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Abstract

Recent progress of deep image classification models pro-

vides a large potential to improve state-of-the-art perfor-

mance in related computer vision tasks. However, the tran-

sition to semantic segmentation is hampered by strict mem-

ory limitations of contemporary GPUs. The extent of fea-

ture map caching required by convolutional backprop poses

significant challenges even for moderately sized PASCAL

images, while requiring careful architectural considera-

tions when the source resolution is in the megapixel range.

To address these concerns, we propose a DenseNet-based

ladder-style architecture which is able to deliver high mod-

elling power with very lean representations at the original

resolution. The resulting fully convolutional models have

few parameters, allow training at megapixel resolution on

commodity hardware and display fair semantic segmenta-

tion performance even without ImageNet pre-training. We

present experiments on Cityscapes and Pascal VOC 2012

datasets and report competitive results.

1. Introduction

Semantic segmentation is a computer vision task in

which the algorithm has to classify pixels into meaning-

ful high-level categories. Due to being complementary to

object localization, it represents an important step towards

advanced future techniques for natural image understand-

ing. Some of the most attractive application fields include

autonomous control, intelligent transportation systems and

automated analysis of photographic collections.

Early semantic segmentation approaches optimized a

trade-off between multiple local classification cues (tex-

ture, color etc) and their global agreement across the image.

Later work improved these ideas with nonlinear feature em-

beddings [3], multiscale analysis [5] and depth [16]. Global

consistency has been improved by promoting agreement be-

tween pixels and semantic labels [15], as well as by learn-

ing asymetric pairwise semantic agreement potentials [20].

However, none of these approaches have been able to sus-

tain an improvement rate comparable to simple local appli-

cation of state-of-the-art deep convolutional models [17, 5].

Deep convolutional models have caused unprecedented

growth of computer vision performance in the last five

years. Depth of state-of-the-art models has been steadily

increasing from 8 levels [17] to 19 [30], 22 [31], 152 [8],

201 [10], and more [8]. Much recent attention has been

directed towards models with residual connections (also

known as ResNets) [8, 9] which sum the output of a non-

linear mapping with its input. This construction introduces

an auxiliary information path which allows a direct propa-

gation across the layers, similarly to the way the state vec-

tor flows across LSTM cells. This improves the gradient

flow towards the early model layers and allows successful

backprop training through hundreds of convolutional layers.

However, in contrast to the great depth of residual models,

Veit et al [33] have empirically determined that most of their

training occurs along relatively short paths. Hence, it has

been conjectured [33] that a residual model acts as an expo-

nentially large ensemble of moderately deep sub-models.

Recent approaches [18, 10] replicate and exceed the

ResNet success with suitable skip-connections [21, 22] be-

tween early and later layers. This encourages feature shar-

ing and reduces the number of parameters (especially when

semantic classes have differing complexities), while also

favouring the gradient flow towards early layers. Our work

is based on the DenseNet architecture [10] in which the con-

volutions operate on a concatenation of all previous features

at the current resolution. ImageNet experiments have shown

that DenseNets succeed to match the ResNet performance

with a three-fold parameter reduction [10].

Regardless of the particular architecture, early layers of

a deep model are typically rich with detail and poor in se-

mantics. On the other hand, the later, deeper layers are rich

with semantics and poor in details. Thus, we see that blend-

ing features at different levels of abstraction has a potential

to improve specialization, and lead to a better exploitation

of parameters. Such blending can be conveniently achieved

with a ladder network [32]. Suppose we have feature ten-

sors Ft produced by a usual convolutional pipeline (Ft+1 is
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at half resolution of Ft ∀t). Then, a blended representation

F̂u which combines feature tensors Ft for all t ≥ u can be

recursively obtained by mixing Ft with F̂t+1.

F̂t = gt(Ft, F̂t+1) (1)

The resulting model first performs the usual succession

from F0 (being the input) to Fn = F̂n (being the most sub-

sampled representation), and then proceeds with backward-

blending from F̂n to F̂0 (being the result). This idea has

been introduced in autoencoders [32], while recently it has

also been used in segmentation [27] and detection [29].

