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Abstract

In this paper we present an analysis of the effect of large

scale video data augmentation for semantic segmentation in

driving scenarios. Our work is motivated by a strong cor-

relation between the high performance of most recent deep

learning based methods and the availability of large vol-

umes of ground truth labels. To generate additional labelled

data, we make use of an occlusion-aware and uncertainty-

enabled label propagation algorithm [8]. As a result we

increase the availability of high-resolution labelled frames

by a factor of 20, yielding in a 6.8% to 10.8% rise in av-

erage classification accuracy and/or IoU scores for several

semantic segmentation networks.

Our key contributions include: (a) augmented CityScapes

and CamVid datasets providing 56.2K and 6.5K additional

labelled frames of object classes respectively, (b) detailed

empirical analysis of the effect of the use of augmented data

as well as (c) extension of proposed framework to instance

segmentation.

1. Introduction

Semantic segmentation is one of the most important sub-

problems of autonomous driving. Its progress has been ac-

celerated by the developments in the state-of-the-art in im-

age classification [15, 32] and advances in training and in-

ference procedures (e.g. dropout or batch normalisation)

as well as architectural innovation in deep learning in gen-

eral. However, in contrast to image classification and some

deep learning lead problems of computer vision, semantic

segmentation (especially for autonomous driving) still op-

erates on limited size datasets which do not exceed 5000

labelled frames [10]. As labelling by hand takes approxi-

mately 1 hour per single frame, alternative methods for ob-

taining dense labelled data for semantic segmentation must

be employed.
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Figure 1. This figure illustrates the effect of training semantic class

and instance segmentation networks on hand labelled and on aug-

mented data. Row (a) contains four images from CamVid [6]

dataset. Rows (b) and (c) show corresponding per pixel class pre-

dictions of SegNet [3] trained on original hand labelled data (b)

and on augmented label data (c). Similarly the bottom two rows

show instance predictions using the Deep Watershed Transform

Network [2]) trained on hand labelled (d) and on augmented (e)

data. Note the increased accuracy on small classes such as poles

or road signs for class segmentation and the increased separation

of cars for instance segmentation.

In this work we propose using a simplified version of the

label propagation algorithm of [8] in order to increase the

quantity of available ground truth labels by an order of mag-

nitude. The chosen label propagation algorithm handles oc-

clusions and label uncertainty elegantly, which is essential

in order to avoid generating erroneous labelled data.
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We evaluate the benefits of our proposed data augmen-

tation procedure on two standard datasets for semantic seg-

mentation: CityScapes [10] and CamVid [6]. We observe

that for many models the use of augmented data leads to a

significant increase in performance, and even in the worse

case does not lead to a reduction larger than 2%. For

some networks, such as E-Net [28], Dilation Network [36],

SegNet [2] and PSPNet [37] an increase of 10.8%, 8.2%,

6.6% and 4.1% in averge classification accuracy and/or IoU

score is observed - significantly larger than previously re-

ported [26]. Qualitatively the most notable improvement is

in increase of class accuracy of smaller classes as illustrated

in Figure 1 and reported in Section 5.

We also extend our data augmentation framework and

corresponding analysis to to instance segmentation (see Fig-

ure 1 and Section 5.3). As a part of our evaluation effort we

include the CamVid-Instance dataset consisting of instance

labels for people and cars from the original CamVid [6]

dataset.

We proceed with a brief overview of related work in Sec-

tion 2. We explain our data augmentation algorithm based

on a simplified tree structured graphical model [8, 1] in Sec-

tion 3. We then provide details of our experimental setup,

results and analysis in Sections 4 and 5. Final remarks are

provided in Section 6.

2. Related work

In this section we examine the pros and cons of vari-

ous approaches aiming to directly or indirectly increase the

quantity of label data.

Larger datasets. CamVid [6] and Leuven [18] datasets

are among the earliest mid-sized datasets for semantic seg-

mentation in autonomous driving, providing up to 701 hand

labelled frames. Over the last four years we have seen a

rapid increase of datasets covering driving scenarios such

as the Ford Campus Vision and Lidar Dataset [27], KITTI

Dataset [13], Daimler Urban Segmentation [31] with the

largest so far being the CityScapes Dataset [10] providing

5000 hand labelled frames. The recently released Oxford

Robotcar dataset [23] contains an unparalleled number of

image frames on the order of 20 million, but no ground truth

semantic segmentation labels are currently available.

