
An easy-to-setup 3D phenotyping platform for KOMATSUNA dataset

Hideaki Uchiyama

Kyushu University

Shunsuke Sakurai

Kyushu University

Masashi Mishima

Kyushu University

Daisaku Arita

University of Nagasaki

Takashi Okayasu

Kyushu University

Atsushi Shimada

Kyushu University

Rin-ichiro Taniguchi

Kyushu University

Abstract

We present a 3D phenotyping platform that measures

both plant growth and environmental information in small

indoor environments for plant image datasets. Our objec-

tive is to construct a compact and complete platform by us-

ing commercial devices to allow any researcher to begin

plant phenotyping in their laboratory. In addition, we intro-

duce our annotation tool to manually but effectively create

leaf labels in plant images on a pixel-by-pixel basis. Finally,

we show our RGB-D and multiview datasets containing im-

ages in the early growth stages of the Komatsuna with leaf

annotation.

1. Introduction

Plant growth is affected by various factors such as plant

seeds, temperature, CO2, solar radiation, soil and fertilizers.

More precisely, a plant phenotype, which is an appearance

characteristic of a plant, is determined by the interaction be-

tween its genetic properties and environmental conditions.

Since the mechanism of plant growth generally varies de-

pending on plant species and is less clarified, it is important

to measure all the factors for each species and analyze the

relationship among them to improve the quality and quan-

tity of the plant. Therefore, technologies for sensing plant

phenotyping have been a biological research issue for a long

time [7, 6].

In computer vision problems in plant phenotyping

(CVPPP) workshops, which started in 20141, plant images

were provided with their leaf annotation for leaf segmen-

tation and counting challenges [15, 23]. From these im-

ages, the size and shape change of a leaf in the image

can be computed as 2D plant phenotypes [2, 14, 18]. To

measure higher dimensional phenotypes, the use of several

imaging devices has been investigated [13]. Especially, 3D

phenotyping by using 3D imaging devices or laser scan-

ners becomes common because it is not a destructive way

1https://www.plant-phenotyping.org/CVPPP2014

to capture phenotypes and measures leaf configurations in

3D space [11, 3, 21, 25, 20, 5]. However, a public dataset

for this issue has not been developed in literature and is

required for comparing different methods considering the

same conditions.

In this paper, we present a platform to create image

datasets for 3D plant phenotyping in indoor environments.

Our objective is to use commercial devices to measure

both plant growth and environmental information so that a

complete platform can be easily constructed. Since most

of the platforms are designed for use in outdoor environ-

ments [1, 8] and there are few discussions about simple phe-

notyping platforms [16], we propose a compact platform for

use in indoor environments and detail selected devices and

their installation into the platform. In addition, we intro-

duce our leaf annotation tool, which is used to manually but

effectively create leaf labels in plant images on a pixel-by-

pixel basis for machine learning tasks. Finally, we show

our RGB-D and multiview datasets containing images of a

Komatsuna, which is a Japanese leaf vegetable, with leaf

annotation for 3D leaf segmentation and counting [15, 23].

The details of our platform will be useful for nonbiological

researchers to start the study of plant phenotyping.

2. Platform

As illustrated in Figure 1, we constructed our platform

to capture top views of a plant and measure environmental

conditions around the plant. This section explains the de-

tails of selected devices and their arrangement in the plat-

form.

2.1. Plant and cultivation method

We first selected a plant species and its cultivation

method in small indoor environments. Since our primal

objective was to construct public image datasets with any

type of plants for 3D plant phenotyping, we selected a plant

species according to its growth properties. Komatsuna is a

Japanese mustard spinach and a leaf vegetable, as illustrated

in Figure 2. It can be cultivated in indoor environments un-
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Figure 1. Platform to create KOMATSUNA datasets in indoor en-

vironments. To cultivate plants, a compact and complete platform

for 3D plant phenotyping was developed using commercial de-

vices only.

Figure 2. Komatsuna. Komatsuna is a Japanese mustard spinach,

and is selected as a plant species for our plant image datasets be-

cause it easily grows in indoor environments.

der wide ranges of temperatures. In addition, it is known

to be resistant to injurious insects and grows very fast com-

pared with other leaf vegetables. Therefore, we selected

Komatsuna to create our plant image datasets.