In this paper we present an efficient and effective ar-

chitecture for semantic segmentation which augments the

DenseNet classifier with ladder-style skip-connections. The

purpose of skip-connections is to blend semantic informa-

tion from the deep layers with spatially accurate informa-

tion from the early layers. Contrary to the related previous

work [27, 6, 19, 11, 25], our work is based on the DenseNet

architecture [10] and performs the blending on the feature

level by one projection, one concatenation and one 3 × 3
convolution, instead of complex residual processing at the

class-score level. Contrary to the related previous work

[12], our models are specifically tailored to support oper-

ation on very large natural images, by having few feature

maps at high spatial resolution and many feature maps in

the most downsampled layers. Consequently, we are able

to perform the training on entire images in the megapixel

range without high-end hardware, while outperforming di-

lated and residual architectures. We present experiments on

Cityscapes and Pascal VOC 2012 datasets and report com-

petitive IoU performance, modest memory requirements

and fair execution speed.

2. Related Work

Early convolutional models for semantic segmentation

had only few pooling layers and trained from scratch [5].

Later work built on image classification models pretrained

on ImageNet [30, 8, 10], which typically perform 5 down-

samplings before aggregation. The resulting loss of spatial

resolution requires special techniques for upsampling the

features back to the resolution of the source image. Some

researchers approached the problem by trained upsampling

[21]. This idea has been further improved by taking into ac-

count cached switches from strided pooling layers [23, 13].

A simpler approach to recover some resolution is to set

the output stride of some pooling layers to one pixel. The

resulting feature tensor must be subsequently reshaped in

a space to batch fashion in order to make subsequent con-

volutions equivalent to the case of strided pooling which

was used during pretraining [28, 35]. Thus, a regular con-

volution on the reshaped tensor becomes equivalent to the

dilated [36] convolution on the original tensor. Besides up-

sampling, dilated filtering has also been applied to increase

the receptive field of pixel-level classification [1, 36]. In

theory, this approach can completely recover the resolu-

tion loss due to strided pooling, without any compromises

with respect to the pretrained classification model [28, 35].

However, due to reasons we shall revisit later, practical im-

plementations recover only the last two strided poolings,

which allows subsequent inference at 8× subsampled res-

olution [35, 37, 34]. Wu et al [35] recall the relative short-

ness of most residual network training paths [33] and ar-

gue that models with reduced depth and increased seman-

tic dimensionality (i.e. more feature maps) lead to more

efficient memory utilization. They show ResNet experi-

ments in which a 38-layer model outperforms deeper mod-

els. Zhao et al [37] pool features in a pyramidal fashion in

order to recover a set of representations with increasingly

larger receptive fields. They also introduce an auxiliary

loss in the middle of the 4th group of the ResNet archi-

tecture. Due to dilated convolution, both losses operate at

the same resolution. Wang et al [34] recover the resolution

loss due to subsampling by explicitly trading semantic di-

mensionality for spatial resolution. This is achieved by ap-

plying a standard convolutional layer with 82·C kernels to

the ResNet feature tensor W/8×H/8×2048. The resulting

tensor W/8×H/8×82·C is reshaped to W×H×C and finally

employed for pixel-level inferrence.

Despite the success of dilated filtering, we believe that

there are two important reasons why this technique is not

likely going to be a definitive solution for upsampling se-

mantic segmentation maps. First, dilated filtering sub-

stantially increases memory requirements. For instance,

a VGG-D architecture (16 trainable layers) would require

around 33 GB to store all convolutional feature maps at the

Cityscapes resolution, which would preclude experimen-

tation on most available hardware. Recent architectures

[8, 10] additionally increase the memory pressure due to

greater depth and batchnorm regularization. Second, dilated

filtering treats semantic segmentation exactly as if it were

ImageNet classification, which, in our view, should not be

the case. Semantic segmentation has to provide accurate

location information: one pixel left or right must make a

difference between one class and another. We find it hard

to accept that deep semantic layers alone are the optimal

place for bringing such location-dependent decisions, and

that brings us close to the focus of our research.

