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Abstract

The number of leaves a plant has is one of the key traits

(phenotypes) describing its development and growth. Here,

we propose an automated, deep learning based approach

for counting leaves in model rosette plants. While state-

of-the-art results on leaf counting with deep learning meth-

ods have recently been reported, they obtain the count as

a result of leaf segmentation and thus require per-leaf (in-

stance) segmentation to train the models (a rather strong

annotation). Instead, our method treats leaf counting as a

direct regression problem and thus only requires as anno-

tation the total leaf count per plant. We argue that com-

bining different datasets when training a deep neural net-

work is beneficial and improves the results of the proposed

approach. We evaluate our method on the CVPPP 2017

Leaf Counting Challenge dataset, which contains images of

Arabidopsis and tobacco plants. Experimental results show

that the proposed method significantly outperforms the win-

ner of the previous CVPPP challenge, improving the results

by a minimum of 50% on each of the test datasets, and

can achieve this performance without knowing the experi-

mental origin of the data (i.e. “in the wild” setting of the

challenge). We also compare the counting accuracy of our

model with that of per leaf segmentation algorithms, achiev-

ing a 20% decrease in mean absolute difference in count

(|DiC|).

1. Introduction

Plant phenotyping is a growing field that biologists have

identified as a key sector for increasing plant productiv-

ity and resistance, necessary to keep up with the expand-

ing global demand for food. Computer vision and machine

learning are important tools to help loosen the bottleneck in

phenotyping formed by the proliferation of data generating

systems without all the necessary image analysis tools [22].

The number of leaves of a plant is considered one of

the key phenotypic metrics related to its development and

growth stages [28, 30], flowering time [18] and yield poten-

tial. Automated leaf counting based on imaging is a difficult

task. Leaves vary in shape and scale, they can be difficult

to distinguish and are often occluded. Moreover, a plant is

a dynamic object with leaves shifting, rotating and grow-

ing between frames which can be challenging to computer

vision counting approaches [22].

From a machine learning perspective, counting the num-

ber of leaves can be addressed in two different ways: (i) ob-

taining a per-leaf segmentation, which automatically leads

to the number of leaves in a rosette [24, 26, 27]; or (ii) learn-

ing a direct image-to-count regressor model [11, 23]. Deep

learning approaches in this field show impressive results in

obtaining leaf count as a result of per-leaf segmentation,

but they require individual leaf annotations as training data,

which are difficult and laborious to produce. In fact, regres-

sion approaches leverage this issue by using the total leaf

count in plants as its only supervision information [24, 26].

There are few annotated datasets for rosette plants [3, 5, 21]

which is a limitation when trying to implement deep learn-

ing approaches for plant phenotyping problems [29] or for

field of phenotyping in general [20].

In this paper, we propose a deep learning model for leaf

counting in rosette plants on top-down view images. The

backbone of the model is a modified Resnet50 deep residual

network [14] pre-trained on the ImageNet dataset (c.f. Fig-

ure 1). The network is fine-tuned on one or more datasets

and provides as output a leaf count. To boost deep learn-

ing performance to learn despite being provided with small

datasets, we found that pooling data from different sources

and even different species (and cultivars) for the purposes

of training improves leaf prediction accuracy. Our method

treats leaf counting as a direct regression problem, there-

fore it only requires the total leaf count of each image as

annotation. We evaluate our approach on datasets provided

in the Leaf Counting Challenge (LCC) held as part of the

Computer Vision Problems in Plant Phenotyping (CVPPP

2017) workshop. The datasets consist of top-down images

of single plants of Arabidopsis (A1, A2, A4) and tobacco

(A3) plants collected from a variety of imaging setups and

labs. In this challenge, there was also a “wild” test dataset

(A5) which combines test images from all the other datasets

in order to assess the generalization capabilities of machine
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Figure 1. Architecture of our modified Resnet50 model [14]. The network takes as input a RGB image of a rosette plant and outputs a

leaf count prediction. The classification layer was removed and replaced with two fully connected layers FC1 and FC2. The network is

comprised of 16 residual blocks which consist of three stacked layers each with skip connections between the input and the output of each

block. The solid lines represent connections which maintain dimensions while dotted lines increase dimensions.

learning algorithms without knowing the experimental ori-

gin of the image data. The final model is robust to nuisance

variability (i.e. different backgrounds, soil) and variations

in plant appearance (i.e. mutants with altered plant shape

and scale). We employed an ensemble method of four mod-

els to obtain the results of the LCC challenge. Experimen-

tal results show that our approach outperforms the winner

of the previous CVPPP challenge [11] as well as a state-of-

the-art counting via segmentation approach.

