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Abstract

We study the problem of localizing regions in an image

that depict potentially risky areas. In particular, we focus

on images acquired by a front camera mounted on a car

with the goal of localizing image regions where pedestri-

ans are likely to enter the scene suddenly. In this case, we

define the risk value at every pixel as the likelihood that

a pedestrian will occupy those pixels shortly. This task is

very challenging because the risk areas are not easily char-

acterized by appearances of single objects, and therefore

these regions exhibit large visual variations. Additionally,

the boundaries of the risk regions in the image are not easily

defined by human annotators, as they do not tend to corre-

spond to object boundaries. This causes the annotation pro-

cess to be ambiguous and costly. To overcome the ambiguity

in the boundaries of risky regions, we adopt a weakly super-

vised method for risk region localization and risk value esti-

mation that only requires single point supervision at train-

ing time. To evaluate our approach, we augment the Cal-

tech Pedestrian dataset with risk region annotations. Our

results show that our weak supervised method outperform

fully supervised approaches in risk region localization and

risk value estimation.

1. Introduction

One of the key current bottlenecks in self-driving car

technology is the ability to perceive the environment in high

detail. In particular, this is important because perceiving the

objects and events in the surroundings of the car is crucial

for navigation and safety. Recent progress in computer vi-

sion has achieved impressive performance in some of the

perception tasks in images taken from car-mounted cam-

eras: pedestrian and object detection [4, 12, 25, 27] can

run in real time without missing objects of various scale,

and per-pixel semantic segmentation of the scene [7] can

achieve impressive performance in multiple environmental

conditaions. Some recent approaches also tackle direct nav-

igation from perception, by attempting to control the steer-

ing wheel directly from input images [5]. In spite of all

Figure 1. Illustration of risky region localization. left are input

images. right are output of proposed method (red area is risky

region, blue area is safety region). In the proposed method, risk is

predicted not depending on the object categories .

the progress, current self-driving cars still lack the ability

to anticipate or predict future events. In particular, the abil-

ity to anticipate sudden events such as a pedestrian rushing

into the road will be crucial to achieving acceptable safety

standards.

See Figure 1(left) as an example. If a self-driving car re-

lies solely on pedestrian detection algorithms and a pedes-

trian suddenly rush out from behind the bus, it will be virtu-

ally impossible to apply the breaks early enough to avoid a

collision. This is because the pedestrian detection algorithm

will only respond when the pedestrian is mostly visible. On

traditional vehicles operated by human drivers, experienced

drivers can anticipate and estimate the risk or danger of the

surrounding areas. For instance, if the car approaches ar-

eas where pedestrians are likely to rush out, the driver may

release the accelerator and get ready to stop ahead of time.

In this paper, we take a step towards providing self-

driving cars with such important ability. We introduce a

framework to (1) localize regions where pedestrians may

rush out and (2) the risk level of such regions. Note that

this has to be done even before the pedestrians appear in
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Figure 2. Levels of supervision for risky region localization. (a) shows an original image. (b) shows full supervision, where the red

and blue areas are manually annotated by per-pixel, different colors indicate annotator identity. (c) shows ordinal supervision, where a

worker annotates the risk relationship between point 1 and 2, here point 1 is more risky. (d) shows single point supervision adopted in the

framework presented in this paper (red points are risky points in the image).

the image. Figure 1(right) shows an example output of the

risky region localization and risk level estimation proposed

in this paper. For our purposes, we define risk regions as

areas where pedestrians are likely to rush out from behind

an object.

There is not much prior work on the task of estimating

risk from visual inputs taken from car-mounted cameras.

Jung et al. [13] propose a collision warning system via se-

mantic segmentation. They estimate whether the segmented

pedestrian regions are dangerous. However, this method

only can estimate risk for visible pedestrians. Within the

domain of transportation, Shad et al. [24] estimate danger-

ous city areas from historical accident logs but do not rely

on any visual data. They achieve this by predicting the risk

level from the types of location (intersection, square) and

the number of accidents. However, their method operates at

a very low spatial resolution and the estimation is indepen-

dent of the current configuration of cars and other objects in

the environment.

While not directly addressing the risk localization prob-

lem, some previous computer vision approaches tackle re-

lated tasks. The most relevant work focuses on object

recognition and semantic segmentation [10, 11, 18, 20, 26].