Label Propagation. Video-based label propagation algo-

rithms [8, 1, 26, 20] use fully or partially (e.g. paint strokes)

labelled frames and propagate labels across the video via

established frame to frame correspondences. Label propa-

gation algorithms vary in (a) their methods of establishing

correspondences between neighbouring frames, (b) the la-

bel inference method used and (c) the choice of unaries.

Frame to frame correspondences are often established with

optical flow [26] or patch matching [8]. However, as sug-

gested in [1], unless the optical flow has high accuracy oc-

clusion awareness, it is likely to propagate erroneous labels

near occlusion boundaries. The most frequently used in-

ference schemes include marginal posterior inference [8],

sliding window inference [33], continuous MRF [14], short-

est path calculation [4] and max-marginals [17]. Among

these the marginal posterior inference produces the most

intuitive segmentations by increasing predicted label uncer-

tainty further away from labelled data in a chosen model

(as explained in [7]). Finally, unaries are often provided via

CRF [20], Random Forests [8] or other classifiers. How-

ever these require human interaction to provide highly accu-

rate results. It is also important to note that while there are

a plethora of label propagation algorithms, very few have

evaluated the application of propagated labels for classifier

training at scale. Exceptions include [26] and [1], how-

ever large gains in supervised training scenarios have not

yet been demonstrated.

Label Transfer. Label transfer methods are very similar

to label propagation methods in video, but they often use a

different type of data as intermediate representation. For ex-

ample, a 3D reconstruction of a scene [35, 34] can be used

to achieve similar results to labels propagated in videos.

Such an approach has benefits at occlusion boundaries (esp.

if non-vison based 3D data is used), but may suffer lower

accuracies at labelling small classes. The results of [35] are

promising, however as no images or labelled frames have

been disclosed, no comparison is possible. Another exam-

ple of a label transfer approach is the leveraging of aerial

images [25] where labelling some classes (e.g. side-walk or

road) at scale turns out to be more efficient.

Artificial Data. Using artificial data [24, 9] provides an-

other alternative for obtaining large amounts of high quality

labelled data. Artificial datasets such as Synthia [30] and

Virtual KITTI [12] seem to be on the rise. Despite the low

cost, the direct value of such data for popular semantic seg-

mentation benchmarks is yet to be proven. Key challenges

remain obtaining photo-realistic images and modelling real

world scenes, yet rapid progress has been demonstrated.

Other. Other approaches include the use of weak la-

bels [22] as well as additional sensors such as 3D point

clouds [11] or point supervision [5] by humans.

3. Label Propagation

In this section, we describe the model, inference and im-

plementation details of the label propagation method used

for data augmentation.

3.1. Model

We use a simplified version of the model of [8] in which

parameter learning (including class unaries) and variational

inference are avoided. We define a joint probability of pixel

class labels as follows:

P (Z) ∝
∏

∀k,p,j

Ψ(Zk+d,Tk+d,p(j), Zk,p(j)) (1)

231



25622552 2572(a)

(b)

(c)

(d)

(e)

d = -1

d = 1

AVG

DIFF

6r0_02070 16e5_02074 16e5_02079 16e5_02091 16e5_02096 16e5_02100

6r0_03330 16e5_01620 16e5_05010

Figure 2. The left section of this figure illustrates the effect of uncertainty averaging and differencing of noisy propagated labels. Row (a)

contains three images from the Bochum city sequence (CityScapes), of which the middle frame (2562) has ground truth labels provided.

Rows (b) and (c) show propagation results for backward-built factor graph (d = −1) and forward-built factor graph (d = 1) respectively.