The remainder of this paper is organized as follows. In

Section 2 we review the current literature. In Section 3 we

detail our deep learning network. Then, in Section 4 we re-

port the experimental results. Particularly, the results of the

CVPPP challenge on the testing set are reported in Section

5. Finally, Section 6 concludes the paper.

2. Related Work

Counting via detection. One class of approaches involves

counting by detection [31] which frames the problem as a

detection task. Some solutions rely on local features such

as histogram orientated gradients [4] or shape [6]. Object

detectors using region based convolutional neural networks

[9] have attracted attention by providing state-of-the-art de-

tection results while reducing training and testing times.

They incorporate region proposal [10, 25] and spatial pyra-

mid pooling networks [13] to provide region of interest sug-

gestions and then fine-tuning the resulting bounding boxes

to fit on the desired objects.

Counting via object segmentation. Object detection is

considered an easier task than segmentation. In fact, once

an object is detected in the scene, obtaining a per-pixel seg-

mentation mask is not trivial. Especially for the case of

multi-instance segmentation [26], where the same objects

appear multiple times in an image (e.g., leaves of a plant).

Pape and Klukas [23] used split points to determine lines

between overlapping leaves to assign them different labels.

Deep learning solutions using recurrent neural networks

achieve state-of-the-art leaf segmentation and counting re-

sults. In [26], the authors developed an end-to-end model

of recurrent instance segmentation by combining convolu-

tional LSTM [7] and spatial inhibition modules as a way to

keep track of spatial information within each image allow-

ing to segment one leaf at a time. The method also deploys a

loss function which learns to segment all separate instances

sequentially and allows the model to learn and decide the

order of segmentation. In [24], another neural network

that uses visual attention to compute instance segmentation

jointly with counting was proposed. This method has se-

quential attention by creating a temporal chain via a LSTM

cell which outputs one instance at a time. Non-maximal

suppression, used to solve heavily occluded scenes, is dy-

namically leveraged using previously segmented instances

to aid in the discovery of future instances.

Counting via density estimation. Another method to

count objects in an image is by estimating their distribu-

tion, using local features. In [19], the authors have devel-

oped a loss function which aims to minimize Maximum Ex-

cess over SubArrays (MESA) distance. Other methods in-

clude density estimation by per-pixel ridge and random for-

est regression. Similar approaches can be found in [1, 2, 8],

where regressors are used to infer local densities. However,

these approaches are difficult to use for leaf counting, as

they are challenged by the huge scale variability of leaves,

as well as heavy occlusions and overlaps.

Direct count. Leaf counting results using machine learning

solutions have been reported in past CVPPP challenges as

well as in other independent reports which have identified

plant datasets as compelling ways to test models. The win-

ner of the previous CVPPP challenge [11] adopted a direct

regression model through support vector regression. The

method involved converting the image into a log-polar coor-

dinate system before learning a dictionary of image features

in an unsupervised fashion. The features were learned only

43222073



in regions of interest determined by texture heuristics. The

use of the log-polar domain provided the method with rota-

tion and scale invariance, however the scale of the leaves is

an important feature to learn, as is can vary considerably

within a plant and is directly correlated with the growth

stage of the plant. In [23], the authors used a set of geo-

metrical features to fit several classification and regression

models. Using different tools available in WEKA [12], they

found that the Random Subspace method [16] could obtain

lowest |DiC| only using geometrical features.

3. Methodology

We implemented a deep learning approach for counting

leaves in rosette plants. We used a modified ResNet50 [14]

residual neural network to learn a leaf counter taking as in-

put a top-down view RGB image of a rosette plant. For this

paper, we have adhered to the guidelines and data provided

for the CVPPP leaf counting challenge.

3.1. The Network

The architecture of our model is displayed in Figure 1.