We shall now consider semantic segmentation ap-

proaches which upsample feature maps without dilated con-

volutions and are therefore more related to our work. Ghi-

asi et al [6] upsample the subsampled feature maps by pre-

dicting coefficients of 10 per-class basis functions which

were trained without supervision using PCA. They ad-

ditionally propose a VGG-based architecture with lateral

skip-connections between class scores at three different res-

olutions (subsampling ×4, ×2 and ×1). The blending is
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performed by a custom function which prefers the deeper

layer in the middle of the object, while favouring the earlier

layer near the object boundary. The architecture is trained

by simultaneously optimizing the cross-entropy loss at each

resolution. Pohlen et al [26] propose a two-stream residual

architecture where one stream is always at the full resolu-

tion, while the other stream has pooling and unpooling lay-

ers. The two streams blend in each convolutional group and

pass through multiple residual connections. Experiments

have shown that this kind of blending is able to consider-

ably improve the semantic segmentation performance over

the single-stream baseline. Lin et al [19] propose a ResNet-

based ladder-style architecture with four lateral connections

at subsampling levels ×4, ×8, ×16 and ×32. The blending

is performed as a sum of the coresponding early layer and

the upsampled result of the previous blended layer. The re-

sulting tensor subsequently passes through a complex resid-

ual network with three successions of 5 × 5 max-poolings

(stride 1) and 3 × 3 convolutions. The final blended tensor

is obtained by processing the sum of these four tensors with

two additional residual convolutions. Similar architectures

with ResNet front-end and very complex ladder-style blend-

ing have been proposed in [11, 25]. Jégou et al [12] propose

a DenseNet-based ladder-style architecture with five lateral

connections at subsampling levels ×1 through ×32. The

blending is performed by concatenation, and the resulting

tensor is further processed by a complex dense block. They

present very good results in experiments on CamVid and

Gatech datasets although their models have not been pre-

trained on ImageNet.

Similarly to [6, 19], we optimize loss at different reso-

lutions of the generated semantic maps. Our experiments

confirm advantages of such design and agrees with the find-

ings in the previous work. Our ladder-style blending is sim-

ilar to [27] who, however, do not use DenseNet architecture

and do not present experiments on Pascal and Cityscapes

datasets. Our latteral connections differ from [6, 11, 25],

since they blend class scores while we blend abstract fea-

tures. Our approach has a modelling advantage, since the

classes often share features. Our architecture is much sim-

pler than any of [6, 19, 11, 25]. Our blending transforma-

tion consists of one projection, one concatenation and one

3 × 3 convolution instead of softmax and custom bound-

ary masking [6], 9 convolutions and 3 poolings [19] or 4-12

convolutions [12]. Additionally, none of the previous work

succeeds to achieve competitive performance by leveraging

64× subsampled representation.

To the best of our knowledge, there is only one

other work [12] on DenseNet-based semantic segmenta-

tion. However, their upsampling and downsampling data-

paths are symmetric, that is, they have exactly equal com-

plexities in number of parameters and feature maps. We

believe that such design is suboptimal because, intuitively,

patch-level classification should be more difficult than find-

ing the object boundary by blending. If we accept that the

most subsampled tensor is capable to achieve high seman-

tic quality (as suggested by ImageNet classification results),

then it seems clear that upsampling transformation should

not be overly complex. Besides representing a useful regu-

larization factor, architecture simplicity becomes especially

important when very large images need to be processed, due

to scarcity of the GPU memory.