Row (d) shows combined output produced by uncertainty averaging of (b) and (c). Row (e) shows combined output produced by label

differencing of (b) and (c). Red squares indicate regions with erroneous pixel labels. Note how they are transferred to the output of

uncertainty averaging. Row (a) on the right section of this figure contains three image and corresponding instance label pairs of people and

car instances from CamVid-Instance dataset. Rows (b-e) show sequence of images from CamVid dataset (b), initial propagation output

(c), dilated propagation output (d) and final labels obtained after manual clean up step (e). Note that white noise pixels correspond to the

uncertain (”void”) pixels from instance propagation which take neither background nor any of the instance labels.

where Z is a set of discrete random variables Zk,p(j) taking

values in the range 1..L corresponding to the class label of

a pixel j in a patch p of frame k. Here Ψ is a potential

favouring same class prediction

Ψ(a, b) =

{

1− δ, if a = b

δ, otherwise.
(2)

Furthermore Zk+d,Tk+d,p(j) corresponds to a class label of

a pixel j in a patch Tk+d,p in frame k+ d. Here Tk+d,p cor-

responds to the best matching patch of frame k+ d to patch

p in frame k. Finally, d is a constant which builds corre-

spondences from the current frame to the previous frame or

to the next frame when set to −1 and 1 respectively.

3.2. Inference

As each pixel is restricted to have exactly one best match

for each pixel, the aforementioned joint distribution can be

represented as a tree-structured factor graph. As a result, the

exact inference of the marginal posterior for each variable

P (Zk,p(j) = l) can be performed using message passing.

The final per pixel class distributions are obtained by sum-

ming over distributions of overlapping pixels as follows

R(k, i, l) =
1

K

∑

s.t.p(j)=i

P (Zk,p(j) = l) (3)

where K is a normalisation constant.

3.3. Implementation

The data augmentation algorithm is has two phases. Dur-

ing the first phase neighbouring frame correspondences are

calculated by finding the highest cross-correlation score of

a patch p in window W×H around this patch in frame k+d

as detailed in [8]. During the second phase obtained corre-

spondences are used to calculate per-pixel marginal poste-

rior distributions as described in the previous section. Pro-

cessing steps performed for semantic class labels and for

instance label propagation are described below.

Class label augmentation. To obtain class labels for

training, we perform three steps. First, for each pixel

i in frame k, we assign the most likely class label

argmaxl′ R(k, i, l
′

). For pixels where the most likely label

has a probability lower than a threshold 1
L
+ 0.0001 we as-

sign the ”void” label to avoid mislabelling caused by numer-

ical instability. Examples of labels for d = −1 and d = 1
for one sequence from the Bochum dataset (CityScapes) are

presented in rows (b) and (c) in Figure 2. Unlike in [8, 1],

we produce the final result by taking a label image differ-

ence (i.e. assigning a class label if both frames agree and

a ”void” label if they disagree) as opposed to averaging the

backward (d = −1) and forward (d = 1) built structures.

Example comparisons between using image differencing

and averaging can be found in rows (e) and (d) respectively

of the left section of Figure 2. Although more pixel labels

are obtained when using averaging, taking an image differ-
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Hanover 000000-028456 [-4] Hamburg 000000-071683 [-8]Cologne 000124-000015  [-4](a)

(b)

(c)

Figure 3. This figure provides a qualitative evaluation of aug-

mented labels. In particular, row (a) contains three images ex-

tracted at varying distances (4 or 8) from a seed labelled frame

provided in CityScapes dataset. Row (b) contains ground truth la-

bels obtained by us. Row (c) illustrates corresponding augmented

frames. A high qualitative match is achieved. See Table 2 for

quantitative evaluation.

ence reduces erroneous labelling introduced by occlusions,

dis-occlusions or erroneous patch correspondences.

Instance label augmentation. To obtain instance labels,

we follow a similar procedure as in class label propagation.

One notable difference is that we assign all pixels of non-

instances to a background class and perform two steps of

clean up (see Figure 2). During the first step we dilate all

non-instance pixels which are surrounded by labels of one

particular instance and fill small (less than 20 pixels) in-

stance regions which reside within another instance with

the labels of the surrounding region. During the second

step we go through the generated labels and manually mark

instances with severly wrong labels as ”void”. Note that

clean-up of 6.5K of frames took no more than 4 hours of

manual labour and can be significantly improved with more

sophisticated tools.

4. Experiment Setup

In this section we describe experiments on three datasets:

CamVid [6], CityScapes [10] and the novel CamVid-

Instance dataset. For all datasets we use the experimen-

tal protocol described in Section 3 unless stated otherwise.