We used a Resnet50 because of its ability to generalize,

which was crucial for this challenge for its “in the wild” set-

ting, as well for its fast training and convergence speed. The

ResNet architecture is easier to optimize than other deep

networks and addresses the degradation problem present

in very deep networks which states that as deep networks

converge and accuracy gets saturated, it starts to degrade

[14]. The problem is addressed by the residual convolu-

tional blocks which make up the network which is described

as follows. If H(x) is an underlying mapping of several

stacked layers and we assume that the layers can approxi-

mate a complex function then we can assume that they can

also approximate the residual function F (x) = H(x) − x.

This changes the original function from H(x) to F (x) + x.

Furthermore, identity mappings, implemented as skip con-

nections, ease optimization because they help propagate the

error gradient signal faster across all layers. The positive

impact on optimization and learning grows with increased

layer depth. [15]. The residual functions are learned with

reference to the layer inputs facilitated by the skip connec-

tions between the residual blocks as seen in Figure 1.

We modified the reference ResNet50 by removing the

last layer intended for classification, flattening the network

and adding two fully connected layers FC1 and FC2 of 1024

and 512 nodes respectively followed by ReLU activations.

We apply an L2 activation regularization on the FC2 layer to

penalize the layer activity during training and prevent over-

fitting. FC2 goes into a fully connected layer containing a

single node which acts as the leaf count prediction.

Figure 2. Examples of rosette plant images present in the four

training datasets A1, A2, A3, and A4. The datasets show the big

variety between images for applications in plant phenotyping. The

left column represents images which have more well defined and

easier to identify leaves, making leaf count relatively easier to de-

termine. The right column shows examples of more challenging

images for computer vision applications due to difficult to distin-

guish backgrounds (A1’), mutants which alter plant appearance

(A2’) and heavily occluded leaves (A3’, A4’).

3.2. The datasets

The challenge consisted of four RGB image training

datasets noted as A1, A2, A3 and A4 [3, 21]. A1 and

A4 contain images of wild-type Arabidopsis plants (Col-

0) while A2 contains four different mutant lines of Ara-

bidopsis which alter the size and shape of leaves. A3 is

made up of young tobacco plant images. The training sets
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include 128, 31, 27, 624 images and the testing sets con-

tain 33, 9, 65, 168 images for A1, A2, A3, A4 respectively.

The datasets are taken from different labs, with different

experimental setups, and thus background appearance and

genotype composition varies (Figure 2). Furthermore, the

images in each dataset have different dimensions ranging

from 500x530 pixels in A1 to 2448x2048 pixels in A3. For

testing, in addition to the four aforementioned datasets, the

organisers provided a “wild” dataset A5 which combines

images from all testing datasets, to test methods that gener-

alize across data and which are not fine-tuned (and specific)

for each dataset. For training, we also formed a dataset sim-

ilar to the “wild” dataset, named Ac, in which we combined

all the images in the four training datasets.

3.3. Training procedure

For pre-processing, each image was re-sized to be

320x320x3 pixels and a histogram stretch was applied on

all images to improve contrast as some images were darker

than others. The resolution was chosen to optimize train-

ing times while retaining important features such as distin-

guishable small leaves. We used a random split from the

training set to 50% of the images used for training 25% for

validation and 25% for (internal) testing. The split ratio

was chosen so that there would be a similar percentage of

test images per run as the test set of the challenge. Further-

more, the training, validation and test sets include plants of

all ages by taking an even distribution from each dataset.

To evaluate our architecture, we first trained the network on

each of the CVPPP datasets individually. We then added

more data by combining datasets together (i.e. A1 + A2)

and finally a combination of all four datasets named Ac.

The test results from the combinations we evaluated can

be seen in Table 1. Cross validation was performed four

times on differently sampled training images when training

on (Ac). We used mean squared error (MSE) as the loss

function and Adam optimizer [17] with a learning rate of

0.001. We trained with an early stopping criterion, based

on the validation loss to avoid overfitting.

Data augmentation was performed when training all

models. We used a generator which assigns training im-

ages a random affine transformation from a pool of random

rotation from 0-170 degrees, zoom between 0− 10% of the

total image size and flipping vertically or horizontally. The

training steps for each epoch was defined as the double the

number of training images and the batch size per step was 6.

In total, the augmented dataset was 12 times the size of the

original set per training epoch. Once the models are trained,

obtaining test predictions just requires inputting the desired

test images. The network output is not discrete, so we round

the predictions to the nearest integer to get a leaf count.

