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Abstract

In this paper we present an analysis of the effect of large

scale video data augmentation for semantic segmentation in
driving scenarios. Our work is motivated by a strong cor-
relation between the high performance of most recent deep
learning based methods and the availability of large vol-
umes of ground truth labels. To generate additional labelled
data, we make use of an occlusion-aware and uncertainty-
enabled label propagation algorithm [8]. As a result we
increase the availability of high-resolution labelled frames
by a factor of 20, yielding in a 6.8% to 10.8% rise in av-
erage classification accuracy and/or IoU scores for several
semantic segmentation networks.
Our key contributions include: (a) augmented CityScapes
and CamVid datasets providing 56.2K and 6.5K additional
labelled frames of object classes respectively, (b) detailed
empirical analysis of the effect of the use of augmented data
as well as (c) extension of proposed framework to instance
segmentation.

1. Introduction

Semantic segmentation is one of the most important sub-
problems of autonomous driving. Its progress has been ac-
celerated by the developments in the state-of-the-art in im-
age classification [15} [32] and advances in training and in-
ference procedures (e.g. dropout or batch normalisation)
as well as architectural innovation in deep learning in gen-
eral. However, in contrast to image classification and some
deep learning lead problems of computer vision, semantic
segmentation (especially for autonomous driving) still op-
erates on limited size datasets which do not exceed 5000
labelled frames [10]. As labelling by hand takes approxi-
mately 1 hour per single frame, alternative methods for ob-
taining dense labelled data for semantic segmentation must
be employed.
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Figure 1. This figure illustrates the effect of training semantic class
and instance segmentation networks on hand labelled and on aug-
mented data. Row (a) contains four images from CamVid [6]
dataset. Rows (b) and (c) show corresponding per pixel class pre-
dictions of SegNet [3] trained on original hand labelled data (b)
and on augmented label data (c). Similarly the bottom two rows
show instance predictions using the Deep Watershed Transform
Network [2]) trained on hand labelled (d) and on augmented (e)
data. Note the increased accuracy on small classes such as poles
or road signs for class segmentation and the increased separation
of cars for instance segmentation.

In this work we propose using a simplified version of the
label propagation algorithm of [8] in order to increase the
quantity of available ground truth labels by an order of mag-
nitude. The chosen label propagation algorithm handles oc-
clusions and label uncertainty elegantly, which is essential
in order to avoid generating erroneous labelled data.
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We evaluate the benefits of our proposed data augmen-
tation procedure on two standard datasets for semantic seg-
mentation: CityScapes [[10] and CamVid [6]. We observe
that for many models the use of augmented data leads to a
significant increase in performance, and even in the worse
case does not lead to a reduction larger than 2%. For
some networks, such as E-Net [28]], Dilation Network [36]],
SegNet [2]] and PSPNet [37] an increase of 10.8%, 8.2%,
6.6% and 4.1% in averge classification accuracy and/or IoU
score is observed - significantly larger than previously re-
ported [26]]. Qualitatively the most notable improvement is
in increase of class accuracy of smaller classes as illustrated
in Figure[T]and reported in Section [3]

We also extend our data augmentation framework and
corresponding analysis to to instance segmentation (see Fig-
ure[T]and Section[5.3)). As a part of our evaluation effort we
include the CamVid-Instance dataset consisting of instance
labels for people and cars from the original CamVid [6]
dataset.

We proceed with a brief overview of related work in Sec-
tion |2} We explain our data augmentation algorithm based
on a simplified tree structured graphical model 8 1] in Sec-
tion [3] We then provide details of our experimental setup,
results and analysis in Sections 4] and [5] Final remarks are
provided in Section [6]

2. Related work

In this section we examine the pros and cons of vari-
ous approaches aiming to directly or indirectly increase the
quantity of label data.

Larger datasets. CamVid [6] and Leuven [18]] datasets
are among the earliest mid-sized datasets for semantic seg-
mentation in autonomous driving, providing up to 701 hand
labelled frames. Over the last four years we have seen a
rapid increase of datasets covering driving scenarios such
as the Ford Campus Vision and Lidar Dataset [27], KITTI
Dataset [13], Daimler Urban Segmentation [31] with the
largest so far being the CityScapes Dataset [[10] providing
5000 hand labelled frames. The recently released Oxford
Robotcar dataset [23]] contains an unparalleled number of
image frames on the order of 20 million, but no ground truth
semantic segmentation labels are currently available.