Below we provide more details of each dataset and corre-

sponding steps taken to produce augmented labels.

4.1. CamVid dataset

The CamVid Dataset [6] consists of 701 labelled images:

367 for training, 233 for testing and 101 for validation, cov-

ering a total of 10 minutes of 30Hz video of driving in Cam-

bridge, UK. Labels are provided every 30 frames for the

training and testing set and every 2 frames for the valida-

tion set. A total of 32 label types related to autonomous

driving (road, side-walk, car, etc.) are provided, however

due to low representation of rare classes, most studies have

focused on evaluating classifiers on a subset containing 11

classes.

To obtain label propagation results we calculated the

correspondences for every pair of neighbouring labelled

frames. We then performed label propagation for the 11

classes, representing the void class via a uniform distribu-

tion. Inference took on average of 5 seconds per frame at

full resolution of 960 × 720. The window size (W × H)

for establishing correspondences was set to 140× 100, δ to

0.001.

We obtained propagated labels for all the images in the

train, test and validation datasets, however we use only the

labels in the training dataset in the experiments described

here.

4.2. CityScapes dataset

The CityScapes dataset consists of 5000 densely labelled

frames and 20000 coarsely labelled frames of 2048× 1024
resolution. Each densely labelled frame is surrounded by

30 unlabelled adjacent video frames. We performed label

propagation for 20 surrounding frames resulting in a total

of 62475 annotated frames using the protocol described in

Section 4.1. 5% of the annotated frames were filtered manu-

ally. Key modes of failure included label leakage caused by

large object displacement and ego-motion as well as sudden

change in lighting.

To evaluate the quality of the labelling, we first sampled

9 frames from the CityScapes training dataset at random

at four different locations (-8,-4,+4 and +8) from the seed

label (see Figure 3). We then hand labelled the selected

images following the original protocol of CityScapes [10].

As shown in Table 2, all the classes had accuracy higher

than 70%, except for the bus class.

4.3. CamVid­Instance Dataset

For our third set of experiments we augmented the orig-

inal CamVid [6] dataset with instance level annotation of

people and cars. Several examples of instance labels ob-

tained are shown in Figure 2.

In order to obtain instances, we used original boundaries

of cars and people, only introducing new boundary anno-

tations where two instances of the same class were over-

lapping. The number of instances in a single frame ranged

from 0 to 27. More examples of CamVid-Instance dataset

images can be found in the supplementary material.

4.4. Model Training

In this section we provide brief training details of vari-

ous models for class and instance segmentation.

Class segmentation. For our experiments on the CamVid

dataset we trained six commonly used segmentation archi-

tectures: FCN [21], SegNet [2], Bayesian SegNet [2], E-

Net [28], Dilation Network [36] and PSPNet [37] on both

233



FCN SegNet E-Net

Figure 4. Three graphs in this figure compare segmentation network performance using global accuracy, class average accuracy and

average IoU measures for results obtained when training on the original hand labelled CamVid data (”Hand”) as well as on augmented

labels obtained from uncertainty averaging (”Avg.”) and label differencing (”Aug.”), as explained in Section 3.3. The FCN network (left)

does not benefit from additional hand labels in our experiments. Broadly this corresponds to the findings reported in [26]. On the other

hand, Segnet [2] (middle) trained on augmented data produced using label differencing shows a significant increase in either class average

or IoU when compared to Avg. or Hand labels. The graph on the right shows class accuracy and IoU scores on train and test datasets for

E-Net [28] for the first 100 epochs. The high (and increasing) average class accuracy on training data for E-Net trained on hand labels

indicates overfitting and explains the large class average and IoU score differences on the test data.

hand labelled as well as on augmented data. We chose the

aforementioned models due to their varying design choices

for upsampling layers, easily accessible code and high per-

formance.

In order to reduce the complexity of setup we trained

and tested Dilation Network without the context module.

Similarly the input resolution of PSPNet [37] was halved

(353× 353).

Except where mentioned otherwise, we used the origi-

nal code and parameters provided by the authors of the cor-

responding networks. For a more fair comparison of net-

works no pre-training was used. For all the experiments on

CamVid dataset we used input images of 480× 360 resolu-

tion. Quantitative experiment evaluation and its analysis is

presented in Section 5.1.