Soil culture is a standard cultivation method and is nor-

mally used in outdoor environments. However, it is not suit-

able for indoor environments because it pollutes plant sur-

roundings, and soil management and watering are often nec-

essary. Hydroponic culture is an alternative method and has

the following advantages: it is clean; watering and fertiliza-

tion are automated so that the plant growth is accelerated;

less agricultural chemicals are necessary compared with soil

culture; and replant failures do not normally occur. This im-

plies that plants can constantly be cultivated in a quick cycle

without daily upkeeps. Another advantage is that the plant

root systems can also be measured because roots that grow

in water can be captured through cameras [10, 4]. Since

it is difficult to measure the root systems with soil culture,

hydroponic culture is sometimes selected in plant phenotyp-

ing. Note that hydroponic culture is a standard cultivation

Figure 3. A commercial hydroponic culture toolkit. In the toolkit,

a plant grows with the help of water and fertilizer only. Cultivation

can be automated because watering and fertilizing are automati-

cally controlled.

method and has practically been installed in indoor plant

factories [19].

As illustrated in Figure 3, we selected a commercial hy-

droponic culture toolkit for a small kitchen garden. To cul-

tivate a plant, a seed is first sowed into a cube urethane

foam, and then placed into one of the holes in the toolkit.

The plant then naturally grows as it is planted into the soil.

Since the toolkit surface is made of styrene foam and its

color is white, leaf segmentation would be easier than that

when using soil culture. One of the important factors for

cultivating plants in indoor environments is to control the

lighting condition because plants do not grow in conditions

lacking lighting. In the next section, we explain our lighting

equipment.

2.2. Lights

To analyze the relationship between plant growth and

lighting condition, it is necessary to control lighting du-

rations and intensities while cultivating plants; the easiest

way is to use controllable switches, such as Belkin WeMo2,

at power sources for lights. Since the switches are pro-

grammable, power supply is automatically turned on or off

at predetermined durations, hence allowing the lighting du-

ration to be controlled.

The lights are of three types: incandescent, fluorescent,

and LED lights. Normally, incandescent and fluorescent

lights are not suitable because they output heat at high light

intensities, and their light spectrum is invariable. Compared

with these lights, LED lights are more controllable because

the composition of their spectrums is possible. In recent

years, phenotypes have been investigated with respect to

light spectrums owing to the advent of multi-functional

LED lights [24]. In our platform, we selected a Philips hue3,

2http://www.wemo.com
3http://www2.meethue.com
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Figure 4. Sony MESH (two color boxes at the center of the image).

Ambient temperature, humidity and brightness can be measured.

The unit of brightness is in lux. The data is transferred to a smart-

phone using Bluetooth.

with lighting durations and colors programmable by using

the provided software.

As illustrated in Figure 1, we constructed a bony frame-

work and installed duct rails and sockets into the framework

for lights and cameras. For one hydroponic culture toolkit,

seven lights were installed at both sides with heights of ap-

proximately 30 cm from the toolkit. Since the intensities

of LED lights may not be enough to cultivate plants even

though the lights are extremely bright for human eyes, it is

important to determine the height and arrangement of lights.

To check the light intensity at many locations on the toolkit,

we introduced an Internet of Things(IoT) device, described

in the next section.

2.3. Sensors for environmental information

To measure ambient temperature, humidity, and light in-

tensity, we used a Sony MESH4, as illustrated in Figure 4.

The MESH was originally designed for developing personal

IoT systems as gadgets. It is also useful for our phenotyp-

ing platform because it is compact, easy-to-use, and cheap

for measuring the aforementioned data. By using the pro-

vided software, the operations are programmable such that

the data is constantly measured and transferred to a smart-

phone through Bluetooth.

By using MESH, the light intensities can be measured

in lux. However, lux may not be appropriate in a precise

sense because it is based on the property of human eyes. To

measure the pure energy of lights, photosynthetic photon

flux density (PPFD) is more appropriate in biology. In our

platform, lux is used as a simplified index in environmental

information.

4http://meshprj.com

Figure 5. RGB-D camera. Intel RealSense SR300 is selected be-

cause it is optimized for capturing an object at a short distance

such as 20-150 cm.

2.4. Cameras

Various sensing technologies are available to acquire 3D

object shapes [9]. In our platform, we developed two imag-

ing systems by using an RGB-D camera and multiple RGB

cameras.

2.4.1 RGB-D camera

An RGB-D camera is composed of an RGB camera and a

structured light or time-of-flight using infrared-lights-based

depth camera. With the advent of Microsoft Kinect, various

RGB-D cameras have become widespread in many applica-

tions and are used in plant phenotyping [3, 20]. The main

differences between each of such cameras are the resolu-

tions of the depth image and depth range. Since the size

of plant leaves in early growth stages is small, the depth

images must usually be captured at a closer distance from

the plant to enlarge the size in captured images. However,

some RGB-D cameras are not designed for such short depth

ranges.