Label Propagation. Video-based label propagation algo-
rithms [8} 11,126} [20]] use fully or partially (e.g. paint strokes)
labelled frames and propagate labels across the video via
established frame to frame correspondences. Label propa-
gation algorithms vary in (a) their methods of establishing
correspondences between neighbouring frames, (b) the la-
bel inference method used and (c) the choice of unaries.
Frame to frame correspondences are often established with
optical flow [26] or patch matching [8]. However, as sug-
gested in [1]], unless the optical flow has high accuracy oc-
clusion awareness, it is likely to propagate erroneous labels

near occlusion boundaries. The most frequently used in-
ference schemes include marginal posterior inference [8]],
sliding window inference [33]], continuous MRF [14], short-
est path calculation [4] and max-marginals [17]. Among
these the marginal posterior inference produces the most
intuitive segmentations by increasing predicted label uncer-
tainty further away from labelled data in a chosen model
(as explained in [7]]). Finally, unaries are often provided via
CRF [20], Random Forests [[8] or other classifiers. How-
ever these require human interaction to provide highly accu-
rate results. It is also important to note that while there are
a plethora of label propagation algorithms, very few have
evaluated the application of propagated labels for classifier
training at scale. Exceptions include [26] and [L], how-
ever large gains in supervised training scenarios have not
yet been demonstrated.

Label Transfer. Label transfer methods are very similar
to label propagation methods in video, but they often use a
different type of data as intermediate representation. For ex-
ample, a 3D reconstruction of a scene [35)134] can be used
to achieve similar results to labels propagated in videos.
Such an approach has benefits at occlusion boundaries (esp.
if non-vison based 3D data is used), but may suffer lower
accuracies at labelling small classes. The results of [35] are
promising, however as no images or labelled frames have
been disclosed, no comparison is possible. Another exam-
ple of a label transfer approach is the leveraging of aerial
images [25] where labelling some classes (e.g. side-walk or
road) at scale turns out to be more efficient.

Artificial Data. Using artificial data [24} 9] provides an-
other alternative for obtaining large amounts of high quality
labelled data. Artificial datasets such as Synthia [30] and
Virtual KITTI [12] seem to be on the rise. Despite the low
cost, the direct value of such data for popular semantic seg-
mentation benchmarks is yet to be proven. Key challenges
remain obtaining photo-realistic images and modelling real
world scenes, yet rapid progress has been demonstrated.
Other. Other approaches include the use of weak la-
bels [22] as well as additional sensors such as 3D point
clouds [11] or point supervision [S] by humans.

3. Label Propagation

In this section, we describe the model, inference and im-
plementation details of the label propagation method used
for data augmentation.

3.1. Model

We use a simplified version of the model of [8] in which
parameter learning (including class unaries) and variational
inference are avoided. We define a joint probability of pixel
class labels as follows:

P(Z) x H \I}(Zk-&-d,THd,p(j%Zkﬁp(j)) (D
Vk,p,j
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Figure 2. The left section of this figure illustrates the effect of uncertainty averaging and differencing of noisy propagated labels. Row (a)
contains three images from the Bochum city sequence (CityScapes), of which the middle frame (2562) has ground truth labels provided.
Rows (b) and (c) show propagation results for backward-built factor graph (d = —1) and forward-built factor graph (d = 1) respectively.
Row (d) shows combined output produced by uncertainty averaging of (b) and (c). Row (e) shows combined output produced by label
differencing of (b) and (c). Red squares indicate regions with erroneous pixel labels. Note how they are transferred to the output of
uncertainty averaging. Row (a) on the right section of this figure contains three image and corresponding instance label pairs of people and
car instances from CamVid-Instance dataset. Rows (b-e) show sequence of images from CamVid dataset (b), initial propagation output
(c), dilated propagation output (d) and final labels obtained after manual clean up step (e). Note that white noise pixels correspond to the

uncertain ("void”) pixels from instance propagation which take neither background nor any of the instance labels.

where Z is a set of discrete random variables Z, ,,(;) taking
values in the range 1..L corresponding to the class label of
a pixel j in a patch p of frame k. Here W is a potential
favouring same class prediction

\Il(a,b):{lé’ ifa =0 )

0, otherwise.

Furthermore Z 4.1, , , ,(;) corresponds to a class label of
apixel j in a patch T}, g5, in frame k 4 d. Here T},4.4 , cor-
responds to the best matching patch of frame k + d to patch
p in frame k. Finally, d is a constant which builds corre-
spondences from the current frame to the previous frame or
to the next frame when set to —1 and 1 respectively.

