
Improving a real-time object detector with compact temporal information

Martin Ahrnbom

Lund University

martin.ahrnbom@math.lth.se

Morten Bornø Jensen

Aalborg University

mboj@create.aau.dk

Kalle Åström

Lund Univeristy

kalle@maths.lth.se

Mikael Nilsson

Lund University

micken@maths.lth.se

Håkan Ardö

Lund University

ardo@maths.lth.se

Thomas Moeslund

Aalborg University

tbm@create.aau.dk

Abstract

Neural networks designed for real-time object detection

have recently improved significantly, but in practice, look-

ing at only a single RGB image at the time may not be ideal.

For example, when detecting objects in videos, a foreground

detection algorithm can be used to obtain compact temporal

data, which can be fed into a neural network alongside RGB

images. We propose an approach for doing this, based on

an existing object detector, that re-uses pretrained weights

for the processing of RGB images. The neural network was

tested on the VIRAT dataset with annotations for object de-

tection, a problem this approach is well suited for. The ac-

curacy was found to improve significantly (up to 66%), with

a roughly 40% increase in computational time.

1. Introduction

Neural networks designed for real-time object detection

using a single image as their input have recently improved

significantly. Detectors like SSD [14], SqueezeDet [26]

and YOLOv2 [18] outperform previous real-time detec-

tors while approaching the accuracy of slower methods like

those based on Faster R-CNN [19]. It might thus be tempt-

ing to use real-time detectors directly, but in practical prob-

lems there is often more information available than these

networks take advantage of. For example, when detecting

objects in videos, looking at only a single frame at the time

is bound to make detection more difficult; humans have ac-

cess to all we have seen before a given moment to help us

detect various objects, and this information could be partic-

ularly helpful for occluded or small objects, hard to distin-

guish in a single frame. Commonly used datasets for object

detection like COCO [13] and PASCAL VOC [5] only

contain stand-alone images which algorithms are supposed

to find objects in. This has led to strong development of

algorithms and networks designed for this particular task.

The use of temporal information in neural networks for ob-

ject detection is not as well explored.

Figure 1. The BILSSD network takes an RGB image and a cor-

responding foreground probability map as input to produce object

detections.

Taking advantage of temporal information in object de-

tectors is not trivial. End-to-end learning is currently of-

ten the preferred way of solving computer vision and deep

learning problems, but in the case of videos, that approach is

not ideal. Feeding multiple frames directly into a Convolu-

tional Neural Network (CNN) is problematic, as the amount

of data to be processed by the network grows large if more

than a few frames are to be considered. Recurrent Neu-

ral Networks (RNN’s) can learn to process videos, but this

only solves part of the problem; in order to properly train

the RNN, it should be unrolled to allow backpropagation

“through time” which also uses a large amount of memory

during training if a large number of frames are to be consid-

190



ered. If there was a compact way to represent temporal in-

formation gathered from a large number of frames, a faster

and simpler approach would be to feed that data alongside

standard RGB pixels into a single-frame object detector.

In the case where videos are filmed by a static camera, a

foreground detector like the one by Ardö and Svärm [1] can

be used to compute a per-pixel foreground probability map.

Going from RGB to Red-Green-Blue-Foreground (RGBF)

adds only a single input layer, increasing the amount of data

to feed into the network only by 1/3 while providing useful

temporal information. Compared to using an RNN, some

generality is lost, as any temporal information other than

what is considered foreground and background cannot be

learned, and the videos have to be filmed by a static camera.

What is gained is the simplicity and speed of being able to

re-use existing and optimised single-frame object detectors

as a starting point. Compared to using a single-frame ob-

ject detector directly, temporal information is gained with-

out sacrificing real-time performance.

Using foreground detection or background subtraction

for object detection is a well-established concept, and used

to be a popular approach for object detection. With the re-

cent improvements to object detection CNN’s, methods re-

lying on foreground detection are no longer considered state

of the art. However, this does not necessarily imply that

these kinds of data cannot improve the performance of ob-

ject detectors.

In other problems, other kinds of data might be available

that can be expressed as an additional input layer. For exam-

ple depth information, which has become more commonly

available thanks to products like the Kinect, and thermal

cameras that are sometimes used as a complement to RGB.

The network design for including additional input layers

does not need to make strict assumptions on the type of data

it will process, as long as it somewhat resembles an image

and is spatially correlated to the RGB layers.

For a network using RGB and additional modalities to be

practically viable, unless a very large and varied annotated

multimodal dataset is available for pretraining, it is neces-

sary to be able to reuse RGB pretraining on the part of the

network that is to process RGB data. It is also beneficial if

the network can easily be constructed from any RGB-only

object detector, such that if a better single-frame object de-

tector is designed in the future, a corresponding improved

mutlimodal version is easy to construct.

