

225

Abstract

This paper presents a fast vehicle detector which can be

deployed on NVIDIA DrivePX2 under real-time constraints.

The network predicts bounding boxes with different aspect

ratio and scale priors from the specifically-designed

prediction module given concatenated multi-scale feature

map. A new data augmentation strategy is proposed to

systematically generate a lot of vehicle training images

whose appearance is randomly truncated so our detector

could detect occluded vehicles better. Besides, we propose

a non-region-based online hard example mining

framework which performs fine-tuning by picking (1) hard

examples and (2) detection results with insufficient IOU.

Compared to other classical object detectors, this work

achieves very competitive result in terms of average

precision (AP) and computational speed. For the

newly-defined vehicle class (car+bus) on VOC2007 test,

our detector achieves 85.32 AP and runs at 48 FPS and 30

FPS on NVIDIA Titan X & GP106 (DrivePX2),

respectively.

1. Introduction

Vehicle detection is a fundamental problem required for

both Advanced Driver Assistance Systems (ADAS) and

autonomous vehicle. One expects that vehicles could be

detected as accurately as possible by an ADAS because the

function of such a system is to enhance driving safety

especially for the scenario that the host vehicle and the

preceding vehicle is very close. That is to say, either

false-positive or false-negative should be eliminated under

critical conditions. Before the era of deep learning,

traditional vehicle detection methods were mostly

developed under a Hypothesis Generation (HG) +

Hypothesis Verification (HV) framework [1] that the

former is to generate region proposals and the latter applies

a pair of feature extractor and classifier to eliminate false

positives. To achieve high detection performance, one has

to employ a star-structured architecture consisting of root

and parts filters with associated deformation models for

object detection. DPM [2] can successfully handle

deformable object detection even when the target is

partially occluded. However, it leads to heavy

computational costs due to a large number of repeated

feature extraction and classification tasks in a sliding

window search framework.

Recently, image classification has been significantly

improved by deep ConvNets, such as Alexnet [3],

GoogLeNet [4], VGG16 [5] and the powerful ResNets [6].

Object detection is a challenging task and its recent

advances are driven by the success of region-based

convolutional neural networks (RCNNs) [7]. Although

RCNNs were computationally expensive originally, their

computational cost has been drastically reduced by sharing

convolutions, inspired by [8], across proposals generated

by Selective Search [9]. This idea brought up Fast R-CNN

[10] which achieves near real-time efficiency using very

deep networks-VGG16, when ignoring the time spent on

region proposal generation. Proposals were the test-time

computational bottleneck in the object detection systems

and its computation was significantly reduced by region

proposal network (RPN) which was proposed in Faster

R-CNN [11]. Although Faster R-CNN achieves 4-5 FPS, it

is still far from the requirement of real-time object

detection. i.e., 30 FPS. Recently, YOLO [12] made a

break-through by realizing an end-to-end framework. It

reframes object detection as a single regression problem.

The last layer is simply the probability of an object, the

class it belongs to and the location it is in the image. This

work achieves 45 FPS in PASCAL VOC 2007 [13] test

dataset with mAP of 63.4. Its sped-up version, Fast YOLO,

further reaches 155 FPS with mAP of 52.7% on the same

dataset. However, poor localization precision was also

reported according to the analysis in their work.

In order to better accommodate objects of different sizes,

Faster R-CNN reported that using 9 anchor boxes brings

the benefit of mAP boost while the size and aspect ratio of

each prior are manually selected. Recently, the idea of

multi-scale feature map is introduced so that receptive

fields match objects of different scales. As opposed to

Overfeat [14] and YOLO that operate on a single scale

feature map, SSD [15] expects object at different size to be

detected from lower to higher layers. MS-CNN [16]

carefully selects feature maps from early layers to higher

Fast Vehicle Detector for Autonomous Driving

Che-Tsung Lin1,2, Patrisia Sherryl Santoso2, Shu-Ping Chen1, Hung-Jin Lin1, Shang-Hong Lai1
1Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan

2Intelligent Mobility Division, Mechanical and Systems Research Laboratories, Industrial Technology

Research Institute, Hsinchu, Taiwan
alexofntu@gmail.com, sherrylsantoso@itri.org.tw, scarletclaw24@gmail.com,

salas@gapp.nthu.edu.tw, lai@cs.nthu.edu.tw

222

226

ones for generating region proposals from different scales.