3.2. Inference

As each pixel is restricted to have exactly one best match
for each pixel, the aforementioned joint distribution can be
represented as a tree-structured factor graph. As a result, the
exact inference of the marginal posterior for each variable
P(Zy p(j) = 1) can be performed using message passing.
The final per pixel class distributions are obtained by sum-
ming over distributions of overlapping pixels as follows

K Yo PGpin =0 3

s.t.p(j)=i

R(k,i,1) =

where K is a normalisation constant.

3.3. Implementation

The data augmentation algorithm is has two phases. Dur-
ing the first phase neighbouring frame correspondences are
calculated by finding the highest cross-correlation score of
a patch p in window W x H around this patch in frame k+d
as detailed in [8]]. During the second phase obtained corre-
spondences are used to calculate per-pixel marginal poste-
rior distributions as described in the previous section. Pro-
cessing steps performed for semantic class labels and for
instance label propagation are described below.

Class label augmentation. To obtain class labels for
training, we perform three steps. First, for each pixel
¢ in frame k, we assign the most likely class label
arg max; R(k, 1,1 ). For pixels where the most likely label
has a probability lower than a threshold % + 0.0001 we as-
sign the ”void” label to avoid mislabelling caused by numer-
ical instability. Examples of labels ford = —1 and d = 1
for one sequence from the Bochum dataset (CityScapes) are
presented in rows (b) and (c) in Figure 2] Unlike in [8] I,
we produce the final result by taking a label image differ-
ence (i.e. assigning a class label if both frames agree and
a ’void” label if they disagree) as opposed to averaging the
backward (d = —1) and forward (d = 1) built structures.
Example comparisons between using image differencing
and averaging can be found in rows (e) and (d) respectively
of the left section of Figure 2] Although more pixel labels
are obtained when using averaging, taking an image differ-

232



Figure 3. This figure provides a qualitative evaluation of aug-
mented labels. In particular, row (a) contains three images ex-
tracted at varying distances (4 or 8) from a seed labelled frame
provided in CityScapes dataset. Row (b) contains ground truth la-
bels obtained by us. Row (c) illustrates corresponding augmented
frames. A high qualitative match is achieved. See Table 2] for
quantitative evaluation.

ence reduces erroneous labelling introduced by occlusions,
dis-occlusions or erroneous patch correspondences.
Instance label augmentation. To obtain instance labels,
we follow a similar procedure as in class label propagation.
One notable difference is that we assign all pixels of non-
instances to a background class and perform two steps of
clean up (see Figure [2). During the first step we dilate all
non-instance pixels which are surrounded by labels of one
particular instance and fill small (less than 20 pixels) in-
stance regions which reside within another instance with
the labels of the surrounding region. During the second
step we go through the generated labels and manually mark
instances with severly wrong labels as void”. Note that
clean-up of 6.5K of frames took no more than 4 hours of
manual labour and can be significantly improved with more
sophisticated tools.

4. Experiment Setup

In this section we describe experiments on three datasets:
CamVid [6]], CityScapes [10] and the novel CamVid-
Instance dataset. For all datasets we use the experimen-
tal protocol described in Section [3| unless stated otherwise.
Below we provide more details of each dataset and corre-
sponding steps taken to produce augmented labels.

4.1. CamVid dataset

The CamVid Dataset [6] consists of 701 labelled images:
367 for training, 233 for testing and 101 for validation, cov-
ering a total of 10 minutes of 30Hz video of driving in Cam-
bridge, UK. Labels are provided every 30 frames for the
training and testing set and every 2 frames for the valida-
tion set. A total of 32 label types related to autonomous
driving (road, side-walk, car, etc.) are provided, however
due to low representation of rare classes, most studies have

focused on evaluating classifiers on a subset containing 11
classes.

To obtain label propagation results we calculated the
correspondences for every pair of neighbouring labelled
frames. We then performed label propagation for the 11
classes, representing the void class via a uniform distribu-
tion. Inference took on average of 5 seconds per frame at
full resolution of 960 x 720. The window size (W x H)
for establishing correspondences was set to 140 x 100, J to
0.001.

We obtained propagated labels for all the images in the
train, test and validation datasets, however we use only the
labels in the training dataset in the experiments described
here.