For practical object detection problems, before using a

standard single-frame RGB object detector, one should ask

if any additional data is available that could significantly

help the detector perform its task, like temporal informa-

tion. If so, a network design is needed that allows the use of

this additional information, preferably without sacrificing

the recent improvements of fast single-frame RGB object

detectors. This paper proposes such a network.

The main contributions of this paper are:

• Bonus Input Layer Single-Shot multibox Detector

(BILSSD), a novel neural network design based on

SSD which can utilise both RGB and and additional

data, like a foreground probability map, for object de-

tection (Section 3)

• A set of annotations designed for object detection for

some frames in the VIRAT [16] video dataset (Sec-

tion 6.1)

2. Related work

Multimodal object detection has been attempted before.

For example, Viola et al. [24] and Jones and Snow [10]

propose object detectors for videos using both spatial and

temporal information that are not based on deep learn-

ing, distancing themselves from today’s state-of-the-art ap-

proaches. Similarly, Gould et al. [6] used RGB along

with depth images for detecting household objects. Like

BILSSD, features were calculated from both modalities

separately, allowing some pretraining to be done on larger

RGB-only datasets, but it was also not based on deep learn-

ing. Further from BILSSD’s approach, Javed et al. [9] and

Bang et al. [2] propose methods not based on deep learn-

ing using only temporal data (recurrent motion images and

adaptive background subtraction images, respectively) for

object detection.

One way of using temporal information for object de-

tection is via recurrent neural networks. Ning et al. [15]

suggests a method for adding recurrent layers to an existing

single-frame object detector to do simultaneous object de-

tection and tracking. The high level features and detections

from the single-frame object detector are fed into LSTMs

that are trained to make spatially and temporally consistent

detections. Because the recurrent layers operate on high

level features, there is no ability to learn low-level motion

features like separating the foreground from background.

Such low-level features will not be brought up to high-level

layers, as the single-frame object detector is first trained on

its own, before the training of the recurrent layers.

Using temporal information for generating object pro-

posals has been done in a few ways. Tripathi et al. [23],

Sharir et al. [21] and Oneata et al. [17] propose differ-

ent methods for creating object proposals in videos, not

only spatially but also temporally. Those object proposals

can then be evaluated by a CNN to do full object detec-

tion in videos. These approaches differ significantly from

BILSSD, as it does not rely on separate object propos-

als, which by necessity is computationally redundant as the

tasks of finding and classifying objects are intimately con-

nected.

Many neural networks use temporal information in

videos for various other computer vision tasks. Yeung et

191



al. [27] propose a method for finding the times for certain

actions in short videos by feeding multiple frames into an

RNN. Karpathy et al. [11] explore multiple ways of utilis-

ing temporal information for classifying entire videos, by

comparing early, late and “slow” fusing strategies. The

“slow” strategy fuses features in multiple steps, including

some fusion in the middle of the network, somewhat sim-

ilarly to BILSSD. Donahue et al. [4] propose an RNN for

image retrieval and caption generation in videos. Closer to

BILSSD’s approach, Simonyan et al. [22] propose a neural

network that process both RGB frames and optical flow dif-

ferences between frames separately and classify videos by

a late fusion of features from both modalities.

There have been deep neural networks that tackle

the problem of foreground segmentation in videos, like

Caelles et al. [3]. It differs from traditional foreground seg-

mentation algorithms in that it only segments a single fore-

ground object, which has to be annotated manually in one

frame. Another recent attempt at foreground segmentation

is a neural network proposed by Jain et al. [8], which does

not utilise temporal information.

Gupta et al. [7] train neural networks with depth data

alone and in addition to RGB. They also take advantage of

existing RGB networks by splitting the depth channel into

three channels in an attempt to mimic the structure of RGB,

and then retraining an existing RGB R-CNN detector on

this new input data. This allows the re-use of an existing

network design and pretrained weights, but they were not

able to improve the results by fusing the modalities inside

the network; instead they propose running two separate de-

tectors and fusing their output.

In conclusion, many research approaches have tried to

use temporal or otherwise multimodal input data for var-

ious vision tasks, including object detection, but none of

them have made an object detector based on modern real-

time neural networks, that combine RGB and temporal data

in a “deep fusion” way, while being able to largely re-use

the network design, and pretraining for the RGB processing

layers.

3. BILSSD

This section describes a deep neural network design

called Bonus Input Layer Single-Shot multibox Detector

(BILSSD) based on Single-Shot multibox Detector [14].