Hypernet [17] aggregates hierarchical feature maps using

pooling and deconvolution layers to form hyper feature

maps where RPN generates region proposal from.

Hard negative mining was a very popular technique

for enhancing the object detection accuracy. However, it

needs to freeze the model for selecting the hard negative

results and then put them into negative training results. In

Fast R-CNN, the fg-bg (foreground-background) ratio is

1/3. OHEM [18] claimed that changing this ratio in training

Fast R-CNN would decrease mAP so they proposed to train

only hard examples without keeping this heuristic

parameter. Only those region proposals with higher loss

would contribute to the back propagation (BP) and the

mAP is significantly boosted for this reason. YOLO also

suffers from such inconvenience because most images

contain only a few objects so they specifically set the

parameters for balancing fg-bg loss. The imbalance makes

YOLO sensitive to the weighting parameters in the loss

function.
Most on-road vehicle datasets are captured with limited

viewing angles or at fixed distances. LISA 2010 dataset [19]

is entirely composed of rear-viewed front vehicles. Urban

Traffic Surveillance (UTS) dataset [20] provides vehicle

images captured by surveillance systems. KITTI dataset

[21] is specifically designed for autonomous driving and all

images are collected in real-driving scenario. Vehicles in

this dataset suffer from scale variation, occlusion and

truncation than previous ones. However, cars and buses in

PASCAL VOC 2007 and 2012 are more diverse and

challenging because their appearances are fully or partially

seen at different distances, aspect ratios, sizes and viewing

angles. Car simulation software, such as Carsim [22], could

easily generate a massive amount of data with

auto-generated ground truth (GT). In this paper, we also

investigate the possibility of using Carsim in vehicle

detector development.

Inspired by the advantages and drawbacks of previous

works, in this paper, we propose a fast vehicle detector

which two-dimensionally relates the outputs of a CNN to a

given image. The improvements include (1) an efficient

basenet, GoogLeNet, combined with a multi-scale-based

prediction module which carefully merges spatially-rich

information from low-level features with high-level

semantic information encoded in upper layers, (2) a heavy

data augmentation strategy specifically designed for

vehicle detection and (3) a Non-region-based OHEM

(NOHEM) strategy which significantly boosts the AP.

Comparisons with the state-of-the-art methods on these

benchmarks demonstrate the advantages of the proposed

method for vehicle detection.

2. Fast Vehicle Detector

This section describes the proposed framework and

the associated training methodology. As can be seen in

Figure 1, if an image is fed into our CNN with a prediction

module on top, the vehicle inside is expected to be detected.

Our prediction module is based on the concatenated

multi-scale feature maps together with 2 more convolution

layers on top. As shown in Figure 2, the last layer is the

output and it is spatially interpreted as a fixed number of

grids responsible for detecting objects whose centers of the

object windows are located inside. Our design has the

following key features:

Figure 1: Our CNN model.

Figure 2: Our prediction module.