We repeated the same exercise for four models on the

CityScapes dataset. We excluded Bayesian SegNet and

FCN due to time constraints. Note that the aim of this work

is to demonstrate the value of using augmented data and

not to outperform state-of-the-art benchmarks.

Instance segmentation. For our experiments on instance

segmentation we used the DeepMask [29] and Deep Water-

shed Transform [3] networks. We used original DeepMask

implementation provided by the authors and implemented

our own version of Deep Watershed Transform method, for

which we used SegNet as a classifier at train and test time.

We also simplified the post-processing steps to deleting the

lowest watershed prediction level then growing the con-

nected components back with dilation of one pixel radius.

In order to account for a non-perfect classifier at train time

we trained our watershed network to predict a watershed

energy of zero on erroneously labelled background pixels.

5. Results

In this section we present the quantitative and qualita-

tive results of our experiments on CamVid, CityScapes and

CamVid-Instance datasets.

5.1. CamVid Dataset

Figure 4 illustrates the evolution of test accuracies dur-

ing training of FCN [21], SegNet [2] and E-Net [28] on

the CamVid dataset with and without data augmentation.

It highlights the advantage of using augmented labels ob-

tained by frame differencing as opposed to uncertainty av-

eraging. It also indicates the potential of using augmented

data to prevent overfitting. See the caption of Figure 4 for

more details.

Table 1 compares six different state-of-the-art-models

trained on hand labelled and on augmented data. Per class

accuracies as well as average classification accuracy, global

accuracy and mean intersection over union (mean IoU)

scores are reported. Note that matching previously reported

accuracies is not straight-forward hence we include an eval-

uation of our own. Each network was trained either until

convergence or for an equal number of iterations with its

counterpart.

Overall we have found that using augmented labels of-

ten led to a significant increase (4% or more) with only

a slight decrease (less than 1.5%) in the worst case. A

particularly large increase in both average class accuracy

(10.8%) and IoU score (9.8%) was observed for E-Net and

in average class accuracy (6.6%) for SegNet. The slight
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SegNet [2] R H N/A 88.0 87.3 92.3 80.0 29.5 97.6 57.2 49.4 27.8 84.8 30.7 65.9 88.6 50.2

T H 184K 89.6 83.6 93.9 79.0 47.3 95.9 69.6 37.2 34.4 88.8 29.7 68.2 88.8 58.5

T A 184K 83.7 86.8 94.6 82.4 59.0 92.8 83.9 48.7 46.2 93.5 51.1 74.8 88.1 59.8

Bayesian SegNet [16] R H N/A 80.4 85.5 90.1 86.4 67.9 93.8 73.8 64.5 50.8 91.7 54.6 76.3 86.9 63.1

T H 129K 76.8 89.1 92.2 87.4 74.7 94.7 90.4 63.8 64.5 90.9 74.0 81.7 87.3 59.1

T A 404K 82.9 85.1 94.8 85.4 68.4 95.3 93.0 55.5 59.7 93.7 68.1 80.2 89.0 61.7

E-Net [28] R H N/A 74.7 77.8 95.1 82.4 51.0 95.1 67.2 51.7 35.4 86.7 34.1 68.3 N-P 51.3

T H 40K 75.5 82.9 95.9 79.5 43.8 95.2 28.8 37.5 39.2 85.1 31.9 63.2 84.7 51.1

T A 100K 84.8 84.7 97.0 83.2 49.2 96.0 69.0 43.0 48.1 92.1 66.7 74.0 89.1 60.9

FCN [21] R H N/A N-P N-P N-P N-P N-P N-P N-P N-P N-P N-P N-P 64.2 83.1 52.0

T H 100K 88.8 80.8 92.8 72.1 31.7 95.4 39.3 17.8 12.4 70.3 23.7 56.8 85.0 48.6

T A 100K 89.9 80.8 93.3 69.3 29.5 95.3 32.3 16.4 11.8 69.7 20.4 55.4 85.1 48.0

Dilation Network [36] R* H N/A N-P N-P N-P N-P N-P N-P N-P N-P N-P N-P N-P N-P N-P 65.3