The main difference is that BILSSD takes four input lay-

ers instead of three (RGBF instead of RGB, in our experi-

ments). In order to be able to re-use initial layers pretrained

for RGB images, the fourth input layer is processed sepa-

rately by similar convolutional and pooling layers. The only

difference in these layers is that the number of output fea-

tures per layer is reduced by half, a design choice made on

the assumption that the additional data can be represented

by fewer features compared to RGB images. All features

are then merged by three convolutional layers before being

fed into the detection part of the SSD network. See Figure 1

for a basic overview, and the top part of Figure 2 for a more

detailed description of the network. The design can be de-

scribed as a “deep fusion”, which differs from both “early

fusion” and “late fusion” as the network processes the data

both before and after the fusing of modalities.

Since the primary purpose of this network is to show

the usefulness of providing additional input data, no other

redesigns of the network, compared to standard SSD, are

made.

BILSSD’s concept of “deep fusion” is not inherently

tied to SSD’s design. Any similar deep neural network de-

signed for object detection, for example YOLOv2 [18] and

SqueezeDet [26], should be possible to modify in a similar

way. The detection part of the SSD network is in BILSSD’s

implementation completely unchanged, and the processing

of additional data is very similar to the processing of RGB,

so making similar changes to any similar detector should be

straightforward.

BILSSD’s design is not inherently bound to some spe-

cific type of additional data; as long as the data can be ex-

pressed as a single layered image that is spatially consistent

with the RGB data, it can be used with BILSSD, although

minor changes like the number of output features from the

layers processing the additional data may improve results,

depending on the type of data.

4. Pretraining foreground feature extraction

While the first few layers that process RGB images based

on VGG-16 can utilise existing pretrained weights to ini-

tialise the training process, no corresponding weights exist

for the layers that process the foreground probability maps.

It was initially tested to train the BILSSD network with

pretraining for the RGB layers, and randomly initialised

weights for the others layers. The network was then found

to prefer only using RGB features. To work around this, a

simple neural network was designed, which shares the ini-

tial layers with BILSSD’s initial layers that extract features

from foreground probability maps. The task of this simple

network is to, given a foreground probability map, produce

a 4 × 4 grid of values between 0 and 1, where high values

indicate high confidence that an annotated object (of any

class) exist in the corresponding 16th of the image, and low

values indicate the opposite. An example of what output

from the simple network can look like can be seen in Fig-

ure 3.

