the samples.

Foreground segmentation: Even though the accuracy
of binary segmentation is not a criterion for evaluation in
the LCC competition [1], we provide precision and recall
(equation 1) of our segmentation model in Table 4 to justify
our assumption on the sufficiency of semi-global context for
leaf segmentation. It is evident from Table 4 that the seg-
mentation results generated by SegNet using semi-global
information are good enough to be used for the regression
network. Performance of the segmentation network is com-
paratively lower for directory A3 (Table 4, red text) since
there are only 27 Tobacco images in the A3 training set as
compared to 783 Arabidopsis images in the rest of the di-
rectories.

isi = True Positive
Precision = True Positive + False Positive (1 )
Recall = True Positive
" True Positive + False Negative

Comparison against the previous winner: Next, we
provide comparisons in both Table 1 and 2. Table 2 provides
comparisons against all the recent literature, whereas Ta-
ble 1 provides a head-to-head comparison against the LCC-

Table 4. Binary segmentation results.

Directory | Al A2 | A3 A4 | AS
Precision | 0.98 | 0.94 | 0.80 | 0.96 | 0.92
Recall 0.99 | 0.99 | 0.94 | 0.98 | 0.97

2015 winner, which is more detailed due to the availability
of the performance metrics for [16]. In Table 1, “Count-
Diff” refers to the mean and standard deviation (shown in
parentheses) of the difference in count averaged over im-
ages. “AbsCountDiff” is the absolute of “CountDiff”. The
term “PercentAgreement” indicates the percentage of ex-
act matches between the actual prediction and ground truth
measurement for counts. “MSE” is the abbreviation for
mean-squared error.

From Table 1, it is evident that we achieve lower Count-
Diff and AbsCountDiff for directories A1 and A2. Lower
CountDiff means that our model is less biased towards un-
derestimation or overestimation than GLC [16], whereas
lower AbsCountDiff can be interpreted as the indicator of
better average performance of the system. However, our
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framework performs poorly on directory A3 (Table 1, red
text). The reason behind the failure is pretty straightfor-
ward. Note that, in the training set, there are in total 783
Arabidopsis images in A1, A2, and A4. On the other hand,
there are only 27 Tobacco images in A3, which is scarce
for the types of deep architectures we are using that contain
millions of parameters. Hence, our regression network fails
to model the distribution for leaf counting over the Tobacco
images. This inadequacy is also reflected in the AbsCount-
Diff measure for the test directory A5, which is a mixture
of Arabidopsis and Tobacco images altogether.

For directory A2, although our CountDiff and Ab-
sCountDiff are better than those of GLC, PercentAgreement
of GLC is much better than ours. Apparently, it might seem
to be a pitfall of our system. However, the combination of
lower AbsCountDiff and lower PercentAgreement means
that even though the number of exact predictions is low,
all the predictions are pretty close to the original and the
overall performance of the system is more or less uniform
over the test images. On the contrary, comparatively higher
values of AbsCountDiff and PercentAgreement, which be-
long to GLC for directory A2, refers to the situation where
model performance is not uniform over the samples. In
other words, predictions may be accurate for easier sam-
ples with no leaf overlap or moderate-sized leaves or both,
but deteriorate for harder cases with smaller or overlapping
leaves. In that sense, our generalized framework is capa-
ble of modeling and inferring leaf shapes under deforma-
tion and partial occlusion better than GLC given a few hun-
dred images for a particular species. To facilitate this kind
of comparative evaluation of our method by the readers, we
enlist a set of combinations of the measures along with their
possible interpretations in Table 3. Also, note that our aver-
age measurement (directory “All”) is over 501 test images
from 5 directories (A1-AS5), whereas the average for GLC
is taken over 98 test images from 3 directories (A1-A3).

General comparison: Table 2 shows that our method
performs well as compared to all the LSC-2014 [29, 33] and
LCC-2015 [16], except for the failure on directory A3 due
to inadequate number of samples. Both RIS+CRF [31] and
EERA [30] use instance-level ground truth. Hence, they
are eligible for the segmentation competition (LSC), but
not the counting competition (LCC). Nonetheless, we put
them in the list to demonstrate our comparability to these
state-of-the-art methods developed with instance segmenta-
tions that are more expensive in terms of training complex-
ity/time and ground truth data requirements. DPP [37] is the
only method close to ours in the style of approach, except
that they use three shallow regression networks, each one
highly customized over a single directory. Moreover, DPP
uses random cropping from 10% — 25% for the purpose of
data augmentation while training. This could result in mis-
labeled images if leaves are cropped out of certain images.

The new rosette images in the LCC-2017 dataset include
larger rosettes that cover more of the image frame (and ex-
tend outside the frame in certain cases, see rightmost image
in Figure 2); therefore it is not clear how DPP would per-
form on the larger and more varied test images in the new
competition dataset.

Ablation study: To justify the inclusion of a segmenta-
tion network within our framework, we performed an ab-
lation study by training our regression network using only
RGB images as the input without foreground segmentation.
We found slower convergence than that of using the seg-
mentation images as input. However, counting results using
only RGB images were comparable, which supports the ap-
proach proposed by DPP of using a regression network di-
rectly on RGB images and that the network learns relevant
features directly without a priori segmentation. Nonethe-
less, we do expect that providing foreground segmentation
as an additional input channel helps to push the regression
architecture to train on localized features within the plant re-
gion in the image. This might help to suppress background
features that could limit the generalizability of the count-
ing model if provided images of rosettes grown in different
backgrounds, e.g. in different pots, trays, or growth tables.
The issue of localization of features in these types of regres-
sion networks requires additional attention as future work.
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5. Conclusion and Future Work

In this paper, as a participant of the LCC-2017 compe-
tition, we provide a complete and generalized data-driven
framework for leaf counting from RGB images directly
without instance segmentation. We demonstrate that given
a moderate amount of data on any species, our architectures
are able to learn to estimate the number of leaves without
prior knowledge on that particular species or surroundings
of the plant. From the perspective of informed search strate-
gies, we do plant segmentation prior to counting with the as-
sumption that the additional foreground segmentation chan-
nel guides the regression model to extract necessary features
only from the plant region and thus trains the model cor-
rectly. However, based upon other recent works and ours,
the need for segmentation prior to counting by the deep net-
works is still an open question. As future work, we plan to
investigate this issue in more detail, with the goal of achiev-
ing equivalent performance to that of instance segmenta-
tion architectures with much simpler and easier to train non-
recurrent networks such as reported in the present study.
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