4.2. CityScapes dataset

The CityScapes dataset consists of 5000 densely labelled
frames and 20000 coarsely labelled frames of 2048 x 1024
resolution. Each densely labelled frame is surrounded by
30 unlabelled adjacent video frames. We performed label
propagation for 20 surrounding frames resulting in a total
of 62475 annotated frames using the protocol described in
Section[d.Il 5% of the annotated frames were filtered manu-
ally. Key modes of failure included label leakage caused by
large object displacement and ego-motion as well as sudden
change in lighting.

To evaluate the quality of the labelling, we first sampled
9 frames from the CityScapes training dataset at random
at four different locations (-8,-4,+4 and +8) from the seed
label (see Figure [3). We then hand labelled the selected
images following the original protocol of CityScapes [10].
As shown in Table [2] all the classes had accuracy higher
than 70%, except for the bus class.

4.3. CamVid-Instance Dataset

For our third set of experiments we augmented the orig-
inal CamVid [6] dataset with instance level annotation of
people and cars. Several examples of instance labels ob-
tained are shown in Figure[2]

In order to obtain instances, we used original boundaries
of cars and people, only introducing new boundary anno-
tations where two instances of the same class were over-
lapping. The number of instances in a single frame ranged
from 0 to 27. More examples of CamVid-Instance dataset
images can be found in the supplementary material.

4.4. Model Training

In this section we provide brief training details of vari-
ous models for class and instance segmentation.
Class segmentation. For our experiments on the CamVid
dataset we trained six commonly used segmentation archi-
tectures: FCN [21]], SegNet [2], Bayesian SegNet [2], E-
Net [28]], Dilation Network [36] and PSPNet on both

233



FCN SegNet E-Net

[— Aug. Global Avg. | — Aug. Class Avg.
— Aug. Class Avg.

Accuracy (%)
@

g
Accuracy (%)
@

g

..
3
Accuracy (%)

— Aug. I0U Avg.

- Avg. Aug. Global Avg.
- Avg. Aug. Class Avg.
-= Avg. Aug. 10U Avg.
20 +++ Hand Global Avg. 20
-+ Hand Class Avg.

-+ Hand 10U Avg.

— Aug. IOU Avg.

A : Y
‘/‘\f\/ { — Aug. train iou
; — Aug. test iou
i === Aug. train class avg.
30 --- Aug. test class avg.
— Hand train iou
~— Hand test iou
-- Hand train class avg.

- Avg. Aug. Global Avg.
- Avg. Aug. Class Avg.
- Avg. Aug. 10U Avg.

«  Hand Global Avg.

- Hand Class Avg.

+ Hand 10U Avg.

-~ Hand test class avg.

% 20000 40000 60000 80000 100000 1 20000 40000
# of iterations

# of iterations

80000 100000 120000 0 20 a0 60 80 100
# of epochs

Figure 4. Three graphs in this figure compare segmentation network performance using global accuracy, class average accuracy and
average loU measures for results obtained when training on the original hand labelled CamVid data ("Hand”) as well as on augmented
labels obtained from uncertainty averaging ("Avg.”) and label differencing ("Aug.”), as explained in Section [3.3] The FCN network (left)
does not benefit from additional hand labels in our experiments. Broadly this corresponds to the findings reported in [26]. On the other
hand, Segnet [2] (middle) trained on augmented data produced using label differencing shows a significant increase in either class average
or IoU when compared to Avg. or Hand labels. The graph on the right shows class accuracy and IoU scores on train and test datasets for
E-Net [28]] for the first 100 epochs. The high (and increasing) average class accuracy on training data for E-Net trained on hand labels
indicates overfitting and explains the large class average and IoU score differences on the test data.

hand labelled as well as on augmented data. We chose the
aforementioned models due to their varying design choices
for upsampling layers, easily accessible code and high per-
formance.

In order to reduce the complexity of setup we trained
and tested Dilation Network without the context module.
Similarly the input resolution of PSPNet [37] was halved
(353 x 353).

Except where mentioned otherwise, we used the origi-
nal code and parameters provided by the authors of the cor-
responding networks. For a more fair comparison of net-
works no pre-training was used. For all the experiments on
CamVid dataset we used input images of 480 x 360 resolu-
tion. Quantitative experiment evaluation and its analysis is
presented in Section[5.1]

We repeated the same exercise for four models on the
CityScapes dataset. We excluded Bayesian SegNet and
FCN due to time constraints. Note that the aim of this work
is to demonstrate the value of using augmented data and
not to outperform state-of-the-art benchmarks.