The usual learning procedure for these methods requires

fully supervised training examples, which correspond to

object bounding boxes or per-pixel category labels for the

entire image. These models then learn the object region

or segmentation by minimizing the errors between the pre-

diction result and the ground-truth. One could extrapolate

such approach for our task of risk localization. That is, for

each training image, we would need to annotate risk region

bounding boxes or segmentation masks and use them as

ground-truth to train one of those architectures in a fully

supervised way. Unfortunately, this strategy is unlikely to

be successful. First, object detection methodologies rely

on somewhat consistent object appearances. In our case,

the appearance varies dramatically, as the risk regions do

not correlate directly with object appearances, but instead

depend on complex object and scene configurations. On

the other hand, semantic segmentation architectures require

detailed per-pixel segmentation masks as ground-truth for

training. Unfortunately, it is hard to obtain per-pixel masks

for the risk localization task. This is in part because the

boundaries of the risk regions in the image are not character-

ized directly by their appearance and they do not correlate

well with object boundaries in the scene. This makes the re-

gions difficult to be unambiguously defined by human anno-

tators. Figure 2 (b) shows an example of per-pixel annota-

tion on an image taken from a car-mounted camera. Empir-

ically, we observe that per-pixel risk annotation masks from

two workers only have a coincidence of 54% on average

(over 3,438 images from the Caltech pedestrian dataset).

One way to tackle this issue is avoiding the detailed, costly

and ambiguous mask annotation by only collecting single

point supervision [3] (Figure 2 (d)). In practice, we ob-

serve that single point annotations tend to coincide within

a few pixels of each other. While this simplifies the anno-

tation and reduces its costs, it comes with the penalty that

no information about the extent of the risk regions is now

available at training time. Inspired by [3], we address this

by introducing priors appropriate to our problem of risk lo-

calization.

In addition to our task of localizing risky regions, we are

also interested in producing an estimate of the risk level for

each region. Unfortunately, annotating the degree of danger

or risk is even more difficult than annotating the location

of risky regions. For example, annotation rules are diffi-

cult to define because the degree of risk depends on scene

arrangement and other factors. Therefore, annotators usu-

ally cannot accurately give the numerical value of the risk

level of the region. One way to tackle this issue is avoid-

ing risk level annotation by only using pairwise ordinal re-

lationships between points in an image. A similar strategy

was adopted by [6] for estimating relative depth values in an

image when annotators could not provide accurate depth es-

timations, but were able to correctly annotate relative depth

between pixels. In our case, we can adopt this strategy to

automatically provide ordinal relations of risk between pix-

els as ground-truth. This enables our algorithm to estimate

relative risk values from input images. Finally, we incorpo-
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rate prior information about safe regions in the environment

to successfully establish a base risk value of zero in the safe

areas.

In summary, our main contributions are: (1) We intro-

duce the first framework for predicting the area where a

pedestrian is likely to rush into a road scene. (2) We address

the ambiguity in region boundary annotation by single point

supervision and propose a method to supplement such weak

supervision with prior knowledge.

2. Related Work

Semantic Segmentation. Most semantic segmentation

methods [7, 21, 22, 23] require full-supervision which ac-

curately gives the shape of the target objects. In this setting,

workers annotate the object areas pixel-by-pixel. However,

this setting is difficult to apply directly to our task of risky

region localization as the boundary of these areas is not eas-

ily determined. Recent work in semantic segmentation has

attempted to relax the assumption of fully supervised seg-

mentation masks for training. In particular, Bearman et al.

[3] propose a method that requires the location of single

point within the object region as the annotation. Since a sin-

gle click is not enough to define the extent of the object, they

augment the annotation with the use of an objectness prior.

The prior improves segmentation performance by providing

cues of the extent of the object region. However, note that

in our problem of risky region localization, the algorithm

should predict the potential risky area before the pedestrian

appears. This makes the use of objectess priors less effec-

tive in our setting, as the boundaries of the risk area do not

coincide with the boundaries of the pedestrian or any other

specific object. Inspired by [3], in this work we (1) adopt

the idea of single point supervision, where annotators only

click one pixel within each risk region; and (2) extend their

framework by incorporating priors that are more relevant to

the task of risk localization.