For the challenge test set, we employed an ensemble

method comprised of four models trained on four different

(A) Test results on training set A1

Train Sets DiC |DiC| MSE R2 [%]

A1 -0.81(0.85) 0.94(0.70) 1.38 0.23 25

A1+A2 -0.06(1.03) 0.75(0.71) 1.06 0.76 41

A1+A4 -0.75(0.90) 0.88(0.78) 1.38 0.69 34

Ac 0.28(0.80) 0.53(0.66) 0.72 0.60 56

(B) Test results on training set A2

Train Sets DiC |DiC| MSE R2 [%]

A2 -2.38(2.69) 2.38(2.69) 12.88 0.29 38

A1+A2 -0.56(2.06) 1.69(1.51) 6.31 0.65 25

A2+A4 -0.75(2.15) 1.75(1.45) 6.38 0.65 31

Ac -0.38(1.11) 0.88(0.78) 1.38 0.92 38

(C) Test results on training set A3

Train Sets DiC |DiC| MSE R2 [%]

A3 -0.57(1.50) 1.43(0.73) 2.57 0.46 14

Ac 0.71(1.03) 0.71(1.03) 1.57 0.47 57

(D) Test results on training set A4

Train Sets DiC |DiC| MSE R2 [%]

A4 0.1(1.14) 0.91(0.85) 1.54 0.96 35

A1+A4 -0.01(1.06) 0.77(0.73) 1.12 0.97 39

A2+A4 0.05(1.04) 0.73(0.75) 1.10 0.97 43

Ac 0.12(0.99) 0.69(0.73) 1.01 0.97 46

Table 1. Evaluation results of models tested on just the training

datasets. The first column of each table represents training regi-

men of our network comprising of single and combined datasets

(Ac denotes a combination of all datasets). The values were ob-

tained through cross-validation using a split of 50%, 25%, 25%

images for training, validation and testing respectively. Test sets

all refer to our internal split of the original training set as described

in text.

equal portions of the Ac dataset. We fused the predictions

of the four models by averaging them to obtain the results

shown in Table 3.

3.4. Implementation details

We implement our models in Python 3.5. For training,

we used an Nvidia Titan X 12Gb GPU using Tensorflow as

backend. The models took between 1.5 and 5 hours to train

depending on how many datasets were pooled together, over

an average of 50 epochs.

3.5. Evaluation metrics

We used the same evaluation metrics as those provided

by the organizers of the workshop to assess our networks

performance: Difference in Count (DiC), absolute Differ-

ence in Count |DiC|, mean squared error (MSE) and per-

cent agreement given by the percentage of exact predictions

over total predictions. For our internal testing, we also in-

clude the R2 coefficient of determination.
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Figure 3. Test showing network training ability by obscuring part of the image with a sliding window. (A) is the original image and (B)

shows the black sliding window (60x60 pixels) traversing the original image. (C) represents a heatmap of the accuracy of leaf count

prediction as the sliding window is traversing the image using a model trained on the Ac dataset, showing that the errors are confined only

to the area where the plant is located. (D) is the prediction heatmap on a model trained on just the A2 dataset (the origin of the image).

4. Results on the training set and discussion

We first tested our architecture on the training datasets in

order to assess its performance and the results can be seen

in Table 1. The tests were performed following the same

training regimen outlined in the Section 3. We found that

fine tuning the Resnet50 network, pretrained on the Ima-

geNet dataset, gave better and more consistent results than

providing stronger annotations and using random initializa-

tion. So the learned ImageNet features were more valuable

for this task than having the segmentation mask as an input.

Our solution was able to overcome several challenges.