3. The proposed architecture

The proposed semantic segmentation architecture con-

sists of two horizontal datapaths as shown in Figure 1. The

downsampling datapath (top rail in Fig. 1) is characteris-

tic for image classification: it recovers the abstract image

representation by gradually reducing spatial resolution and

increasing semantic dimensionality. The upsampling dat-

apath (bottom rail in Fig. 1) is characteristic for seman-

tic segmentation: it gradually transforms semantic vectors

to the pixel-level posterior distributions over classes. This

transformation is achieved by efficient blending of context-

aware semantic representations from deeper layers with

well-localized low-level representations from early layers.

The downsampling datapath corresponds to a slightly

adapted DenseNet architecture [10]. The blocks labeled

as DB and TD correspond to the dense blocks and transi-

tion layers from the original DenseNet. We split the fourth

dense block (DB4) into two halves (DB4a and DB4b) and

introduce an additional average-pooling layer (D) between

them. This change increases the receptive field of the DB4b

features and saves some GPU memory. The resulting loss

of resolution is restored with ladder-style upsampling, in

the same way as in other parts of the architecture. We ini-

tialize the DB4b filters from the original model trained on

ImageNet, although the introduced pooling layer alters the

feature tensor in a way that has not been seen during train-

ing. However, further training on the target dataset succeeds

to recover from this anomaly and achieve high performance

on test sets of semantic segmentation datasets. At the end

of DB4 we have a 64x subsampled representation. We feed

this representation to the context classification layer which

consists of a projection to 512 dimensions followed by a

3x3 convolution with 128 filters dilated with rate=2. The

role of this layer is to capture wide context information.

Subsequently, we feed the context representation to the

upsampling datapath of the ladder architecture in order to

recover fine details lost due to the downsampling. The up-

sampling datapath consists of transition-up blocks labeled

as TU. The goal of TU blocks is to blend two representa-

tions whose spatial resolutions differ by a factor of 2. The

smaller representation comes from the upsampling datapath

while the larger representation comes from the downsam-

pling datapath of the ladder architecture. To achieve the
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Figure 1. Architecture of the proposed segmentation network with DenseNet-169 in the downsampling datapath. Each dense block (DBx) is

annotated with the corresponding resolution assuming the Cityscapes resolution of 1024x2048. Number of output feature maps is denoted

with f. Transition-up (TU) blocks perform blending of low-resolution high-level features and high-resolution low-level features.

blending, we first upsample the smaller representation with

bilinear interpolation so that the two representations have

the same resolution. Subsequently, we project the larger

representation to a lower-dimensional space so that the two

representations have the same number of feature maps. This

saves memory and helps to balance the relative influence of

the two datapaths. Finally, we concatenate the two represen-

tations and blend them by applying a single 3×3 convolu-

tion. We have tried to increase the capacity of the blending

element, however these experiments did not bring signifi-

cant accuracy improvements. This led us to conclude that

representation blending is an easy task and that further im-

provements should be sought by improving the downsam-

pling datapath of the ladder architeture.

The blending procedure is recursively repeated along the

upsampling datapath with skip-connections arriving from

the outputs of each dense block. Finally we retrieve se-

mantic segmentation at the resolution produced by the De-

neseNet stem (4 times subsampled input resolution) and use

bilinear upsampling to recover dense predictions at the in-

put resolution.

4. DenseNet vs ResNet comparison

Recent classification architectures have a common high-

level structure in which processing blocks are intertwined

with downsampling elements (cf. top rail in Fig. 1). Each

processing block groups a number of convolutional process-

ing units operating on the common resolution. We illus-

trate internal organizations of the convolutional units in two

prominent recent architectures (ResNet and DenseNet) in

Fig.2. The number of convolutional units in a block is des-

ignated with n. Fin and Fout denote semantic dimension-

ality at input and output of the processing block. ResNet

units operate on a sum of previous unit and the input. The

information path in a ResNet block therefore has constant

dimensionality Fout (in implementations, the first unit of a

f1

+

f2

+

f3

+

f4

+
Fin=Fout Fout

(a)

f1

f2

f3

Fin=Fout/4 Fout

f4

k

k

k

k

n·k

||

||

||

||

(b)

Figure 2. ResNet block with n=4 units (a) and the correspond-

ing DenseNet-BC block (b). All connections are 3D tensors

W×H×D, where D is designated above the connection line.

block often increases the semantic dimensionality by pro-

jection). On the other hand, DenseNet units operate on a

concatenation of the input with the output of all preceed-

ing units in the current block. Thus, the dimensionality of

a DenseNet block increases after each convolutional unit.