Instance segmentation. For our experiments on instance
segmentation we used the DeepMask [29]] and Deep Water-
shed Transform [3] networks. We used original DeepMask
implementation provided by the authors and implemented
our own version of Deep Watershed Transform method, for
which we used SegNet as a classifier at train and test time.
We also simplified the post-processing steps to deleting the
lowest watershed prediction level then growing the con-
nected components back with dilation of one pixel radius.
In order to account for a non-perfect classifier at train time
we trained our watershed network to predict a watershed

energy of zero on erroneously labelled background pixels.

5. Results

In this section we present the quantitative and qualita-
tive results of our experiments on CamVid, CityScapes and
CamVid-Instance datasets.

5.1. CamVid Dataset

Figure [] illustrates the evolution of test accuracies dur-
ing training of FCN [21]], SegNet [2] and E-Net [28] on
the CamVid dataset with and without data augmentation.
It highlights the advantage of using augmented labels ob-
tained by frame differencing as opposed to uncertainty av-
eraging. It also indicates the potential of using augmented
data to prevent overfitting. See the caption of Figure 4| for
more details.

Table [I] compares six different state-of-the-art-models
trained on hand labelled and on augmented data. Per class
accuracies as well as average classification accuracy, global
accuracy and mean intersection over union (mean IoU)
scores are reported. Note that matching previously reported
accuracies is not straight-forward hence we include an eval-
uation of our own. Each network was trained either until
convergence or for an equal number of iterations with its
counterpart.

Overall we have found that using augmented labels of-
ten led to a significant increase (4% or more) with only
a slight decrease (less than 1.5%) in the worst case. A
particularly large increase in both average class accuracy
(10.8%) and IoU score (9.8%) was observed for E-Net and
in average class accuracy (6.6%) for SegNet. The slight
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SegNet [2] N/A | 88.0 87.3 923 800 295 97.6 572 494 278 84.8 30.7 | 659 886 502
184K | 89.6 83.6 939 79.0 473 959 696 372 344 888 29.7 | 68.2 88.8 585
184K | 83.7 86.8 94.6 824 59.0 928 839 487 462 935 51.1 | 748 88.1 598

N/A | 804 855 90.1 864 679 938 738 645 508 917 546|763 869 63.1
129K | 76.8 89.1 922 874 747 947 904 638 645 909 740|817 873 59.1
404K | 829 851 948 854 684 953 930 555 597 937 681|802 8.0 617

Bayesian SegNet [[16]

E-Net [28] N/A | 747 77.8 951 824 510 951 672 517 354 867 341|683 N-P 513
40K | 755 829 959 795 438 952 288 375 392 851 319|632 847 51.1
100K | 84.8 847 97.0 832 492 96.0 69.0 43.0 481 921 66.7 |74.0 89.1 60.9
FCN [21] N/A | NP N-P N-P NP NP NP NP NP NP NP NP|642 831 520

100K | 88.8 80.8 92.8 72.1 31.7 954 393 178 124 703 237|568 850 43.6
100K | 89.9 80.8 933 693 295 953 323 164 11.8 69.7 204 | 554 851 48.0
N/A | NP N-P N-P NP NP NP NP NP NP NP NP|NP NP 653
100K | 88.4 83.8 947 84.6 495 962 599 367 197 843 431 | 673 883 556
100K | 87.4 869 934 865 51.8 945 585 388 202 86.8 444 |68.1 881 55.6
N-P | NP NP NP NP NP NP NP NP NP NP NP|NP NP NP
300K | 88.8 89.0 93.7 889 443 97.0 732 407 297 89.6 594|722 90.0 623
300K | 88.9 83.8 972 843 49.1 964 608 505 265 91.7 564 | 714 90.0 625

Dilation Network [36]

PSPNet [37]
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Table 1. This table provides a quantitative evaluation of six different methods trained on hand labelled (H) and augmented (A) data from
CamVid [6] dataset. The number of iterations used to train each network is reported along with per-class segmentation accuracies, average
classification accuracy, global accuracy and average per-class intersection over union (IoU) metric. All methods were trained on images of
480 x 360 resolution. Corresponding results of each network reported in the literature are also listed in rows marked with type R (reported).
However, due to the different strategies followed in training and optimising deep networks, we encourage the reader to focus on the relative
performance difference between the results we report. Large increases in class average and/or average IoU metrics are observed for E-
Net and Segnet when trained on augmented data. The performance of Bayesian SegNet, FCN, Dilation Network and PSPNet is largely
unaffected. * - note that a significant difference in previously reported accuracies [36] and the ones obtained by us of Dilation Network
may be explained by the use of lower resolution images instead of 640 x 480.
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Table 2. The first row of this table contains the evaluation of augmented labels against hand labelled frames at various offsets from the seed
label frame as illustrated in Figure [3] The rest of this table contains quantitative evaluation of four different methods trained on the hand
labelled (H) and augmented (A) data from the CityScapes dataset. Similar metrics as in Table [I] are reported. The validation portion of
the dataset is used for testing as the submission frequency of the CityScapes benchmark is highly limited. SegNet, Dilation Network and
PSPNet show significant increase in class average accuracy and IoU metric scores when trained on augmented data.