Efficient Basenet: Most object detectors applied

pre-trained CNNs. SSD is with VGG16. YOLO proposed a

CNN whose performance is close to GoogLeNet. Faster

R-CNN is with ZF-net [23] for ablation studies and

achieved better performance using VGG16 and

ResNet-101. Generally speaking, using better basenet is

beneficial to the subsequent detection task. VGG16 and

ResNet-101 achieve 0.912 & 0.937 for single crop, top-5

accuracy at 22 FPS & 19 FPS respectively on Titan X for

224×224 images. 1 However, vehicle detection is mostly

expected to run in real-time. Although there are alternative

choices, such as ResNets with fewer layers, we applied

GoogLeNet because of its simplicity and fast inference

speed (56 FPS with our two extra layers and 65 FPS

without on Titan X for 448×448 images). Since we use a

448×448 image as our input, we pre-trained the whole

GoogLeNet on 1000-way ImageNet classification [24] with

448×448 images from scratch and finally reached top-5

accuracy of 0.895 and top-1 accuracy of 0.6995 at 2.4

million iterations. Besides, we also tried to fine-tune the

original GoogLeNet with 448×448 images for 0.24 million

iterations. The fine-tuning followed the recommended

GoogLeNet pre-training parameters with 0.9 momentum,

0.0002 weight decay but the learning rate is lowered to

1 https://github.com/jcjohnson/cnn-benchmarks

223

227

0.0001.This attempt reached top-5 accuracy at 0.9109 and

top-1 accuracy with 0.715. The quantitative results had

proved that fine-tuning with higher resolution training

images is better than training from scratch. Most

importantly, the improved accuracy did boost the

subsequent detection.

Data Augmentation: This skill is crucial to train either a

classifier or a detector. Fast and Faster R-CNN horizontally

flip the input image with probability of 0.5. YOLO

introduces random scaling and translation of up to 20% of

the original image size and adjusts the exposure and

saturation of the image by up to a factor of 1.5 in the HSV

color space. SSD’s strategy is more diverse in that they

randomly sample a patch that overlaps the object with

certain size and horizontally flipping. Our strategy is

similar in that we want to enhance the detection capability

even when it is heavily occluded so we also resize the

vehicles in the training images with 0.1 to 0.9 of the

original size if their area is above a predetermined threshold

and this image is horizontally flipped with 0.5 probabilities.

And there is also a probability of 0.5 for this vehicle to be

truncated by a new window that only contains at least 25%

of its appearance visible. We found this strategy very useful

in dealing with vehicles occluded by each other. While
only a few of them are partially seen, the ones that
are entirely seen were chosen to be randomly
resized, rotated, horizontally-flipped, recolored,
cropped or put in the boundary to make them
truncated to a random extent. Our detector is
therefore doing better in learning the essence of
vehicle’s appearance. Finally, in order to improve the

detector capability in detecting vehicles with fuzzy

appearance, we randomly blur the training image with

either mean filter, median filter or, Gaussian blur.

Multi-Scale Feature Maps and Bounding Box Priors:
Objects can appear at a variety of scales. A single receptive

field cannot match this variability. MS-CNN selected four

different feature maps to generate region proposals.

Hypernet directly generates region proposals from a hyper

feature map concatenated by three feature maps coming

from lower to higher layers. We approach the idea of

multi-scale features by concatenating feature maps from

inception_4a, inception_4d and inception_5b in GooLeNet.

Then, two more additional convolutional layers are stacked

on top. Besides, each layer is followed by Batch

Normalization [25] and PReLU[26].

Faster R-CNN predicts bounding boxes using

hand-picked priors. The input image of single-shot detector

like YOLO is normalized to 448×448 so it is equivalent to a

single anchor box. Most detection errors by YOLO as

described in their work could be attributed to localization

error. SSD did not suffer from this problem comparatively

because they use multi-scale feature maps together with

three default boxes to internalize the idea of multi-anchor

box. However, instead of hand-picked priors, we perform

k-means algorithm in exploring better priors. In our study,

we found that using 3 priors (318x313, 212x176, 63x56)

reached best performance in PASCAL VOC07 test and the

overhead to add more priors is not significant because only

several more feature layers are necessary to be stacked on

the top layer.

Figure 3: Flowchart of Non-region-based Hard Example

Mining- initial version.

Figure 4: Flowchart of Non-region-based Hard Example

Mining- final version.