Converting existing ground truth to this format is

straight-forward, by marking the cell in the 4× 4 grid con-

taining the center coordinates of each annotation’s bound-

ing box as a 1, while all others are set to 0. The simple

network is designed to learn to find objects rather than to

classify them. The idea behind this design is that the fore-

192



in
p

u
t 

5
1

2
x
5

1
2

x
3

in
p

u
t 

5
1

2
x
5

1
2

x
1

c
o

n
v
 5

1
2

x
5

1
2

x
6

4
c
o

n
v
 5

1
2

x
5

1
2

x
3

2

c
o

n
v
 5

1
2

x
5

1
2

x
6

4
c
o

n
v
 5

1
2

x
5

1
2

x
3

2

p
o

o
l 
2

5
6

x
2

5
6

x
6

4
p

o
o

l 
2

5
6

x
2

5
6

x
3

2

c
o

n
v
 2

5
6

x
2

5
6

x
1

2
8

c
o

n
v
 2

5
6

x
2

5
6

x
6

4

c
o

n
v
 2

5
6

x
2

5
6

x
1

2
8

c
o

n
v
 2

5
6

x
2

5
6

x
6

4

p
o

o
l 
1

2
8

x
1

2
8

x
1

2
8

p
o

o
l 
1

2
8

x
1

2
8

x
6

4

c
o

n
v
 1

2
8

x
1

2
8

x
2

5
6

c
o

n
v
 1

2
8

x
1

2
8

x
1

2
8

c
o

n
v
 1

2
8

x
1

2
8

x
2

5
6

c
o

n
v
 1

2
8

x
1

2
8

x
1

2
8

c
o

n
v
 1

2
8

x
1

2
8

x
2

5
6

c
o

n
v
 1

2
8

x
1

2
8

x
1

2
8

p
o

o
l 
6

4
x
6

4
x
2

5
6

p
o

o
l 
6

4
x
6

4
x
1

2
8

c
o

n
v
 6

4
x
6

4
x
5

1
2

c
o

n
v
 6

4
x
6

4
x
2

5
6

c
o

n
v
 6

4
x
6

4
x
5

1
2

c
o

n
v
 6

4
x
6

4
x
2

5
6

m
e

rg
e

 6
4

x
6

4
x
7

6
8

c
o

n
v
 6

4
x
6

4
x
1

0
2

4

c
o

n
v
 6

4
x
6

4
x
1

0
2

4

c
o

n
v
 6

4
x
6

4
x
5

1
2

c
o

n
v
 6

4
x
6

4
x
5

1
2

p
o

o
l 
3

2
x
3

2
x
5

1
2

c
o

n
v
 3

2
x
3

2
x
5

1
2

c
o

n
v
 3

2
x
3

2
x
5

1
2

c
o

n
v
 3

2
x
3

2
x
5

1
2

p
o

o
l 
3

2
x
3

2
x
5

1
2

a
tr

o
u

s
 3

2
x
3

2
x
1

0
2

4

c
o

n
v
 3

2
x
3

2
x
1

0
2

4

c
o

n
v
 3

2
x
3

2
x
1

0
2

4

c
o

n
v
 3

2
x
3

2
x
2

5
6

c
o

n
v
 1

6
x
1

6
x
5

1
2

p
a

d
 1

6
x
1

6
x
1

2
8

c
o

n
v
 1

8
x
1

8
x
1

2
8

c
o

n
v
 8

x
8

x
2

5
6

c
o

n
v
 8

x
8

x
1

2
8

c
o

n
v
 4

x
4

x
2

5
6

c
o

n
v
 4

x
4

x
1

2
8

c
o

n
v
 2

x
2

x
2

5
6

c
o

n
v
 2

x
2

x
1

2
8

p
o

o
l 
1

x
1

x
2

5
6

in
p

u
t 

5
1

2
x
5

1
2

x
1

c
o

n
v
 5

1
2

x
5

1
2

x
3

2

c
o

n
v
 5

1
2

x
5

1
2

x
3

2

p
o

o
l 
2

5
6

x
2

5
6

x
3

2

c
o

n
v
 2

5
6

x
2

5
6

x
6

4

c
o

n
v
 2

5
6

x
2

5
6

x
6

4

p
o

o
l 
1

2
8

x
1

2
8

x
6

4

c
o

n
v
 1

2
8

x
1

2
8

x
1

2
8

c
o

n
v
 1

2
8

x
1

2
8

x
1

2
8

c
o

n
v
 1

2
8

x
1

2
8

x
1

2
8

p
o

o
l 
6

4
x
6

4
x
1

2
8

c
o

n
v
 6

4
x
6

4
x
2

5
6

c
o

n
v
 6

4
x
6

4
x
2

5
6

c
o

n
v
 6

4
x
6

4
x
5

1
2

p
o

o
l 
2

1
x
2

1
x
5

1
2

c
o

n
v
 2

1
x
2

1
x
1

0
2

4

p
o

o
l 
4

x
4

x
1

0
2

4

c
o

n
v
 4

x
4

x
2

0
4

8

c
o

n
v
 4

x
4

x
2

0
4

8

d
ro

p
o

u
t 

4
x
4

x
2

0
4

8

c
o

n
v
 4

x
4

x
1

F processing

RGB processing

Merge layers Detection layers

Simple detection layers

BILSSD512

Simple network (512x512)

Figure 2. In this schematic, data flows from left to right. For each layer in the network, drawn as a box, the output dimensions are drawn

on the left. Above horizontal black line is the network design of BILSSD512. RGB images are processed by the RGB processing layers

(orange), and F are in parallel processed by the F processing layers (purple). Features from both are merged and processed by the merge

layers (magenta). These are followed by the detection layers (black), which are identical to those in standard SSD. The boxes used as

input into the SSD detectors (not shown in this visualisation) are filled brown. If one were to remove the F processing and merge parts,

the result would be the standard SSD network. Note that the input and output of the merging layers are identical, meaning that no change

to the detection layers was necessary. Below the horizontal black line is the “simple” network, which shares its initial layers with the F

processing layers of BILSSD. The simple detection layers (green) do simplified object localisation and bring the resolution down to 4× 4,

which is the output of the simple network.

ground probability maps may be better suited for localisa-

tion rather than classification.

After training this simple network, the weights for the

layers that overlap with the processing of the additional in-

put data in BILSSD are used as pretrained weights. This

approach should help BILSSD utilise the additional input

data. For a detailed description of the simple network for

processing 512 × 512 images, see the bottom part of Fig-

ure 2. When processing 300 × 300 images, the only dif-

ference to when processing 512 × 512 images is the last

pooling layer which pools a 3× 3 region rather than 5× 5,

to bring the resolution down to the same 4× 4.

5. BGGRAD foreground detection

The foreground detection algorithm used in this paper

is BGGRAD, as described in Ardö et al. [1]. This algo-

rithm generates a single-layer probability map where dark

pixels indicate a high probability of background, white pix-

els indicate a high probability of foreground and grey areas

are regions where the algorithm is not certain. Because the

algorithm is based on matching gradients directions in dif-

ferent frames, areas with little or no gradients, like flat sur-

faces (generally in the interior of objects) will appear grey.

This means that, in general, foreground objects appear grey

with white outlines while background objects appear grey

with black outlines. A few examples can be seen in Fig-

ure 4. This allows the shapes of objects to remain visible,

and could help the network in separating the different ob-

jects when looking at only the foreground probability maps.