The number of feature maps produced by each DenseNet

unit is called the growth rate of a DenseNet architecture and

is defined by the parameter k (all DenseNet variations used

here have k=32).

In order to reduce the computational complexity, both

ResNet and DenseNet units fi reduce the semantic di-

mensionality of the input tensor before performing stan-

dard 3 × 3 convolutions. ResNet reduces the dimension-

ality to Fout/4, while DenseNet goes to 4 · k. Therefore,

DenseNet units have two convolutions (1x1, 3x3) while

ResNet Units require three convolutions (1x1, 3x3, 1x1)

in order to restore the dimensionality used in residual con-

nections. The ResNet convolution kernels have the follow-
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ing shapes: 1×1×Fout×Fout/4, 3×3×Fout/4×Fout/4, and

1×1×Fout/4×Fout. The shapes of DenseNet convolutions

are: 1×1× [Fin + (i− 1) · 4k]×k, and 3×3×4k×k. Note

finally that each convolution is preceded (DenseNet) or fol-

lowed (ResNet) by one batchnorm and one ReLU layer.

Both architectures encourage exposure of early layers to

the loss signal. However, the distribution of the representa-

tion dimensionality differs: ResNet keeps the dimensional-

ity constant throughout the block, while DenseNet increases

it towards the end. A straight-forward analysis would show

that DenseNet blocks have several computational advan-

tages including i) producing less feature maps on output

(k vs Fout), ii) less caching of input tensors due to heavy

reuse of the feature maps (Fout <nFout), iii) lower average

input dimensionality despite larger total output dimension-

ality, iv) less convolution layers: 2 vs 3.

However, current DenseNet variants have more convo-

lutional units than their ResNet counterparts with similar

recognition performance. For instance, the four blocks of

ResNet-50 have n=[3, 4, 6, 3], while DenseNet-121 blocks

have n=[6, 12, 24, 16]. Thus, in practice, it turns out that

these two architectures have roughly equal memory require-

ments and achieve similar execution speed.

5. Experiments

We evaluate our method on two different semantic seg-

mentation datasets: Cityscapes [2] and Pascal VOC2012

[4]. The Cityscapes dataset is a recent semantic segmenta-

tion benchmark which contains outdoor traffic scenes with

19 classes recorded in 50 cities during spring, summer and

autumn. The dataset features good and medium weather

conditions, large number of dynamic objects, varying scene

layout and varying background. It consists of 5000 images

with fine annotations and 20000 images with coarse annota-

tions. In experiments we use only the fine annotations. The

resolution of the images is 1024×2048.

Pascal VOC2012 [4] contains 1464 training images and

1449 validation images. Following the common practice, in

some experiments we extend the data with the augmented

set [7]. All images are semantically annotated at pixel level

with 20 object classes and the additional background class.

5.1. Implementation Details

We train our networks using Adam [14] with a base

learning rate of 5e−4 and use poly learning rate policy

which multiplies the initial learning rate by (1− iter

max iter
)z

where z = 1.5. Additionally dividing the learning rate by a

factor of 5 for the ImageNet pre-trained network part yields

a small increase in accuracy. We observe that batch size

is an important hyper-parameter of the optimization pro-

cedure. If we train with batches of single images, batch

normalization statistics (mean and variance) will fit exactly

the image we are training on. This may cause a covariance

shift across different images [31], so we train with two en-

tire images in the batch. In order to make this feasible on

Cityscapes images, we distribute our model across two GPU

cards. Dense blocks DB1 and DB2 are placed on GPU #1,

while the rest of the model is placed on GPU #2. We de-

fine two cross entropy losses as shown in Figure 1. The

main loss is placed at the output of the last transition-up

unit, while the auxiliary loss is placed at the output of the

context layer. The main loss is multiplied by a factor of 0.7
and auxiliary by a factor of 0.3. We employ random image

flipping as the only jittering technique on both datasets.