Single Image Depth Estimation. Also related to our

framework are approaches that estimate a numerical value

for each pixel in an image. An example of these are methods

for single image depth perception [6, 9, 16, 17]. In partic-

ular, Chen et al. [6] learn to estimate depth from single im-

ages using ordinal information. To train their system, they

collect pairwise annotations similar to what is shown in Fig-

ure 2(c). In their setting, the annotator selects two points in

the image and describes the relative distance of these points

with respect to the camera, by indicating which point is

closer to the camera or whether both are at the same dis-

tance. This circumvents the need for the annotators to pro-

vide a specific distance value for each pixel, which would be

inaccurate. In our paper, we adopt the idea of pairwise or-

dinal relationships between pairs of points as a way to train

a system that estimates the value of risk at every pixel in

the image. Note that, just as in the case of depth, when pre-

dicting risky regions, we need to use many pairs having dif-

ferent degrees of risk as training data. Unlike their method

that requires annotators to manually click two points in the

image, we only ask annotators to click on a single point for

each risky region in the image and we automatically gener-

ate pairs afterwards. See Section 3.3 for more details.

Trajectory Anticipation. Regarding anticipation to events,

recent work has tackled the problem of predicting pedes-

trian trajectories to estimate where they are likely to go

[1, 14, 15, 19]. Kitani et al. [15] propose a method of pre-

dicting the trajectory of pedestrians from surrounding phys-

ical information. In their method, the model learns from

trajectories that pedestrian have taken. For risk region lo-

calization, their method cannot be applied because it is dif-

ficult to collect large amounts of data that explicitly depict

pedestrians rushing out to the road.

3. Risky Region Localization

We are interested in the problem of localizing risky re-

gions in images as well as evaluating their risk level. In

particular, we focus our analysis of risk to images captured

by a camera mounted on a car. In our setting, we define

risky regions as those areas in the images with high like-

lihood of a pedestrian suddenly appearing. More formally,

the input to our framework is an image I as shown in Figure

1 (left), and the output is a pixel-wise risk map z as shown

in Figure 1 (right). A key challenge in our problem is that

obtaining detailed per-pixel supervision of risk areas as in

Figure 2(b) is difficult due to the ambiguous nature of the

boundary of the risky regions. Furthermore, per-pixel risk

levels are also difficult to estimate by a single human anno-

tator. To circumvent these challenges, we instead ask anno-

tators to simply provide a single point supervision for each

risky region in the image, as depicted in Figure 2(d). This

makes the annotation process much faster and less costly.

We compensate such weak supervision by integrating prior

information from automatically obtained safe areas in the

image and generating denser supervision in the form of rel-

ative risk between a large number of point pairs. In the

following, we present the details of our Risk Region Lo-

calization Network depicted in Figure 3(top) and our auto-

matic generation of pairwise supervision depicted in Figure

3 (bottom).

3.1. Risk Localization Network

Our framework estimates risk maps z from input images

I using a Risk Localization Network. We adopt the hour-

glass network architecture from Chen et al. [6]. In their

work, they train a single-image depth estimator from super-

vision in the form of pairwise ordinal labels. Here, we em-

ploy a similar hourglass architecture to generate pixel-wise

risk estimates z. We also train our Risk Localization Net-

work using a similar strategy: we provide supervision in the
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Figure 3. Overview of our risk localization approach. We use single point supervision as annotation, and generate different risk pairs

(differential pairs). Also, we utilize prior about safety area by using semantic segmentation, and generate same risk pairs from safety area

(equal pairs).

form of pairwise ordinal risk relationships. Note that in [6],

supervision is generated manually by annotators that judge

ordinal labels for a large number of pixel pairs. This results

in large annotation costs, as reflected by the time it takes

to annotate each image (see Section 4). We address the an-

notation cost issue by adopting a semi-automatic strategy

for generating pairwise supervision, which includes manual

single point annotations and automatic pair generation as

detailed in Section 3.3. For each training image I , the result

of this process is a large set ofK point pairs with annotation

R = (p1k, p2k, rk), k = 1, ...,K, where pik is the location

of the i-th point in the k-th pair. By construction, we only

consider point pairs where: (1) both points have zero risk,

in which case we set rk = 0 (equal risk pair); and (2) p1k
is in a risky region and p2k is random point in a image, in

which case we set rk = 1 (differential risk pair).

3.2. Loss function

In order to train our Risk Localization Network, we use

backpropagation to minimize a differentiable loss that en-

courages the network to predict relative risk correctly. To

accomplish this, we augment the loss function in [6] to in-

corporate additional constraints that we can leverage in our

problem setting. In particular, by construction we only con-

sider equal risk pairs (rk = 0) where the risk value of each

point is zero. We leverage this property of our supervised

point pairs to extend the original loss function as follows.