In our platform, we selected the Intel RealSense SR300

because its depth range is approximately 20-150 cm. Com-

pared with other RGB-D cameras, SR300 is specifically op-

timized for the short range capture because it is originally

used for face modeling on laptops. As illustrated in Fig-

ure 5, SR300 was attached at the framework to capture top

views of a plant. Note that some plant species cannot be

captured using infrared lights because of their surface re-

flectance properties.

2.4.2 Multiple RGB cameras

The drawback of existing RGB-D cameras is the low reso-

lution of depth images, for example, 640 × 480 pixels, at

most. Since the size of plant leaves in early growth stages

is small, the shape may not clearly be captured. Therefore,
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Figure 6. Multiple RGB cameras. Three high-resolution cameras

are installed to acquire the dense 3D structure of leaves from the

top.

we also installed three high-resolution RGB cameras in our

platform as illustrated in Figure 6.

We installed FLIR cameras5 with resolutions of 2048 ×

1536 pixels and Kowa lenses6 with a view angle of 89× 74

degrees for the cameras. The wide angle lens was selected

to capture multiple plants at a close distance. Since leaves

do not normally move in a second, we set up a slow shutter

speed without using gain to adjust the intensities of pixels

with less noise.

3. Annotation tool

The annotation of ground-truth regions of leaves in

plant images on a pixel-by-pixel basis is usually a time-

consuming task, and the development of annotation tools is

an important research issue for machine learning tasks [17].

As illustrated in Figure 7, we developed our manual anno-

tation tool on Python by using the following functions to

manually but efficiently create ground truth labels for leaves

in plant images.

Color segmentation An initial mask for leaves was cre-

ated from an input image by using both thresholding-

based binarization for each channel and the AND op-

eration for all the binarization results. A track-bar was

set to control the threshold value for each color chan-

nel. Since a generated mask is always superimposed

onto an input image with alpha blending, it is easy to

adjust the value by checking the generated mask.

Manual segmentation Since the initial mask is simply

based on color segmentation, several leaves are gen-

erally extracted as one region in the mask because they

are physically connected or overlapped. To separate

them into individual leaves, we implemented a manual

segmentation tool such that users can simply write a

5BFS-U3-32S4C-C
6LM5JC1M

splitting curved line by freehand and divide one region

into two with new leaf labels.

Erasing The initial mask may include false positive re-

gions, which do not emanate from leaves, and it is nec-

essary to prepare a function to erase them. We imple-

mented an eraser tool with an adjustable size option as

a brush size to allow the easy and quick removal of any

size of false positive region. By using this function, the

boundaries of leaves can be refined.

Label assignment One leaf label of a unique color must be

assigned to one of the closed regions in the mask. The

label color must be defined beforehand, and is loaded

into the tool. By selecting a label and clicking a pixel

in a region, the region is filled with a colored label. In

addition, a region label can be modified by clicking a

pixel in the region with another label. Note that one

label can be assigned to multiple regions in the image

because one leaf can be divided by another leaf.

In our annotation work, the combination of color and

manual segmentations was useful enough to correctly sep-

arate large regions into each leaf region and decreased the

processing time. In addition to the above-mentioned func-

tions, we implemented functions of image pan and zoom

and undoing and redoing of operations; these were obvi-

ously useful. Since our datasets include both spatial and

temporal plant images in multiview datasets, it is necessary

to assign the same label to the same leaf in different images.

Therefore, the label image of a previous image can also be

superimposed onto the image to easily check it.

4. Dataset

We created two types of datasets using an RGB-D cam-

era and multiple RGB cameras publicly available on the

web7. The environmental conditions for both datasets are

common and constant for all days such that the lighting,

temperature, and humidity were approximately 2400 lux,

28 ◦C and 30%, respectively. To accelerate the growth of

Komatsuna, the lighting was continued for 24 h. Under

these conditions, images of five plants were captured ev-

ery 4 h for 10 days in each dataset so that the shape and size

changes of leaves could be measured in 3D space for both

short and long terms.

4.1. RGBD dataset

Since an RGB-D camera was attached to capture the

whole part of the toolkit, each plant region was manually

segmented as a plant image and labeled as a label image, as

illustrated in Figure 8. To use the dataset for temporal leaf

7http://limu.ait.kyushu-u.ac.jp/˜agri/

komatsuna/
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Figure 7. Leaf annotation tool. An initial mask for leaves is created

using thresholds for RGB channels. Then, the mask is divided

into individual leaves by using manual segmentation and refined

by using eraser tools. The label is finally assigned by selecting a

color and clicking a pixel at a region.

tracking, the same leaf label was assigned to the same leaf

in images captured at different times. The original resolu-

tion of the camera was 640 × 480 and the resolution of the

plant images was, for example, 166× 190 pixels. Since the

viewpoints for RGB and depth images were aligned by the

library of the camera, the labels were valid for both images.