Non-region-based Online Hard Example Mining:

Hard negative mining is a classical training skill in training

object detector. The basic procedure is to collect initial

training data, freeze this model, run detection on test data

with Ground-Truth, collect false-positive results and

re-train the model with the false detection results. Within

some iteration cycles, the detection capability could be

quantitatively boosted. With the advent of GPU, it is

inefficient to freeze the model every time we found

negative results. OHEM introduced a framework for

region-based detectors, such as Fast R-CNN, to do BP for

foreground or background objects with higher loss.

224

228

However, this framework could only be applied for

region-based detectors.

A naïve way to implement this idea in non-region-based

detectors is shown in Figure 3. In a given mini-batch of N

images, the loss sum in every training image is sorted. Then,

some training images with lower loss are nullified to do BP.

The cost of such BP is nearly the same as before and no

additional mechanism should be re-designed. This is

similar to the idea of region-based OHEM but the AP boost

is marginal in our case because such a framework would

only perform BP by selecting the images with higher loss in

a single mini-batch. In fact, after our detector is trained

using standard BP, global hard examples are distributed in

sparse training images based on the current snapshot and

the training images possessing higher loss might not be

quantitatively hard enough.

We proposed Non-region-based OHEM (NOHEM) to

train a CNN with images possessing loss higher than a

threshold instead of higher loss. Our framework is shown in

Figure 4. As can be seen, the left module would keep

performing inference until the number of hard images

possessing loss higher than a predetermined threshold is

reached. Typically, it is the number of a mini-batch. An

alternative way is to infer every training image and pick the

ones, equal to N, with top losses. However, it is quite time

consuming because we have to perform inference for every

training image before doing a single BP. Last but not least,

this framework is only designed for fine-tuning after

standard training is completed. NOHEM is carried out for

two times. The 1st one is performed after standard training

is finished and the loss function is the same. The 2nd one

uses the loss function designed for IOU boosting.

Non-Maximal Suppression: Non-maximum

suppression (NMS) is usually a post-processing step to

obtain the final detection results. It sorts all detection boxes

on the basis of their scores and then the detection bounding

box with the maximum score is selected and all others with

a significant overlap (using a pre-determined threshold) are

suppressed. Soft-NMS, an algorithm [27] which decays the

detection scores of all other objects as a continuous

function of their overlap with the detection box that

possesses maximum score, is applied to our detector. Using

the linear version of Soft-NMS is proved beneficial in our

experiments.

Loss function of Training and Fine-tuning: Our

training includes 3 stages with different loss functions. The

1st stage applies standard training using object loss and

non-object loss as (1) and (2). The 2nd one adopts the same

loss functions, but the whole CNN is fine-tuned using the

proposed NOHEM. The 3rd one fine-tunes the network

using (3) which is designated for IOU boosting and still

applies our NOHEM. Since the latter two only fine-tune the

CNN, their learning rate is relatively low.

At the beginning, the class, objectness and the bounding

boxes are learned altogether. For an object whose center of

object window locating in grid ij, i.e., ܩ௜௝ א ሺܱܾ݆݁ܿݐሻ, its

loss function is

1

2 2((G -) (G -1))

α α
∈ ∈

+ k
m m om ij ij object ijn { prior , ,..,prior } m {wሺ n ሻ,hሺ n ሻ,x , y } Ĝ

2 (G -1) (1)

α+
cclass ij

where ܩ௜௝௢ denotes the objectness score; ܩ௜௝௖ the class score;

(௜௝௫ܩ , ௜௝௬ܩ) the coordinate of object. G୧୨௪ሺ௣௥௜௢௥ೖሻ and G୧୨௛ሺ௣௥௜௢௥ೖሻstand for the regressed width and height in terms

of the kth prior estimated by k-means clustering based on

the width and height statistics. ܩ෠௜௝௫ ෠௜௝௬ܩ , , ෠௜௝௪ܩ and ܩ෠௜௝௛

represent the location and size GT of the object locating at

grid ij. For ܩ௜௝ ב ሺܱܾ݆݁ܿݐሻ, i.e., no object whose center of

object window locates in grid ij, its loss function is

() ()
2 2

. (2)α α
−

+ o c

non object ij class ijG G

There are 2 terms for non-object grid. The first one is the

objectness score and the 2nd is the class score. Although in

this work, our goal is only to detect 1 type of object-vehicle,

we still keep class score that typical multi-class object

detectors possess because determining if there is an object

locating in a grid by considering the class score and

objectness score rather than the latter only would slightly

boost the AP.

