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Abstract

In recent years, there has been an increasing interest

in image-based plant phenotyping, applying state-of-the-art

machine learning approaches to tackle challenging prob-

lems, such as leaf segmentation (a multi-instance problem)

and counting. Most of these algorithms need labelled data

to learn a model for the task at hand. Despite the recent re-

lease of a few plant phenotyping datasets, large annotated

plant image datasets for the purpose of training deep learn-

ing algorithms are lacking. One common approach to al-

leviate the lack of training data is dataset augmentation.

Herein, we propose an alternative solution to dataset aug-

mentation for plant phenotyping, creating artificial images

of plants using generative neural networks. We propose the

Arabidopsis Rosette Image Generator (through) Adversar-

ial Network: a deep convolutional network that is able to

generate synthetic rosette-shaped plants, inspired by DC-

GAN (a recent adversarial network model using convolu-

tional layers). Specifically, we trained the network using

A1, A2, and A4 of the CVPPP 2017 LCC dataset, contain-

ing Arabidopsis Thaliana plants. We show that our model is

able to generate realistic 128×128 colour images of plants.

We train our network conditioning on leaf count, such that it

is possible to generate plants with a given number of leaves

suitable, among others, for training regression based mod-

els. We propose a new Ax dataset of artificial plants images,

obtained by our ARIGAN. We evaluate this new dataset us-

ing a state-of-the-art leaf counting algorithm, showing that

the testing error is reduced when Ax is used as part of the

training data.

1. Introduction

It is widely known that machine learning has brought

a massive benefit to many areas over the last decades. In

many scenarios, computer vision relies on vast amount of

data to train machine learning algorithms. Recently, several

datasets of top-view plant images were publicly released

[2, 4, 16], allowing the computer vision community to pro-

Figure 1. Schematic of the proposed method: a conditional gener-

ative adversarial network is trained to map random uniform noise

z into Arabidopsis plants, given a condition y on the number of

leaves to generate.

pose new methodologies for leaf counting [9, 17, 20] and

leaf segmentation [22, 23, 24]. However, these algorithms

can perform even better when provided with more training

data, such that the generalisation capabilities of the trained

model are increased, while also reducing overfitting.

As of now, a main issue affecting current plant phe-

notyping datasets is the limited quantity of labelled data

[25]. Typically, the computer vision community has been

employing dataset augmentation to increase the amount of

data using artificial transformations. In fact, artificially per-

turbing the original dataset with affine transformations (e.g.,

rotation, scale, translation) is considered a common prac-

tice. However, this approach has limits: the augmented data

only capture the variability of the training set (e.g., if a plant

with 7 leaves is missing from the training set, this particular

instance will not ever be learnt). For this reason, herein we

present preliminary work on generating artificial images of

plants, using a recent generative model that learns how to

create new images.

An attempt to generate rosettes was done in [19], where

an empirical model was created analysing 5 Arabidopsis

plants of about 11 leaves. Sigmoidal growth models were

fitted based on the sets of plants under their study. Then,

organs were dissected and leaves were used to fit B-splines

to obtain vector images. The issues of this model can be

summarised as follows: (i) the approach is confined on the

manual observation of morphological traits of a limited set

of plants; and (ii) there is a lack of realism in the generated
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Figure 2. Generator. This network takes as input a variable z (random noise) together with the condition vector y. These inputs are then

provided to two fully connected layers, where fc2 has the same amount of hidden units of the first deconvolutional layer. The information

is then processed through 5 deconvolutional layers, where the last one provides an 128x128 RGB image. The condition y is applied to all

the stages (fc and deconv layers). We showed it in the input only for sake of clarity.

images, for example in the absence of texture on the leaves.

The manual acquisition of morphological data from

plants is a tedious and error-prone process [9, 17] and we

aim to alleviate this process, by using neural networks that

can learn those parameters from data. Recently, several gen-

erative models were proposed to generate realistic images.

In the literature it is possible to find different generative

models to create artificial images. For example, in [3] the

authors synthesise images of fingerprints, reproducing the

orientation model of fingerprint lines. Another method to

generate images employs genetic programming [6]. How-

ever, recent interest in neural networks, has brought new

methodologies to generate synthetic images. In fact, con-

volutional neural networks (CNNs) were used to generate

images of photorealistic chairs [7]. In [11], the authors in-

troduce the Deep Recurrent Attentive Writer (DRAW) net-

work, which combines LSTM [12] layers to draw images,

using a selective attention model that, at each iteration, finds

the next location to draw new pixels. Despite its impressive

results, this method is challenged by natural image data.