T H 100K 88.4 83.8 94.7 84.6 49.5 96.2 59.9 36.7 19.7 84.3 43.1 67.3 88.3 55.6

T A 100K 87.4 86.9 93.4 86.5 51.8 94.5 58.5 38.8 20.2 86.8 44.4 68.1 88.1 55.6

PSPNet [37] R H N-P N-P N-P N-P N-P N-P N-P N-P N-P N-P N-P N-P N-P N-P N-P

T H 300K 88.8 89.0 93.7 88.9 44.3 97.0 73.2 40.7 29.7 89.6 59.4 72.2 90.0 62.3

T A 300K 88.9 83.8 97.2 84.3 49.1 96.4 60.8 50.5 26.5 91.7 56.4 71.4 90.0 62.5

Table 1. This table provides a quantitative evaluation of six different methods trained on hand labelled (H) and augmented (A) data from

CamVid [6] dataset. The number of iterations used to train each network is reported along with per-class segmentation accuracies, average

classification accuracy, global accuracy and average per-class intersection over union (IoU) metric. All methods were trained on images of

480×360 resolution. Corresponding results of each network reported in the literature are also listed in rows marked with type R (reported).

However, due to the different strategies followed in training and optimising deep networks, we encourage the reader to focus on the relative

performance difference between the results we report. Large increases in class average and/or average IoU metrics are observed for E-

Net and Segnet when trained on augmented data. The performance of Bayesian SegNet, FCN, Dilation Network and PSPNet is largely

unaffected. * - note that a significant difference in previously reported accuracies [36] and the ones obtained by us of Dilation Network

may be explained by the use of lower resolution images instead of 640× 480.
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Augmented Labels N/A N/A 97.0 87.4 95.5 80.3 73.7 72.8 86.3 86.9 89.3 N/A 95.4 88.7 85.4 94.0 93.9 42.4 92.5 77.0 72.5 84.0 89.9 71.7

SegNet [2] H 182K 96.4 83.8 88.6 40.5 38.6 62.2 52.6 63.7 89.0 69.8 97.2 84.7 45.2 92.8 48.7 57.8 33.1 25.7 78.0 65.7 89.7 50.6

A 189K 95.0 86.4 87.5 54.0 52.9 67.2 69.6 76.5 88.5 73.3 97.5 85.7 52.5 94.8 61.2 68.1 53.3 30.4 79.0 72.3 89.8 53.9

E-Net [28] H 40K 97.3 87.6 91.4 40.2 59.6 61.5 45.9 63.3 93.7 67.4 97.3 76.5 49.7 95.1 61.5 52.3 69.1 13.3 72.9 68.2 91.9 55.0

A 100K 96.2 86.7 91.9 48.8 56.3 53.0 53.9 67.3 94.9 74.1 97.3 77.0 40.8 95.4 47.4 80.1 9.31 12.0 75.3 66.2 91.8 53.8

Dilation Network [36] H 24K 96.8 73.7 86.4 34.0 63.4 24.7 0.8 13.8 93.4 63.2 91.4 47.9 15.5 88.1 48.7 49.8 58.4 3.3 57.2 53.2 87.6 41.7

A 68K 97.8 77.0 91.6 35.9 45.2 28.3 12.5 37.3 94.0 64.6 93.5 70.1 31.4 93.0 57.2 72.9 50.2 47.1 64.8 61.3 90.4 49.9

PSPNet [37] H 400K 98.3 84.0 94.3 8.8 41.3 46.2 52.9 63.0 91.9 58.8 93.2 75.2 57.5 93.5 43.2 66.1 0.6 4.4 82.0 60.8 91.5 51.9

A 400K 98.6 79.4 95.8 34.1 56.5 35.9 43.6 54.0 96.5 58.6 92.6 82.7 52.3 95.3 58.8 60.4 0.00 20.6 79.1 62.9 92.8 56.0

Table 2. The first row of this table contains the evaluation of augmented labels against hand labelled frames at various offsets from the seed

label frame as illustrated in Figure 3. The rest of this table contains quantitative evaluation of four different methods trained on the hand

labelled (H) and augmented (A) data from the CityScapes dataset. Similar metrics as in Table 1 are reported. The validation portion of

the dataset is used for testing as the submission frequency of the CityScapes benchmark is highly limited. SegNet, Dilation Network and

PSPNet show significant increase in class average accuracy and IoU metric scores when trained on augmented data.

decrease (less than 1.2%) in both metrics observed for the

FCN network can be explained by its limited ability in han-

dling small object classes at low resolution. A slight de-

crease in IoU matched by a higher class average observed

for Bayesian SegNet is likely to have been caused by an

unsaturated training requiring a significantly larger number

of iterations for convergence due to the use of dropout in

training.