Firstly, the network can work with images of different sizes

and scales present in each dataset. That said it is important

that the original quality of the images is good enough to

distinguish between leaves. Secondly, our model was able

to learn to count leaves of different shapes, sizes and ori-

entation provided only with minimal annotations. As seen

in Figure 2, the plants were of a diverse nature in terms of

age, genotype and species giving a wide degree of com-

plexity in counting. This ties in with one of the limita-

tions of the direct regression approaches, namely that the

network has to infer more information from each image

to compensate for the lack of stronger annotations. This

can be attenuated by providing more data when training to

give a better chance of learning relevant features. Labeling

data is increasingly time and resource intensive when go-

ing from weak to stronger annotations (e.g total leaf count

vs. per leaf segmentation mask) which is one of the rea-

sons for the relative lack of publicly available plant pheno-

tyoing datasets. By employing models which require only

weak annotations for training as opposed to models which

require strong annotations [24], it becomes possible to have

access to more labelled data given limited resources. Lastly,

the provided datasets contained a limited amount of training

images compared to the quantities of data traditionally em-

DiC |DiC| MSE R2 [%]

A1* -5.46(0.83) 5.46(0.82) 30.59 0.07 2

A1 -1.17(0.57) 1.17(0.57) 1.70 0.38 8

A1+A4* -0.58(0.59) 0.59(0.59) 0.69 0.98 46

Table 2. Internal test metrics from models with and without (*)

augmentation. The sets indicated with a * in the name (e.g. A1*)

were trained without using data augmentation.

ployed for deep learning models. Furthermore, they were

not uniformly represented with set A2 including just 31 im-

ages, while set A4 had 623. Even with data augmentation,

there was a barrier to how much the network would learn

when trained on each dataset separately, as evident in Ta-

ble 1. We sought to improve those initial results by com-

bining the datasets together when training, so to provide

more varied and meaningful examples than the ones sup-

plied solely by data augmentation.

Results show that combining datasets from different

sources and even species is beneficial, since it improves test

accuracy for all datasets and more generally for all evalua-

tion metrics (Table 1). The models were trained using data

augmentation procedures mentioned above. The worst per-

formance is seen in networks which are trained only on a

single dataset. The combination of any two datasets yields

similar results, no matter which combination is used even

though A4 is a larger dataset than A2 and A1. The best re-

sults are given by the models trained on the grouping of all

datasets (Ac). The degree of the improvement varies, with

the most accentuated being A2 and the least impacted being

A4. That was not unexpected, as A2 is the smallest dataset

so additional data would cause a large impact in learning

while A4 is by far the largest dataset. However, even in

A4, the MSE and mean absolute difference in count (|DiC|)
decreases by 30% when training on combined datasets com-
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DiC |DiC| Agreement [%] MSE

Ours Ref[11] Ref[26] Ours Ref[11] Ref[26] Ref[24] Ours Ref[11] Ours Ref[11]

A1 -0.39(1.17) -0.79(1.54) 0.2(1.4) 0.88(0.86) 1.27(1.15) 1.1(0.9) 0.8(1.0) 33.3 27.3 1.48 2.91

A2 -0.78(1.64) -2.44(2.88) - 1.44(1.01) 2.44(2.88) - - 11.1 44.4 3.00 13.33

A3 0.13(1.55) -0.04(1.93) - 1.09(1.10) 1.36(1.37) - - 30.4 19.6 2.38 3.68

A4 0.29(1.10) - - 0.84(0.76) - - - 34.5 - 1.28 -

A5 0.25(1.21) - - 0.90(0.85) - - - 33.2 - 1.53 -

All 0.19(1.24) - - 0.91(0.86) - - - 32.9 - 1.56 -

Table 3. Results for the test set for the provided datasets based on the fused ensemble of models trained on dataset Ac. For comparison

we include the results of the winner of the previous CVPPP leaf counting challenge [11] as well as two count derived from per leaf

segmentation approaches [26, 24].

pared to just on A4 (Table 1D).

There was also a significant improvement between mod-

els trained on just A3 compared to Ac (Table 1C), especially

in terms of |DiC| reducing it by 50%, MSE by 40% and per-

cent agreement improved 4-fold. As the models trained on

just A3 and Ac were presented with the same number of

tobacco plant images, we see that the Ac model shows im-

proved learning even when the only extra data comes from

other plant species.

One natural question that arises is whether the network is

learning to actually look at leaves to count or is influenced

by the material in the background (i.e. it relies on back-

ground cues). We tested the network’s ability to learn by

imposing a black sliding window on images used in train-

ing [32]. We predicted the leaf count using our models on

the images as the sliding window was traversing the image

to see if by obstructing the portion of the image the network

was meant to learn it would give rise to errors in count. By

sliding across the image and reporting a result (of predic-

tion error) per position of the sliding window, a heat map of

errors is generated. An example of this process is shown in

Figure 3. We used the sliding scale test on models trained

on the aggregated dataset Ac (Figure 3C) and on models

trained on just the dataset which contained the original im-

age (Figure 3D). The errors in the model trained on dataset

Ac were very specific to regions containing the plant sug-

gesting that the model learned well the area of interest. As

the sliding window moved closer to the center of the plant

the errors increase as the window obstructs smaller leaves.