Let z be the predicted risk map and zp1k
, zp2k

be the risk at

point p1 and p2 in the k-th pair. We write our training loss

function as:

L(I, R, z) =

K∑

k=1

ψk(I, p1k, p2k, r, z) (1)

where ψk(I, p1k, p2k, r, z) is the loss for the k-th pair

ψk(I, p1k, p2k, r, z) =

{

log(1 + exp(−zp1k + zp2k )) (rk = 1)

(zp1k − zp2k )
2 + z2p1k + z2p2k (rk = 0)

(2)

Note that we have incorporated additional quadratic terms

in Equation (2) to penalize for large predictions of risk val-

ues when rk = 0.

In practice, we observe that our augmented loss encour-

ages the model to be more conservative at predicting high

risk values, which translates in lower false postitive rates

and more stable risk value prediction in consecutive video

frames.

We also note that it is key for the training process to have

access to both differential pairs and equal pairs. On one

hand, a large number of differential pairs is important for

the ranking loss in Equation (2) to be effective, on the other

hand the equal pairs are useful for setting the base risk value

of zero in safe regions.

3.3. Automatic pair generation

The training procedure of our Risk Localization Network

requires supervision in the form of pairwise risk relation-

ships R. While we could manually annotate a large number

of point pairs with relative risk information, this process is

expensive and time-consuming. Instead of such extensive

annotation, we only request our annotators to provide a sin-

gle point for each risky region in the image. This signif-

icantly reduces annotation costs at the expense of less de-

tailed supervision. Therefore, we need to convert the set of

single point annotations into a large number of point pairs

with relative risk information, which is more suitable for our

learning process. In the following, we describe our strategy
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for automatically generating these point pairs. Figure 3(bot-

tom) illustrates this process.

We start the process by asking crowd-sourcing workers

to annotate a single point for each risky region observed in

the image (Figure 3(b)). Since these points are within risky

areas, we know they have a higher risk value than other

points in the image. Therefore, we can generate a large

number of differential pairs by randomly sampling points

in the image that are far from the single point annotations

(Figure 3(c)).

As mentioned before, it is important for the training al-

gorithm to have access both to differential and equal pairs.

Therefore, we need another strategy to generate pairs of

equal risk. We do this by first automatically segmenting

the image into semantic regions using the method from [2].

Once we obtain a semantic segmentation, we can use prior

information to determine some areas in the image that can

be considered as safe. For instance, those regions automat-

ically marked as sky, road, sign-symbol and column-pole

(that is, 4 out of 11 classes in CamVid) cannot be occlud-

ing pedestrians. This results in an estimated safe area as

shown in Figure 3(e). Finally, we can randomly sample a

large number of point pairs within the safe region to gener-

ate pairs of points with equal risk (Figure 3(f)). Note that by

design all equal pairs also have low risk value. We exploit

this to constrain our loss function as described in Section

3.2.

Our strategy effectively incorporates prior information

about what regions in the image can be considered as safe.

This implicitely defines the maximum extent of the risky

regions, by enforcing risk to be low in the safe regions of the

image. In contrast to [3], where objectness is used to define

the boundary of the objects from the inside of the object

regions, our safe region prior helps defining the boundary

of the risky regions from the outside.

The process outlined here enables our approach to gen-

erate a large number of supervised point pairs from single

point annotations. This enables more affordable annotation

in comparison with prior annotation approaches. We also

emphasize that semantic segmentation is only used to gen-

erate training data, so the extra computation cost is not in-

curred during the inference stage, which only consists of a

forward pass of our Risk Localization Network.

4. Dataset and Annotation Cost

In order to evaluate our approach, we have augmented a

subset of the Caltech pedestrian dataset from [8] with risky

region annotations. The original Caltech pedestrian dataset

consists of approximately 10 hours of video taken from a

vehicle driving in an urban environment and is annotated

with bounding boxes of pedestrians and detailed occlusion

labels. For the purpose of our experimental validation, we

have further annotated over 4,500 images from the Caltech

Data Images Workers

Train 2,260 2

Validation 1,178 2

Test 1,193 10

Table 1. Caltech risk dataset. Images means the number of images.

Workers means the number of annotation workers.

dataset with risky region labels. As indicated in Table 1,

each image in our training and validation subsets was an-

notated by two crowd-sourcing workers, while all images

in the testing subset were annotated by ten workers. As

ground-truth for evaluation, we annotated the risky regions

to 1,193 test images. Since mask annotations for risky re-

gions can have large individual differences among annota-

tors, we employ ten workers to annotate each testing im-

age. We can aggregate the resulting masks to generate a

groundtruth probability risk map. In our evaluation, we bi-

narize the resulting map at 0.5 and use the resulting binary

image as groundtruth.