The algorithm’s main limitation, like most foreground

detection methods, is that it relies on the camera being sta-

tionary. When the camera shakes, background objects will

appear as foreground. It is also somewhat sensitive to heavy

compression artifacts, as edges between blocks of pixels

compressed separately may appear as foreground.

6. Experiments on VIRAT

A Keras implementation1 of BILSSD was trained on the

VIRAT dataset using annotations designed for object de-

tection (see Section 6.1). The output from the BGGRAD

1The implementation is based on a port of SSD to Keras available here:

https://github.com/rykov8/ssd_keras

193

https://github.com/rykov8/ssd_keras


Figure 3. An example of output from the simple network. Blue

regions (dark regions, if viewed in monochrome) means high con-

fidence for annotated objects appearing somewhere in the region,

while red (brighter, if viewed in monochrome) means a low con-

fidence. These colours are drawn over the 300 × 300 foreground

probability map that the simple network receives as input. The

image is rescaled to this size before being processed by the fore-

ground detection algorithm. In this example, the simple network is

able to correctly detect two cars and a pedestrian, but also believes

the moving tree to be an annotated object.

Figure 4. Two examples of the BGGRAD algorithm after running

on videos from the VIRAT dataset. At the bottom are the RGB

inputs, and above them are the corresponding foreground proba-

bility maps. On the right, is an example of what the output looks

like when the algorithm runs on a shaky video, where all edges

appears as foreground.

foreground detection algorithm [1] was used as the fourth

input layer. For this task, BILSSD was trained and evalu-

ated using RGBF, only RGB and only F. This allows some

analysis of how much the different modalities help in object

detections. When only using one modality, this was imple-

mented by feeding only zeroes as input to the other modal-

ity’s processing layers. In the case where only RGB is used,

BILSSD should behave nearly identical to the standard SSD

network in terms of accuracy, as the only difference is the

additional “merging” layers that are assumed to affect the

end result at most marginally, as they should quickly learn

to only include RGB features.

In these experiments, both the 300× 300 and 512× 512

versions of SSD were used as the base for BILSSD, and the

two versions are labelled “BILSSD300” and “BILSSD512”.

Images were scaled down to 300 × 300 and 512 × 512 re-

spectively before going through the background detection

algorithm. To generate the foreground probability maps, all

frames in the videos were fed into the foreground detection

algorithm. The frames where annotations exist were saved,

and used in training.

6.1. VIRAT annotations for object detection

The VIRAT dataset [16] is designed for event recog-

nition, and thus its official annotations only mark cer-

tain pedestrians and vehicles that are part of the annotated

events. The dataset is however a large collection of surveil-

lance videos filmed with, for the most part, stable cameras,

making it a good benchmark for object detections that work

in such a context. We have made third-party annotations for

the task of object detection, where most visible objects of

the following two classes are annotated by bounding boxes:

• “vulnerable road users” (“VRU’s”, such as pedestri-

ans, bicyclists)

• “vehicles” (four-wheeled vehicles like cars, buses,

trucks)

A total of 1240 frames have been annotated, from 62

different videos in the VIRAT dataset. Half of those

videos make up the training set, while the other half is

used for evaluation. In total, there are 2733 VRU’s and

721 vehicles annotated, with 1368 VRU’s and 339 vehi-

cles in the training set, and 1365 VRU’s and 382 vehi-

cles in the test set. The annotations are made to resem-

ble data used in traffic surveillance analysis, for example

only vehicles that are not parked are annotated. This, along

with a large number of small pedestrians that likely ap-

pear more clearly in foreground probability maps, makes

utilising temporal information a promising approach for

this challenge. On the other hand, there are frames in the

dataset where camera shake cause the foreground detec-

tion algorithm to produce bad results. These annotations

are available here: https://github.com/ahrnbom/

ViratAnnotationObjectDetection.

6.2. Training

First, the simple network was trained on foreground

probability maps using randomly initialised weights, for 30

epochs. This procedure was repeated until a good initiali-

sation allowed convergence. The network was tested with

these weights on some samples from the dataset and its

output was inspected visually to make sure the simple net-

work had learnt to detect objects. This was done for both

300× 300 and 512× 512 foreground probability maps.

For all three variants (RGBF, RGB and F) the

BILSSD300 and BILSSD512 networks were trained for 100

194

https://github.com/ahrnbom/ViratAnnotationObjectDetection
https://github.com/ahrnbom/ViratAnnotationObjectDetection


epochs using an Adam optimiser [12] with a base learning

rate of 3×10−4. The batch size was 16 for BILSSD300 and

8 for BILSSD512. The BGGRAD foreground detection al-

gorithm was set to look at the previous 100 frames for com-

puting the foreground probabilities, and it processes blocks

of 8× 8 pixels at the time.