The Generative Adversarial Network (GAN) [10] has been

proven to be successful at generating synthetic images also

on natural images. In a GAN, there are two models compet-

ing with each other: the Generator (G), which creates ar-

tificial images; and the Discriminator (D), which is trained

to classify images coming from the training set (real) and

the generator (fake). The spirit of the GAN is to improve G

to create more realistic images, whilst D is trained to distin-

guish between real and generated images. Training works

by improving in alternating fashion G or D, until an equilib-

rium is obtained. Generally speaking, the generator and the

discriminator can be any network that satisfies the follow-

ing criteria: (i) D needs to take as input an image and has

to output ‘1’ and ‘0’ (real/not real); (ii) G needs to take as

input random noise (e.g. drawn from an uniform or normal

distribution) and has to give as output an image. LAPGAN

[5] was proposed, which was able to produce better qual-

ity images using Laplacian pyramids. A new successful

adversarial network providing outstanding results is Deep

Convolutional GAN [21]. The benefits of this model mostly

stem from the use of convolutional/deconvolutional layers

for discriminator and generator respectively and the lack of

pooling/upsampling layers.

Although adversarial networks have brought many ben-

efits, a main limitation is the lack of direct control over the

images generated. For instance, in the case where we want

to train a GAN to generate images of handwritten digits –the

MNIST dataset [14] is a typical benchmark dataset in com-

puter vision and machine learning–, it would be reasonable

to have control over which digit to generate each time. For

this reason Conditional GAN [18] was proposed to over-

come such limitation. In this new formulation, generator

and discriminator networks are endowed with an additional

input, allowing to be trained under certain conditions. In

[26], the authors propose StackGAN, a two-stage GAN con-

ditioned on image captions. Specifically, Stage-I generates

coarse images, which are fed to Stage-II to obtain more re-

alistic images.

In this paper, we show how to generate Arabidopsis

plants, using a model inspired by [21], trained on the

CVPPP 20171 dataset. The network learns how to map ran-

dom noise z into an Arabidopsis plant, under a condition

y. For our purposes, y encodes the number of leaves that

the artificially generated plant should have. The employed

model, which we call Arabidopsis Rosette Image Generator

(through) Adversarial Network (ARIGAN), is able to create

1Available at the following URL: https://www.

plant-phenotyping.org/CVPPP2017
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128× 128 RGB images of Arabidopsis plants, as shown in

Figure 1. We evaluate our model by creating an Ax (using

the CVPPP dataset name convention) and provide the gen-

erated data to a state-of-the-art leaf counting algorithm [9]

to augment the training dataset.

The remainder of this paper is organised as follows. In

Section 2 we show the proposed methodology on how to

train and generate Arabidopsis plants. In Section 3 we re-

port the results of our experiments. Finally, Section 4 con-

cludes the paper.

2. Methodology

To generate images of Arabidopsis plants, we followed

the DCGAN architecture [21], but have added an extra

(de)convolution layer to generate 128 × 128 images. In

Figures 2 and 3, we show the generator and discriminator

model respectively. Both networks share the same layer

structure in reverse order. We provide further details in the

next sections.

2.1. Generative Adversarial Network

A generative adversarial network has two models that

train simultaneously: the generator G and the discriminator

D. The generator network takes as input a random vector

z ∼ pz(z) and learns the set of parameters θg to generate

images G(z; θg) that follow the distribution of real train-

ing images. At the same time, the discriminator D learns

a set of parameters θd to classify x ∼ p(x) as real images

and G(z; θg) as synthetic (or fake) images. The training

process maximises the probability of D to assign the cor-

rect classes to x and G(z), whilst G is trained to minimise

1−D(G(z; θg)). Using the cross-entropy as loss function,

the objective V (D,G) to be optimised is defined as follows:

min
G

max
D

V (G,D) = Ex∼pdata(x) [logD(x)]

+ Ez∼pz(z) [log(1−D(G(z)))] .
(1)

The optimisation of (1) can be done via stochastic gradient

descent, alternating the update of θd and θg .

In order to control the image to generate, we add y ∼
py(y) as input that embeds the condition [18]. There-

fore, we have a set of real data (e.g., training set) Dr =
{(xi, yi)}

n

i=1 for the discriminator and a set of sampled data

Ds = {(zi, yi)}
n

i=1 to train the generator. Hence, we update

(1), such that D(x; θd) becomes D(x|y; θd) and G(z; θg)
becomes G(z|y; θg).

The two networks, the generator and discriminator, could

be networks of any architecture. In the next sections we

provide details about G and D. We used convolutional deep

networks to generate images of Arabidopsis plants.

2.2. The model G

Our model is inspired by [21], although we also added an

additional (de)convolutional layer to obtain 128 × 128 im-

ages. The original model generates 64×64 images which is

not suitable for Arabidopsis plants synthesis, where young

plants might be only a few pixels in size and mostly indis-

tinguishable.