For comparisons, we adopt three annotation strategies:

full supervision, ordinal supervision and single point super-

vision. We elaborate the details of each in the following.

Full supervision (32.2 sec/img). We manually annotated

segmentation masks for all risky regions, as in Figure 2(b).

We find that it takes 32.2 seconds to annotate one image.

Unlike semantic segmentation, the type of target area is one

category (risky), and since the number of regions is small

for one image, it is possible to annotate it relatively quickly.

However, since there is ambiguity at the boundary of the

risky region, we improve label reliability by increasing the

number of annotators per image, which in turn increases

annotation cost significantly.

Ordinal supervision (50.6 sec/img, 1.7 sec/pair) Next, we

generated pairs of points for the image and asked annotators

to judge which point is more risky, as in Figure 2(c). We

find it takes 1.7 seconds to annotate one pair. In this exper-

iment, 30 pairs were generated for one image, so the total

time required for labeling one image was 50.6 seconds. The

annotation can be done easily because the object of judg-

ment is the comparison of two points, but it is time consum-

ing as workers need to judge each pair sequentially.

Point-level supervision (3.4 sec/img) Finally, we collected

single point annotations for each risky area where pedestri-

ans are likely to rush out in the image, as in Figure 2(d).

We find that the time required for one image is 3.4 seconds.

Since there is no need to input the region boundary, the an-

notation process is less ambiguous. Moreover, using our

strategy in Section 3.3, we can generate many supervised

pairs in a less expensive manner when compared to ordinal

supervision.

From the above results, regarding ambiguities of anno-

tation, ordinal supervision and our single point supervision
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are easier to annotate than full supervision. Regarding an-

notation cost, the annotation cost is about one tenth of that

of Full supervision. Compared to ordinal supervision, if

three pairs or more are generated for an image, then single

point annotation is more effective.

5. Experiments

The goal of our experiments is to validate the ability of

our trained approach to localize risky regions as well as to

estimate the risk value in new unseen images. We compare

our full approach to a number of baselines, as well as to

simplified versions of our approach. For fair comparisons,

all the network structures in the following are fixed to the

hourglass architecture of [6].

Baselines

Supervised segmentation: We annotate full-mask of risk

to images. Using the full supervision annotation, we use

Cross-entropy as the loss function for semantic segmenta-

tion [2].

Ordinal: We annotate ordinal relation of risk between

2 points. Pairs are generated by a method similar to the

method [6], and we train the risk region localization net by

using the ordinal loss function of [6].

Ablations

Point supervision with differential pairs: As shown in

Section 3.3, with single point supervision, only pairs with

different risk levels are generated, and optimization is per-

formed by the ordinal loss function of [6].

Point supervision with all pairs: As shown in Section

3.3, we generated differential pairs from single point super-

vision and equal pairs using safety region. These pairs are

optimized by the loss function of [6].

Our method

Single point supervision with differential and equal pairs

and risk value loss: As shown in Section 3.3, with single

point supervision, we generated differential pairs from sin-

gle point supervision and equal pairs using safety region.

These pairs are optimized with the equation (1) and (2)

shown in Section 3.2.

5.1. Evaluation Metrics

Our goal is to quantitatively evaluate two aspects of our

approach. First, we evaluate the capability of our model

to localize risky regions in images. Second, we evaluate the

performance of our framework when estimating risk values.

We evaluate risk localization by thresholding our risk

map output z as well as the risk groundtruth. We then com-

pare these binary maps and compute precision, recall and F1

score to measure the performance of our method in localiz-

ing risky regions. In practice, an output region is declared

as true positive when it has high overlap with a risky region

in the groundtruth map and as a false positive otherwise.

We evaluate our estimation of risk value by comput-

ing the root mean square error (RMSE) between z and the

ground truth risk map. This metric is small when the esti-

mated values are close the the ground truth risk values. We

note that the ground truth risk maps are heavily dominated

by areas with low risk values, so we also report RMSE sep-

arately for high-risk areas (where risk > 0.5) and low-risk

areas (where risk < 0.5).

5.2. Risk Region Localization

We report our results for Risk Localization in Table 2.