5.2. Cityscapes

Table 1 shows the performance figures obtained on the

Cityscapes validation set while training on 2× subsampled

images. We compare our ladder-style upsampling with di-

lated convolutions, evaluate DenseNet-121, DenseNet-169

and ResNet-50 architectures, and explore the influence of

the auxiliary loss and dense block splitting. The configura-

tion LadderDenseNet-169 4× corresponds to the architec-

ture described in Figure 1. DenseNet-121 32× is a base-

line result without the upsampling datapath, where we sim-

ply took 32× subsampled output from the context block.

In the configuration Dilated8×DenseNet-121 4× we first

produced 8× subsampled representation by dilating the last

two dense blocks and then arrived at 4× resolution with

one TU layer. We observe that full ladder-style upsampling

brings more than 1pp mIoU with respect to the dilated filter-

ing. The experiment labeled single loss shows that the aux-

iliary loss contributes around 1pp mIoU. We also illustrate

the contribution of the auxiliary loss in Fig.3. In split3+4 we

have inserted additional pooling and transition-up in DB3

which enabled downsampling to 128×. In SPP we tried

spatial pyramid pooling similar to the one used in [37] in-

stead of our simple context block. Interestingly, this did not

bring any improvement, and we hypothesize that is a con-

sequence of heavy subsampling in our architecture. In the

configuration Ladder ResNet-50 4× we have replaced the

Method mIoU(%) PixAcc

ResNet-50 32× 60.95 91.98

LadderResNet-50 4× 69.53 94.42

Dilated8×ResNet-50 4× 69.23 94.47

DenseNet-121 32× 62.52 92.29

Dilated8×DenseNet-121 4× 71.56 94.92

LadderDenseNet-121 4× single loss 71.73 94.99

LadderDenseNet-121 4× 72.82 95.06

LadderDenseNet-169 4× split3+4 72.69 95.08

LadderDenseNet-169 4× SPP 72.34 95.04

LadderDenseNet-169 4× 73.72 95.11

Table 1. Segmentation results on Cityscapes val. Configurations

labeled n× denote results with n× times subsampled predictions.

All training and evaluation images in this experiment were resized

to 1024×448, while batch size was set to 4.

242



Figure 3. Predictions obtained from 64× subsampled auxiliary loss (top) and 4× subsampled final prediction after upsampling (bottom).

We observe that the transition-up (TU) layers are able to recover small objects and fine details lost due the subsampling.

DenseNet-121 classifier with the corresponding ResNet-50

network likewise pre-trained on ImageNet. We observe that

DenseNet achieves a significant improvement over ResNet

despite having less parameters and somewhat larger error

on the ImageNet dataset (cf. Table 2).

Method Top-1(%) Parameters

Resnet-101 23.6 45M

Resnet-50 24.7 25M

DenseNet-169 23.6 13M

DenseNet-121 25.0 8M

Table 2. Classification results on ImageNet. We compare the

achieved performance with the number of parameters.

Table 3 shows that training from scratch results in only

10pp performance loss with respect to the ImageNet pre-

trained model, which is again better than ResNet.

Method Mean IoU(%) Pixel Acc.(%)

Ladder Resnet-50 4× 55.49 92.29

Ladder DenseNet-121 4× 62.32 93.63

Table 3. Segmentation results on Cityscapes val. The models were

trained from scratch (i.e. without ImageNet pretraining).

Table 4 shows the results when training on full

Cityscapes images. We first initialized the weights from

the model trained on smaller resolution and in experiment

labeled as fine-tune just continued training on large images.