The input layer takes a random variable z ∼ U [−1, 1]
concatenated to a variable y that sets the condition on the

number of leaves. A typical approach for the condition is

to use a one-hot encoding over the number of classes. We

followed this approach, by considering the number of leaves

as a category on which a condition should be set, where C

denotes the number classes. Hence, a vector y ∈ {0, 1}
C

will have all zeros, except for a ‘1’ located at the position

corresponding to a certain class of plants. The condition y

within the training set Dr corresponds with the ground-truth

leaf count, whereas the y in Ds is randomly sampled, such

that yt = 1, where t ∼ U[1, C] (namely, the ‘1’ is located

in a random location and the rest of the vector is filled with

zeroes).

The so-formed input is then provided to two fully con-

nected layers, denoted as fc1 and fc2. The output of fc2

matches the size of the filters for the deconv1 layer, such

that the output of the last fully connected layer can be eas-

ily reshaped. After 5 deconvolution layers, a 128× 128× 3
output layer with tanh activation function will present the

generated plant image. We do not employ any upsampling,

but we use (2, 2) stride instead, such that the network learns

how to properly upscale between two consecutive deconvo-

lutional layers. We adopted 5 × 5 filter size on all the de-

convolutional layers [21]. Furthermore, the output of each

layer is normalised [13] and passed through ReLU nonlin-

earity, before to be provided to the next layer. Similar setups

also hold for the discriminator model. Although not graph-

ically reported in Figure 2, the condition y is concatenated

throughout all the steps of the network. In fact, each output

of the fully connected layers has the vector y added. The de-

convolutional layers also have the (leaf count) conditions as

additional feature maps, spatially replicating y to properly

match the layer size.

2.3. The model D

Figure 3 visualises the discriminator model. It can be

seen as a inverted version of the generator, where the or-

der of the layers is flipped and deconvolutional layers are

replaced with convolutional ones. Also for this model, as

discussed in Section 2.1, the condition y is embedded at all

stages of the network. Here, the last layer of the network

is a single node that outputs a binary value (fake vs. real

images), activated with a sigmoid function. Differently than

the G, the discriminator uses Leaky ReLU [15] as nonlinear-

ity at each layer of the network [21], which has been shown
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Figure 3. Discriminator. This network takes as input an RGB image concatenated with the condition vector y properly reshaped to be

stacked as an additional channel. The rest of the network is a reversed version of G (c.f. Figure 2). The last node of the network is a binary

classifier that discriminates between real and generated (fake) images.

Figure 4. CVPPP Dataset. Images used to train ARIGAN. We

used the segmentation mask to relax the learning process, due to

the significant variability of these setups.

to provide better convergence for classification.

3. Experimental results

In this section we show the experimental results of train-

ing the ARIGAN. We implemented the network on Theano

[1] and the training was done on a NVidia Tesla K8 GPU.

Training takes ∼ 10 minutes per epoch on our setup.

3.1. Dataset

We used the CVPPP LCC 2017 plant dataset to train our

model. These plant images are taken from different pub-

licly available datasets [2, 16], containing Arabidopsis (A1,

A2, and A4) and Tobacco (A3). Specifically, the training

annotated datasets are:

1. A1: 128 Arabidopsis Thaliana Col-0;

2. A2: 31 Arabidopsis Thaliana of 5 differents cultivars;

3. A3: 27 Tobacco plants;

4. A4: 624 Arabidopsis Thaliana Col-0.

For our purposes, we did not use A3 (Tobacco) dataset,

due to the restricted number of data (27), compared to the

Arabidopsis plants. Hence, we trained our network with

the A1+A2+A4 dataset (c.f. Figure 4), containing a total of

783 images. Even though this number of training images is

much bigger than in the previous CVPPP 2015 challenge2,

it is still low for training a deep neural network with many

parameters.3 To overcome this issue, we performed dataset

augmentation, by rotating the images by ten equidistant an-

gles of the range [0, 2π), we also applied horizontal and

vertical flipping to further increase variability, obtaining an

overall 30-fold increase in the number of training images.

Input images were pre-processed to be all in the same

size of 128 × 128 by cropping (to be made square) and

rescaling. In order to match the output values of the tanh,

we mapped the range of values from [0, 255] to [−1, 1].

3.2. Qualitative results

In Figure 5, we show generated plants at different train-

ing epochs. Specifically, we sampled a single random input

along with a random condition and we gave it to the gen-

erator network (c.f. Figure 2). It can be seen that a clear

Arabidopsis plant is obtained in about 30 epochs. In can be

observed that some images have a light green appearance

(typical of A1 and A2 dataset), others have dark green (A4),

and some others have a mixture of those. Lastly, we see that

at some epochs, the synthesised image contains a mixture of

light and dark green texture, blended together seamlessly.

However, generated images lack high frequencies, causing

absence of some details, e.g., leaf veins or petiole.