decrease (less than 1.2%) in both metrics observed for the 5.2. CityScapes Dataset
FCN network can be explained by its limited ability in han-
dling small object classes at low resolution. A slight de-
crease in IoU matched by a higher class average observed
for Bayesian SegNet is likely to have been caused by an
unsaturated training requiring a significantly larger number
of iterations for convergence due to the use of dropout in
training.

Table [2] provides a quantitative analysis of SegNet [2]],
E-Net [28]], Dilation Network [36]] and PSPNet [37] tested
on the validation portion of CityScapes dataset. SegNet and
Dilation Network show a large increase in class average ac-
curacy (6.6% and 8.1% respectively) and in IoU (3.3% and
8.2%). The increased performance of Dilation Network can
be explained by existence of more pronounced small classes
in CityScapes dataset. PSPNet shows a moderate increase
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Network Data  Iter | AP-0.5-ALL-100 AP-0.5:0.95-ALL-100
DeepMask [29] H 50K 0.139 0.095
A 200K 0.143 0.094
DWN [3] H 188K 0.207 0.082
A 220K 0.252 0.099

Table 3. This table compares DeepMask [29] and Deep Water-
shed [3]] networks when trained on hand labelled (H) and on aug-
mented (A) instance labels. Metrics of average precision at loU
score threshold of 0.5 and at multiple thresholds (0.5-0.95) are cal-
culated using MSCOCO evaluation API [19].

in both class average (2.1%) and IoU (4.1%). Note while
PSPNet does not reach reported [37]] accuracy, maximising
overall performance is out of the scope of this work. Mul-
tiple experimental changes could have contributed to lower
than reported performance: no pre-training was used, net-
work input and image resolution was halved, only 1 week
of a single GPU training time had been dedicated. Finally,
note that a slightly decrease in the IoU and average class
accuracy of E-Net may indicate the limitations of this very
compact model when trained on a significantly more com-
plex dataset than CamVid.

5.3. Instance Segmentation

Table [3] and Figure [5] show quantitative and qualitative
comparison of Deep Watershed [3] and DeepMask [29]
instance segmentation networks when trained on hand la-
belled and on augmented data. Standard average precision
metrics [19] under different IoU thresholds (as shown in Ta-
ble[3) are used to perform the quantitative evaluation.

As with semantic segmentation experiments both met-
rics (AP-0.5-ALL-100 and AP-0.5:0.95-ALL-100) show rel-
atively larger increase (from 0.207 to 0.252) than decrease
(from 0.095 to 0.094) when augmented data is used for
training. Moreover a larger increase seen in both average
precision metrics for Deep Watershed Transform Network
translates to a qualitatively better separation of car instances
shown in Figure 3]

6. Conclusion

In this paper we presented the analysis of the effect of
large scale labelled video data augmentation for seman-
tic segmentation in driving scenarios. For some networks,
such as E-Net [28]], SegNet [2] or Dilation Network [36]
we observed increases of either average class accuracy or
intersection over union (IoU) score in range from 6.6%
to 10.8%. We also demonstrated the potential for using
augmented data to improve the accuracy of instance level
segmentation. The augmented data for CityScapes [10],
CamVid [6]] and CamVid-Instance datasets will be made
available to the research community for further evaluation.
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Figure 5. This figure provides a qualitative comparison of Deep
Watershed [3] (rows c¢,d) and Deep Mask [29]] (rows e,f) network
predictions when trained on hand labelled and on augmented data.
CamVid-Instance dataset is used for testing and training. Failures
and successes in car separation as well as car segmentation are
marked in green and red boxes correspondingly. Training the Deep
Watershed Network [3]] with augmented labels results in improved
nearby car instance separation. The effect of augmented data is
less pronounced for DeepMask [29]] network which corresponds
well to smaller quantitative differences in average precision met-
rics reported in Table 3]
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