We note that our method requires the least amount of an-

notation time, as it only relies on single point annotations

for each risky region in the training images. However, we

note that it achieves similar recall as the fully supervised

segmentation approach and it significantly outperforms all

methods in terms of precision. In particular, we associate

its high precision to the fact that our single point annota-

tion does not give ambiguous boundary annotation but in-

stead focuses on areas that can be reliably marked as risky.

We also note that our method outperforms the ordinal base-

line, which we attribute to the fact that we can automatically

generate many more supervised point pairs and we are not

limited by the small number of annotated pairs that can be

obtained manually from annotators. Finally, we see in our

ablated approaches that incorporating our loss function as

well as differential and equal risk pairs are all contributing

to the final performance.

5.3. Risk Value Estimation

Table 2 also summarizes our results on risk value esti-

mation. We note that our method achieves the best overall

RMSE when compared to our baselines and ablated models.

We note that most models achieve low RMSE overall, and

low RMSE on low-risk areas, while the error in high-risk

areas is higher. Given that the recall results in risk local-

ization are reasonably high, we attribute this discrepancy to

the fact that the models are not capable of capturing the risk

boundaries precisely and the risk values decay quickly from

the center of the risk region. For a practical application in a

self-driving car, the precise extent of the risk region may be

less critical, as the navigation planner can be take conserva-

tive margins around the detected risk areas.

5.4. Qualitative Results

We present some qualitative examples in Figure 4 and

5. First, we discuss the successful cases in Figure 4. Our

method correctly predicts the risk regions where pedestri-

ans are likely to rush out against various background areas.

For example, it is possible to predict the risky regions even

if the color and shape of the vehicle are greatly different or

the appearance behind it is greatly different. As illustrated

by the examples in the second column, the supervised seg-

251



Annotation Risk Localization Risk Value

Method Time Recall Precision F1 score RMSE RMSE RMSE

(Supervision) (Sec/img) (%) (%) (All pixels) (low-risk) (high-risk)

Supervised segmentation [2] 32.2 77.3 29.7 0.429 0.216 0.215 0.239

Ordinal [6] 50.6 72.5 27.6 0.400 0.128 0.125 0.280

Point sup. with differential pairs 3.4 68.5 38.9 0.496 0.085 0.075 0.627

Point sup. with all pairs 3.4 75.1 38.3 0.507 0.093 0.083 0.599

Our method 3.4 77.4 43.7 0.558 0.072 0.061 0.625

Table 2. Quantitative results of risky region localization, Quantitative results of RMSE. Time means annotation time for each image, and

measures recall(detection rate) of risky regions, precision of risky regions, F1 score. We also measure root mean square error (RMSE) of

whole data, RMSE that the value of risk < 0.5, and RMSE that the value of risk > 0.5.

mentation method detects shapes close to the annotation as

risky regions. However, even if a plurality of regions ex-

ists in the detected regions in the image, both are high-risk

levels. On the other hand, the model with ordinal supervi-

sion (third column) outputs higher risk in the region near

the car, and the degree of risk is different for each region.

On the other hand, if we use only single point supervision,

the relative information is optimized, so the position with

high risk matches the other method. However, the degree of

risk is high overall in the image, and it cannot be used as a

risky region localization for self-driving cars. By adding the

prior of the safety area, information on the safety region in

the image is added, so the detection performance is greatly

improved. By adding value to the loss function, false posi-

tive is suppressed, and the performance is improved.

Finally, we illustrate failure examples in Figure 5. We

note that the person area on the bicycle is erroneously de-

tected. In this dataset, only the information of the risky

regions is given without any knowledge about the type of

objects in the scene. Therefore, when vertical edges of a

person come out strongly, there are possibility that it is de-

termined as risky regions by mistaking it as a concealed ob-

ject. On the other hand, we cannot detect the risky regions

appearing in the opposite lane while turning the corner by

all methods. Danger scenes in the corner are few in the

dataset, and the number of samples in the dangerous area

is small, so it is considered that undetected has occurred.

This could be addressed by focused data augmentation of

risky scene configurations. In another example, the area of

a car running in parallel is erroneously detected. Since the

current model uses only a single image, if there are many

dangerous scenes in the relative arrangement, the area is

erroneously detected. Therefore, it is necessary to use time-

series information for vehicles running in parallel where the

relative relationship does not change.

6. Conclusion

We introduce a new risk region localization task and pro-

pose a first approach to tackle this problem. We propose a

weakly supervised method for risk region localization and

risk value estimation that only requires single point supervi-

sion at training time. Our method only relies on color data

from single images, so further exploration may study the

use of video sequences and 3D geometry to further improve

the performance.
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