5.2. CityScapes Dataset

Table 2 provides a quantitative analysis of SegNet [2],

E-Net [28], Dilation Network [36] and PSPNet [37] tested

on the validation portion of CityScapes dataset. SegNet and

Dilation Network show a large increase in class average ac-

curacy (6.6% and 8.1% respectively) and in IoU (3.3% and

8.2%). The increased performance of Dilation Network can

be explained by existence of more pronounced small classes

in CityScapes dataset. PSPNet shows a moderate increase
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Network Data Iter AP-0.5-ALL-100 AP-0.5:0.95-ALL-100

DeepMask [29] H 50K 0.139 0.095

A 200K 0.143 0.094

DWN [3] H 188K 0.207 0.082

A 220K 0.252 0.099

Table 3. This table compares DeepMask [29] and Deep Water-

shed [3] networks when trained on hand labelled (H) and on aug-

mented (A) instance labels. Metrics of average precision at IoU

score threshold of 0.5 and at multiple thresholds (0.5-0.95) are cal-

culated using MSCOCO evaluation API [19].

in both class average (2.1%) and IoU (4.1%). Note while

PSPNet does not reach reported [37] accuracy, maximising

overall performance is out of the scope of this work. Mul-

tiple experimental changes could have contributed to lower

than reported performance: no pre-training was used, net-

work input and image resolution was halved, only 1 week

of a single GPU training time had been dedicated. Finally,

note that a slightly decrease in the IoU and average class

accuracy of E-Net may indicate the limitations of this very

compact model when trained on a significantly more com-

plex dataset than CamVid.

5.3. Instance Segmentation

Table 3 and Figure 5 show quantitative and qualitative

comparison of Deep Watershed [3] and DeepMask [29]

instance segmentation networks when trained on hand la-

belled and on augmented data. Standard average precision

metrics [19] under different IoU thresholds (as shown in Ta-

ble 3) are used to perform the quantitative evaluation.

As with semantic segmentation experiments both met-

rics (AP-0.5-ALL-100 and AP-0.5:0.95-ALL-100) show rel-

atively larger increase (from 0.207 to 0.252) than decrease

(from 0.095 to 0.094) when augmented data is used for

training. Moreover a larger increase seen in both average

precision metrics for Deep Watershed Transform Network

translates to a qualitatively better separation of car instances

shown in Figure 5.

6. Conclusion

In this paper we presented the analysis of the effect of

large scale labelled video data augmentation for seman-

tic segmentation in driving scenarios. For some networks,

such as E-Net [28], SegNet [2] or Dilation Network [36]

we observed increases of either average class accuracy or

intersection over union (IoU) score in range from 6.6%

to 10.8%. We also demonstrated the potential for using

augmented data to improve the accuracy of instance level

segmentation. The augmented data for CityScapes [10],

CamVid [6] and CamVid-Instance datasets will be made

available to the research community for further evaluation.

1tp_08760 1tp_09240 1tp_10020 1tp_10320 5vd_03690a)

b)

c)

d)

e)

f)

Ground Truth

DWN - Hand

DWN - Aug

DeepMask - Hand

DeepMask - Aug

Figure 5. This figure provides a qualitative comparison of Deep

Watershed [3] (rows c,d) and Deep Mask [29] (rows e,f) network

predictions when trained on hand labelled and on augmented data.

CamVid-Instance dataset is used for testing and training. Failures

and successes in car separation as well as car segmentation are

marked in green and red boxes correspondingly. Training the Deep

Watershed Network [3] with augmented labels results in improved

nearby car instance separation. The effect of augmented data is

less pronounced for DeepMask [29] network which corresponds

well to smaller quantitative differences in average precision met-

rics reported in Table 3.
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