In experiment frozen-BN we freeze all BatchNorm layers

and put them in inference mode during training. This signif-

icantly improved the speed and reduced the required mem-

ory, while yielding similar accuracy as above.

Method mIoU(%) PixAcc

Ladder DenseNet-169 4× frozen-BN 75.24 96.02

Ladder DenseNet-169 4× fine-tune 75.75 95.88

Table 4. Segmentation results on Cityscapes val after training on

full 2048×1024 resolution. Batch size was set to 2.

Table 5 shows the results on the Cityscapes test set. We

have achieved 74.55% IoU and 51.54% iIoU, which out-

performs RefineNet [19] (73.6% IoU, 47.2% iIoU) despite

a smaller baseline architecture (DenseNet-169 vs ResNet-

101). A lighter recent approach [24] reported accuracy be-

low 60 mIoU. Our submission at the benchmark web site is

labeled Ladder DenseNet.

Method base architecture mIoU(%)

Dilation10 [36] VGG-16 67.1

LRR 4× [6] VGG-16 69.7

RefineNet [19] ResNet-101 73.6

TUSimple [34] ResNet-152 76.1

LargeKernel† [25] ResNet-152 76.9

PSPNet [37] ResNet-101 78.4

Ladder DenseNet-169 4× (ours) DenseNet-169 74.6

Table 5. Segmentation results on Cityscapes test after training on

fine annotations only (except †). Base architectures have the fol-

lowing numbers of parameters (in millions): DenseNet121: 8,

DenseNet169: 13, ResNet50: 25, ResNet101: 45, ResNet152: 60.

5.3. Pascal VOC2012

Table 6 shows the results on the PASCAL VOC 2012 val-

idation dataset. In the experiment labeled AUG we trained

on the union of train and augmented sets, while in all other

experiments we have trained the model only on the origi-

nal train set. Here again DensetNet gives a large increase

in accuracy when compared to ResNet. We additionally

trained the same proposed architecture on Pascal VOC2012

train+val+aug data and obtained 78.25% mean IoU on the

test set. Our submission is labeled Ladder DenseNet at the

web site of the benchmark.

6. Conclusion

We have presented a ladder-style adaptation of the

DenseNet architecture for real-time semantic segmentation

of large natural images. The proposed design uses lateral
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Method mIoU(%) PixAcc(%)

LadderResNet-50 4× 62.97 91.56

LadderDenseNet-169 4× 70.21 93.29

LadderDenseNet-169 4× AUG 78.01 95.11

Table 6. Segmentation results on Pascal VOC2012 val. Predictions

were generated at 4× subsampled resolution and then upsampled

by bilinear interpolation.

skip connections to blend higher level features at lower spa-

tial resolution with their lower-level higher-resolution coun-

terparts. These connections relieve deep representational

levels from the necessity to forward low-level details and

allow them to focus on abstract invariant features. The re-

sulting architecture is able to perform accurate semantic

segmentation with a very lean upsampling path. This sig-

nificantly reduces memory requirements and allows us to

perform experiments on large natural images.

The presented implementation is able to perform the

forward-pass on entire 2048×1024 images with a single

GPU. It is also able to perform the backward pass on

batches of two 2048×1024 images on two GTX 1070

(2×8GB) in the case of DenseNet-121, and one Titan X and

one GTX 1070 (12GB+8GB) in the case of DenseNet-169.

The model based on DenseNet-121 performs forward pass

in real-time (31 Hz) on half-resolution images (1024×448)

on a single Titan X GPU. To the best of our knowledge,

this is the first account of applying DenseNet architecture

for dense prediction at Cityscapes resolution, as well as

recovering highly accurate semantic segmentations on half

megapixel images in real-time.

We have performed experiments on Cityscapes and Pas-

cal VOC 2012 validation and test sets. In both cases our best

results came close to the state-of-the art mIoU performance.

Ablation experiments confirm the utility of the ladder-style

design as well as the advantage of DenseNet concatenations

over residual connections.
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