For the RGB processing layers, pretrained weights from

ImageNet [20] were used, while the F processing layers

used weights from the simple network as described in Sec-

tion 4. The merging and detection layers had random weight

initialisation.

During training, data augmentation was performed by

horizontally flipping the images with a probability 0.5,

varying saturation, brightness, contrast and lighting over

RGB images, while adding random noise with an ampli-

tude of 10% of the value range to the foreground probability

maps. Additionally, random cropping was performed with

an aspect ratio between 3/4 and 4/3 and the area of the

cropped section was between 75% and 100% of the original

images.

All variants (RGBF, RGB and F) were trained for 100

epochs each, which took around 3 hours for SSD300 and 6

hours for SSD512.

6.3. Results

6.3.1 Accuracy

The mAP scores for BILSSD300 and BILSSD512 for the

VIRAT dataset can be seen in Table 1, and corresponding

precision-recall curves for the two classes can be seen in

Figure 5. In short, using RGBF outperforms using only

RGB (which should behave similarly to standard SSD) or

only F in terms of accuracy. The accuracy improves for both

the tested input resolutions, by 66% and 31% respectively.

RGBF RGB F

BILSSD300 0.272 0.208 0.154

BILSSD512 0.400 0.241 0.125

Table 1. mAP scores for different input resolutions and modalities

of BILSSD on the VIRAT dataset. Bold number indicates best

result.

6.3.2 Qualitative analysis

Some output from the different BILSSD networks trained

on RGBF, RGB and F were inspected manually. It was

found that when trained with only F or only RGB, cor-

rect detections were given only marginally better confidence

values than a large number of incorrect detections. They

all had problems with giving false positives relatively high

confidences, around 0.40 for RGBF and around 0.44 for F

and RGB, while true detections vary between 0.4 and 0.9

for RGBF but for F and RGB they only rarely get above

0.5. Using only RGB, confidences above 0.5 were more

common than when using only F, explaining the low mAP

scores of the latter. True positives of the VRU class gener-

ally got lower confidences than of the vehicle class, likely

due to the smaller objects being harder to detect.

Comparing 300× 300 and 512× 512 versions of RGBF,

the higher resolution was found to help detecting small ob-

jects. They both had problems with outputting more than

one box near real objects, not quite close enough to be

caught by the non-maximum suppression, and this issue is

more noticeable in the lower resolution. Failing to localise

objects did occur, as well as some false positives, but incor-

rect classifications were uncommon.

6.3.3 Execution speed

For the computer used in these experiments, which is

equipped with a NVIDIA Titan X GPU and an Intel Core

i7-6800K CPU, the execution times for a batch size of 1

can be seen in Table 2. These times can be compared to

the original SSD’s reported execution speeds on the same

GPU model and batch size, which were 46 FPS and 19 FPS

for SSD300 and SSD512 respectively. One should note that

the original SSD implementation was done in Caffe, while

BILSSD’s implementation was done in Keras with a Ten-

sorflow backend and the computers’ other differences may

have some impact, so the numbers are not perfectly compa-

rable. However, using these numbers, BILSSD (including

the BGGRAD preprocessing) has roughly 40% more pro-

cessing time compared to SSD.

BILSSD300 BILSSD512

Time BILSSD 0.029 s 0.055 s

Time BGGRAD 0.0023 s 0.019 s

Time both 0.031 s 0.074 s

FPS BILSSD 34 FPS 18 FPS

FPS BGGRAD 430 FPS 52 FPS

FPS both 32 FPS 14 FPS

Table 2. Execution times and frame rates for BILSSD and BG-

GRAD on 300 × 300 and 512 × 512 resolutions. These times

were computed as an average over more than 100 frames.

7. Conclusions

We have introduced the BILSSD network, which is

based on SSD while adding the ability to utilize multimodal

spatially aligned input. We have tested it on the VIRAT

dataset, using foreground probability maps computed by the

fast BGGRAD foreground detection algorithm as the addi-

tional input, along with RGB images.

On this dataset, accuracy increases when RGB and F are

used together, compared to using only RGB and using only

195



0 0.2 0.4 0.6 0.8 1

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

Class vru

bilssd300-rgbf, AP = 0.16575, mAP = 0.27219

bilssd300-rgb, AP = 0.14662, mAP = 0.20761

bilssd300-f, AP = 0.13303, mAP = 0.15427

bilssd512-rgbf, AP = 0.30231, mAP = 0.39996

bilssd512-rgb, AP = 0.14251, mAP = 0.24052

bilssd512-f, AP = 0.091076, mAP = 0.12459

0 0.2 0.4 0.6 0.8 1

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

Class car

bilssd300-rgbf, AP = 0.37864, mAP = 0.27219

bilssd300-rgb, AP = 0.2686, mAP = 0.20761

bilssd300-f, AP = 0.17552, mAP = 0.15427

bilssd512-rgbf, AP = 0.4976, mAP = 0.39996

bilssd512-rgb, AP = 0.33852, mAP = 0.24052

bilssd512-f, AP = 0.1581, mAP = 0.12459

Figure 5. Precision-recall curves for the VIRAT dataset. Using RGBF is better than using only RGB or only F for both resolutions, and the

improvement is significant in all cases except for the VRU class in lower resolution, where the improvement is marginal. Higher resolution

is better than lower resolution for RGBF and RGB, but surprisingly not for only F, which performs poorly overall.