2The A4 dataset was not included.
3Typically GANs are trained with data in order of magnitude of thou-

sands or millions images [21].
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Figure 5. Generated plants. Fixed sample noise z is provided to the generator during training of ARIGAN. The number reported in the

bottom right corner of each image refers to the epoch number. (Best viewed in colour.)
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Figure 6. Ax Dataset. Samples from the Ax dataset generated

with ARIGAN. Bottom-right numbers refer to the leaf count. (Best

viewed in colour).

Encouraged by these results, we extracted a subset of

images to create a new dataset. We do this to quantitatively

evaluate this artificial data using a state-of-the-art algorithm

for leaf counting [9].

3.3. The Ax Dataset

Using our model, we artificially generated a new dataset

of images. Following the nomenclature policy used for the

CVPPP workshop, we decided to call it Ax. Specifically,

we collected 57 images from our model some samples of

which are shown in Figure 6. We collected the images at

different stages of learning (we trained at least 20 epochs),

providing random noise and conditions. Then we named

the files using the plantXXX rgb.png format, listing them in

a CSV file with the count of leaves. We did not provide

plant segmentation masks, as our algorithm does not gener-

ate background.

3.4. Quantitative results

We evaluated the Ax dataset to train the leaf counting al-

gorithm in [9]. For our experiments, we used the A4 dataset,

as it contains the most number of images (624). The evalu-

Training Error Testing Error

Trained on A4 only

DiC 0.013 (0.185) 0.147 (1.362)

|DiC| 0.026 (0.183) 0.942 (0.992)

MSE 0.031 1.865

R2 0.999 0.947

Trained on A4 and Ax

DiC 0.229 (0.370) 0.186 (1.253)

|DiC| 0.042 (0.368) 0.891 (0.899)

MSE 0.137 1.596

R2 0.996 0.955

Table 1. Quantitative results. We trained the leaf counting al-

gorithm in [9] using A4 dataset only (top set of lines) and A4+Ax

(bottom set of lines). Results obtained with 4-fold cross validation.

Results for DiC and |DiC| are reported as mean (std).

ation was done using 4-fold cross validation, where 468 im-

ages are randomly selected for training, and the remaining

156 for testing. We kept SVR parameters at their standard

values, except C = 3. (Please refer to [8] for further details

about the parameter C).

In Table 1 we show the results of these experiments, us-

ing the evaluation metrics employed in [17]. Specifically,

the table reports the results using A4 dataset only (top set

of lines), paired with the results using Ax from training

as well.4 Overall, considering that the leaf counting algo-

rithm in [9] has not been demonstrated to work when differ-

ent training sets are provided, we found that the additional

dataset Ax improves the testing errors and reduces overfit-

ting.

4. Conclusions

Image-based plant phenotyping has received a great in-

terest from the machine learning community in the last

years. In fact, different methodologies have been pro-

posed for leaf segmentation [22, 23, 24] and leaf counting

[9, 20]. Despite the recent release of several plant pheno-

typing datasets [2, 4, 16], the quantity of data is still the

main issue for machine learning algorithm [25], especially

for those using a vast number of parameters (e.g., deep net-

work approaches).

In this paper, in other to alleviate the lack of training

data in plant phenotyping, we use a generative model to

create synthetic Arabidopsis plants. Recently, Generative

Adversarial Networks [10] were proposed, which have been

proved to create realistic natural images. Encouraged from

their results, we wanted to train a GAN in order to gener-

4Ax images were added as part of the training set. Specifically, for each

split of the cross validation, 57 images were added to make a training set

of 525 plants images.
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ate plants. Using the CVPPP dataset (only A1, A2, and A4),

we trained an adversarial network inspired by DCGAN [21]

to generate synthetic Arabidopsis images. Our Arabidop-

sis Rosette Image Generator (through) Adversarial Network

(ARIGAN) is able to produce realistic 128×128 colour im-

ages of plant. Specifically, our network falls into the cate-

gory of Conditional GAN, where an additional input of the

network allows to set a condition over the number of leaves

of a plant.

From our experiments, we found that ARIGAN learns

how to generate realistic images of plant after a few of iter-

ations (c.f. Figure 5) . This qualitative results led us to cre-

ate a dataset of artificial Arabidopsis plants images. There-

fore, we gathered 57 images that our network generated to

make the Ax dataset, as displayed in Figure 6. We evaluated

our synthetic dataset using to train a state-of-the-art leaf

counting algorithm [9]. Our quantitative experiments show

that the extension of the training dataset with the images

in Ax improved the testing error and reduced overfitting.

We run a 4-fold cross validation experiment on A4 dataset.

Evaluation metrics of our experiments are reported in Ta-

ble 1. Our synthetic dataset Ax is available to download at

http://www.valeriogiuffrida.academy/ax.
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