The model trained on only one dataset did not perform as

well, having a 1 difference error in general (yellow homo-

geneous background) and the regions which were affected

by the sliding box were not only specific to the plants loca-

tion.

We believe that the improved results are a consequence

of increased data variability which allows the model to learn

more precise features. To rule out that improved results

could also be reached just by additional image augmenta-

tion we tested a combined trained model of A1+A4 with no

augmentation versus a model of just A1 with data augmen-

tation that would bring the total number of training images

to be equal to that of A1+A4. The dataset A1 was chosen

for this experiment because it is the most balanced dataset

in terms of size. The results show a decreased test MSE of

by more than 100% and the R2 coefficient went from 0.38

to 0.98 (Table 2) in the models trained on the three datasets

without augmentation compared to the single A1 with aug-

mentation.

5. Results on the testing set as provided by the

challenge organizers and discussion

The results of the LCC were compiled by the organiz-

ers using the metrics provided (Table 3). We did not use

the provided segmentation masks or the leaf center dots in

our models. We used an ensemble method comprised of

four models of the same architecture but trained on differ-

ent equal portions of the Ac combined dataset. We ran each

of the models on the test set and fused the leaf count predic-

tions by averaging the outputs to reach the results in Table

3. The A3 image dataset is an important indicator of how

well a model learned to generalize because it contains 27

images in the training set and 65 images in the testing set

while having the only tobacco images in the challenge.

We outperformed the winner of the previous CVPPP

LCC by at least 50% for each of the datasets provided in

MSE and |DiC| without needing to know the experimental

origin of the data (i.e. “in the wild” setting of the chal-

lenge). We achieved an average of 33% agreement across

the datasets with the exception of A2 where we had lower

percent agreement than than the reference although our ap-

proach resulted in a significantly lower MSE. Training our

models on the combined set Ac helped us achieve similar or

better results for the A5 “wild” dataset compared to that of

individual datasets.

The previous challenge only provided datasets A1, A2

and A3 to the participants, thus we can only compare re-

sults on those three datasets. Overall, we had an improve-

ment on all parameters for all three datasets, with the largest

improvements in A2, which represented the smallest Ara-

bidopsis dataset and contained difficult mutants with altered

shape and size.
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We also compared our results with the state-of-the-art

per leaf segmentation approaches from [26] and [24]. We

outperformed [26] by achieving a 20% reduction in mean

|DiC| compared to them. We also obtained similar results to

[24], with the advantage of requiring less strong annotations

compared to their method.

6. Conclusions

Here we presented a deep learning approach for leaf

counting in rosette plants from top-down view RGB images.

We showed that it is possible to use deep learning as a way

of directly performing automated leaf counting for plant

phenotyping and improve upon the current state of the art.

Firstly, we implemented a modified ResNet50 deep resid-

ual neural network to act as a leaf prediction model where

we treated leaf counting as a direct regression problem us-

ing only the total leaf count per plant as required annota-

tion. Secondly, we found that pooling data from different

sources for the purposes of training improves leaf predic-

tion accuracy. Importantly, we also discovered that training

on aggregated datasets also provides the model invariance

to plant species, which is an important factor when testing

the model with the “wild” set.

We evaluated our network on the standardized datasets

provided in the context of the Leaf counting challenge of

the CVPPP 2017 workshop and then compared to previ-

ously published networks. We found that our method out-

performs the previous winner of the challenge by at least

50% for all the provided datasets. Furthermore, we com-

pared our results with count from per leaf segmentation ap-

proaches and we achieved improved and comparable results

to the two state-of-the art solutions currently available. In

the first case, we outperformed the state-of-the-art network

by decreasing the mean |DiC|, and in the second case we

required far less strong annotation to achieve comparable

results.

For the purposes of this challenge we only had access to

images provided, so we could not investigate or optimize

other parameters such as ideal camera placement for this

task, but it would be an interesting avenue to pursue.
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