The alignment between the RGB and depth images is an

issue when an RGB-D camera is used because these view-

points are physically different. If the viewpoint of an RGB

image is aligned into that of a depth image, the aligned RGB

image may contain missing parts where depth values are

not measured in the depth image. These types of RGB im-

ages with holes may not be suitable for segmentation tasks.

Therefore, a depth image was aligned into an RGB image in

our platform. Note that the accuracy of a depth value in the

aligned depth image may be degraded because the align-

ment needs some interpolations. For this reason, we pro-

vided the original depth image and a transformation matrix

from the viewpoint of depth images to that of RGB images

so that the point cloud can also be transformed as necessary

without any interpolations.

One advantage of using the RGB-D camera is that the

object shape can be measured even when the lights are

turned off because of the emitting of infrared lights. This

implies that the movement of a leaf for 24 h can be mea-

sured so that the relationship between leaf shape and light

source positions can be clarified. Note that each of the cam-

eras and distance between the cameras can be calibrated us-

ing a standard calibration technique for 3D reconstruction

with images for calibration.

4.2. Multiview dataset

As illustrated in Figure 9, we captured five plants from

three viewpoints and manually segmented into individual

plants as plant images. To use the dataset for spatial-

temporal leaf tracking, the same leaf label was assigned to

the same leaf in images captured with different cameras at

different times. The ground truth of 3D shape was not mea-

sured because it was not easy to capture more accurate 3D

shapes than when using high-resolution multiple-view im-

ages. One solution may be to use a RGB-D sensor; how-

ever its resolution is small, as discussed earlier. Therefore,

the preparation of the ground truth for 3D shapes is a future

research issue.

This dataset will be useful to evaluate spatial-temporal

instance segmentation for multiple views. In relevant lit-

erature, instance segmentation was normally performed us-

ing a single view image [12, 22]. From the technical point

of view, instance segmentation using a single view may be

more difficult than that that using multiple views. However,

from the application point of view, the use of multiple-view

images is reasonable and leads to the acquisition of higher

dimensional phenotypes. Therefore, instance segmentation

using multiple views should be investigated as a next re-

search issue. It may be solved by combining instance seg-

mentation and stereo matching.

5. Conclusion

We proposed our platform to measure both plant growth

and environmental conditions in small laboratory environ-

ments for 3D plant phenotyping. We selected Komatsuna as

the target plant species because of its easy-to-grow proper-

ties. In addition, we constructed a platform by using hydro-

ponic culture, Philips hue for lights, Sony MESH for sens-

ing temperature, humidity and lighting intensities, and 3D

imaging by using an RGB-D camera or multiple cameras.

This platform is easy to setup and can be constructed by

nonbiological researchers. Furthermore, we introduced our

annotation tool with which users can quickly create labeled

images for plant images manually. Since phenotypes differ

according to plants, it is necessary to prepare this type of

dataset for each plant. The relationship between plants can

then be further analyzed in phenotyping.

As a future direction for the platform, we plan to con-

trol the environmental conditions by creating an enclosed

space. Especially, the relationship between plant growth

and temperature/humidity should be analyzed. Therefore,
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air-conditioning equipment will be installed in our platform.

In addition, it is necessary to discuss the format of the

dataset including images and environmental data for plant

phenotyping. Since there is a standardized protocol8 to con-

trol agricultural systems, it is important to discuss such pro-

tocols for the datasets.
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(a) Original image

(b) Plant image (c) Depth image (d) Label image

(e) Plant image (f) Depth image (g) Label image

Figure 8. RGB-D dataset. The original image at the first row was acquired from the camera and the plant images were created by manually

segmenting the image. The images at the second row were captured one day before the images at the third row were captured. The

viewpoint of the depth images is aligned to that of RGB images. From the plant images, the labeled images at the third column were

manually created and are valid for depth images at the second column. Note that the intensities of depth images in this figure are modified

for improving visualization .
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(a) Left plant image (b) Center plant image (c) Right plant image

(d) Left label image (e) Center label image (f) Right label image

(g) Left plant image (h) Center plant image (i) Right plant image

(j) Left label image (k) Center label image (l) Right label image

Figure 9. Multiview dataset. The plant images in the first row were captured one day before the plant images in the third row were

captured. The Label images in the second/fourth rows correspond to plant images in the first/third rows.
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