F, for both the VRU and vehicle classes. The improvements

are expected, as it is difficult to tell the difference between a

parked and non-parked car without temporal data, and small

pedestrians appear more clearly in the foreground probabil-

ity maps. For example, BILSSD300 using RGBF outper-

forms BILSSD512 using only RGB (similar to SSD512) in

terms of mAP while running much faster, so for this prob-

lem, adding temporal data is a more efficient way to im-

prove performance than increasing the resolution. Accura-

cies for the VRU class are generally low for BILSSD300,

which makes sense as most instances of this class are small,

making them more difficult to detect in low resolution im-

ages.

Using only F performs poorly overall. Because the fea-

tures learned from the F input improves RGBF significantly

compared to RGB, it is obvious that these features are help-

ful, but on their own they do not seem to provide enough

confidence for separating true from false positives. Another

reason why using only F performs so poorly could be the

lack of training data; while the RGB layers use the large and

varied ImageNet as a starting point, the F layers have only

ever looked at the limited number of images in the VIRAT

annotations. Finding a better pretraining strategy for the F

layers could improve not only the accuracy when using only

F, but also when using RGBF.

It should be noted that the relatively low number of an-

notated frames used in these experiments means that one

should be careful drawing too general conclusions about

how much using foreground probability maps in addition

to RGB improves accuracy on other datasets. What can be

concluded is that the BILSSD network is capable of utilis-

ing multiple modalities to increase the accuracy of object

detections, and this improvement is independent of increas-

ing the spatial resolution of the input data.

8. Future work

There are other ways in which BILSSD could be eval-

uated. Most notably, it would be interesting to try the ap-

proach on more datasets. There is currently no large scale

dataset of videos filmed with stationary cameras in var-

ied environments in decent video quality. The DETRAC

dataset [25] is a large scale surveillance dataset, but the

camera shake in most videos prevent the BGGRAD algo-

rithm to work properly. Developing a fast yet shake resistant

foreground detection algorithm and using it with BILSSD

on the DETRAC dataset could be an interesting direction

for future evaluation.

The pretraining of the foreground processing layers

could likely be improved. As Gupta et al. [7] showed, pre-

training on RGB images from ImageNet can be used as

an initialisation for non-RGB images with improved results

compared to starting from scratch, if the data is formatted

to partially mimic the structure of RGB. Perhaps a fore-

ground detection algorithm could be developed which pro-

duces three output layers, somewhat mimicking the struc-

ture of RGB, to take full advantage of such an approach.

The probability map already shares some properties with

RGB, like the concept of edges around objects, so such an

approach is probably feasible.

It would be interesting to try the BILSSD network us-

ing other modalities than foreground probabilities alongside

RGB, like depth data or thermal images, perhaps using more

than one non-RGB modality at the time. Different pretrain-

ing strategies and minor network changes may be necessary,

depending on the data.

Implementing similar multimodal versions of other

196



object detectors, like Faster R-CNN, SqueezeDet and

YOLOv2, would allow further analysis of how well the con-

cept of deep fusion generalises. When a new and better

single-frame object detector is made in the future, as long

as this network can be split into a feature extraction part and

a detection part, implementing a deep fusion of modalities

in the style of BILSSD should be easy.

References

[1] H. Ardö and L. Svärm. Bayesian formulation of gradient

orientation matching. In Lecture Notes in Computer Science,

volume 9163, pages 91–103. Springer, 2015.

[2] J. Bang, D. Kim, and H. Eom. Motion object and regional

detection method using block-based background difference

video frames. In Embedded and Real-Time Computing Sys-

tems and Applications (RTCSA), 2012 IEEE 18th Interna-

tional Conference on, pages 350–357. IEEE, 2012.

[3] S. Caelles, K. Maninis, J. Pont-Tuset, L. Leal-Taixé, D. Cre-

mers, and L. V. Gool. One-shot video object segmentation.

CoRR, abs/1611.05198, 2016.

[4] J. Donahue, L. Anne Hendricks, S. Guadarrama,

M. Rohrbach, S. Venugopalan, K. Saenko, and T. Dar-

rell. Long-term recurrent convolutional networks for visual

recognition and description. In The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), June

2015.

[5] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,

and A. Zisserman. The PASCAL Visual Object Classes

Challenge 2012 (VOC2012) Results. http://www.pascal-

network.org/challenges/VOC/voc2012/workshop/index.html.

[6] S. Gould, P. Baumstarck, M. Quigley, A. Y. Ng, and

D. Koller. Integrating Visual and Range Data for Robotic

Object Detection. In Workshop on Multi-camera and Multi-

modal Sensor Fusion Algorithms and Applications - M2SFA2

2008, Marseille, France, Oct. 2008. Andrea Cavallaro and

Hamid Aghajan.

[7] S. Gupta, R. Girshick, P. Arbeláez, and J. Malik. Learn-

ing rich features from rgb-d images for object detection and

segmentation. In European Conference on Computer Vision,

pages 345–360. Springer, 2014.

[8] S. D. Jain, B. Xiong, and K. Grauman. Pixel objectness.

arXiv preprint arXiv:1701.05349, 2017.

[9] O. Javed and M. Shah. Tracking and object classification for

automated surveillance. In Proceedings of the 7th European

Conference on Computer Vision-Part IV, ECCV ’02, pages

343–357, London, UK, UK, 2002. Springer-Verlag.

[10] M. J. Jones and D. Snow. Pedestrian detection using boosted

features over many frames. In 19th International Conference

on Pattern Recognition (ICPR 2008), December 8-11, 2008,

Tampa, Florida, USA, pages 1–4, 2008.

[11] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,

and L. Fei-Fei. Large-scale video classification with convo-

lutional neural networks. In The IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), June 2014.

[12] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. CoRR, abs/1412.6980, 2014.

[13] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B.

Girshick, J. Hays, P. Perona, D. Ramanan, P. Dollár, and

C. L. Zitnick. Microsoft COCO: common objects in context.

CoRR, abs/1405.0312, 2014.

[14] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed,

C. Fu, and A. C. Berg. SSD: single shot multibox detector.

CoRR, abs/1512.02325, 2015.

[15] G. Ning, Z. Zhang, C. Huang, Z. He, X. Ren, and H. Wang.

Spatially supervised recurrent convolutional neural networks

for visual object tracking. arXiv preprint arXiv:1607.05781,

2016.

[16] S. Oh, A. Hoogs, A. Perera, N. Cuntoor, C.-C. Chen, J. T.

Lee, S. Mukherjee, J. Aggarwal, H. Lee, L. Davis, et al.

A large-scale benchmark dataset for event recognition in

surveillance video. In Computer vision and pattern recog-

nition (CVPR), 2011 IEEE conference on, pages 3153–3160.

IEEE, 2011.

[17] D. Oneata, J. Revaud, J. Verbeek, and C. Schmid. Spatio-

temporal object detection proposals. In European conference

on computer vision, pages 737–752. Springer, 2014.

[18] J. Redmon and A. Farhadi. YOLO9000: better, faster,

stronger. CoRR, abs/1612.08242, 2016.

[19] S. Ren, K. He, R. B. Girshick, and J. Sun. Faster R-CNN:

towards real-time object detection with region proposal net-

works. CoRR, abs/1506.01497, 2015.

[20] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual

Recognition Challenge. International Journal of Computer

Vision (IJCV), 115(3):211–252, 2015.

[21] G. Sharir and T. Tuytelaars. Video object proposals. In Com-

puter Vision and Pattern Recognition Workshops (CVPRW),

2012 IEEE Computer Society Conference on, pages 9–14.

IEEE, 2012.

[22] K. Simonyan and A. Zisserman. Two-stream convolutional

networks for action recognition in videos. In Z. Ghahramani,

M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Wein-

berger, editors, Advances in Neural Information Processing

Systems 27, pages 568–576. Curran Associates, Inc., 2014.

[23] S. Tripathi, S. J. Belongie, Y. Hwang, and T. Q. Nguyen. De-

tecting temporally consistent objects in videos through ob-

ject class label propagation. CoRR, abs/1601.05447, 2016.

[24] P. Viola, M. J. Jones, and D. Snow. Detecting pedestrians

using patterns of motion and appearance. Int. J. Comput.

Vision, 63(2):153–161, July 2005.

[25] L. Wen, D. Du, Z. Cai, Z. Lei, M. Chang, H. Qi, J. Lim,

M. Yang, and S. Lyu. DETRAC: A new benchmark and pro-

tocol for multi-object detection and tracking. arXiv CoRR,

abs/1511.04136, 2015.

[26] B. Wu, F. N. Iandola, P. H. Jin, and K. Keutzer. Squeezedet:

Unified, small, low power fully convolutional neural net-

works for real-time object detection for autonomous driving.

CoRR, abs/1612.01051, 2016.

[27] S. Yeung, O. Russakovsky, G. Mori, and L. Fei-Fei. End-

to-end learning of action detection from frame glimpses in

videos. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2016.

197