The 2nd loss function is designed to boost the IOU using

hard examples because detection results with insufficient

IOU would be treated as the localization error. This loss

function is designed to fine-tune the whole network in an

attempt to increase the IOU of each detected object whose

objectness score is high but its IOU is below 0.5 (PASCAL)

and 0.7 (KITTI car) which are the thresholds for

determining if an object is successfully detected with

precise bounding box. We define a new loss function which

only fine-tunes the detected objects whose IOU is slightly

lower than the required value to be considered true positive

(TP). For a grid ܩ௜௝ א ሺܱܾ݆݁ܿݐ, ௜௝൯ܩ൫ܷܱܫ > ,ߚ ௜௝௢ܩ > ,ሻߛ
i.e., object belonging to ܩ௜௝ with IOU higher than 0.4)ߚ for

PASCAL VOC, and 0.6 for KITTI car) and objectness

higher than γ(0.6), its loss function is

1

2

{ ,..., { (), (), ,} }

ˆ). ()) 3((α
∈ ∈

− 
k

m

ij ij

n prior prior m w n h n x

m

y

n G G

Since this is a fine-tuning procedure, the learning rate is

set to 0.0001 and the parameter ߙ௠ is also set to 1/100 of its

original value in training by using eq. (1).

3. Experimental Results

We evaluate our detector on PASCAL VOC2007 dataset,

KITTI detection benchmark, and Carsim-generated dataset

225

229

which is self-collected and is only used for testing. Our

training all follows the same setting. Each grid in 14×14

feature maps contains 3 objects with corresponding 3

objectness scores and 1 class score. Therefore, there will be

16 values describing objects whose center of object

window is located in a grid as shown in Figure 2. The

starting learning rate is 10-3 and it is divided by 10 for every

16k iterations and the total iterations are 48k. The weight

decay and momentum are set to 0.0005 and 0.9,

respectively.

3.1. PASCAL VOC2007

In VOC 2007 trainval and VOC2012 trainval, there are

totally 16551 training images. In VOC2007 test, there are 4

952 images. However, our work only focuses on the vehicle

class which is the superclass of car-class and bus-class. If

we tried to select training images of car (1161+721) or bus

(421+186), the AP might not be promising because the

appearances of bus are essentially similar to those of car.

Some training or testing photos contain both of them. If

both classes are trained separately, the other would be

treated negative data and this is harmful to learn the essence

of vehicle’s appearance. Therefore, we defined a new class

called vehicle which is composed of car & bus classes for

both training (1420) and test images (825).

Detection Frameworks Train FPS

Fast R-CNN 2007+2012 0.5

Faster R-CNN VGG-16 2007+2012 7

Faster R-CNN ResNet 2007+2012 5

YOLO 2007+2012 45

Fast YOLO 2007+2012 155

SSD300 2007+2012 46

SSD500 2007+2012 19

This work 2007+2012 48

Table 1: Detection frameworks on PASCAL VOC 2007.

 Bus Car Vehicle

(Car+Bus)

Fast R-CNN 81.6 78.6 80.1

Faster R-CNN VGG-16 83.1 84.7 83.9

Faster R-CNN ResNet 85.1 85.3 85.15

SSD 300 81.1 80.8 80.95

SSD 500 84.9 85.6 85.25

YOLO 71 65 68

Fast YOLO 60 67 63.5

This work 85.32

Table 2: PASCAL VOC 2007 test detection results.

In Table 1, we compare our work to other famous

detectors in terms of training data and FPS (assessed on

Maxwell Titan X). As can be seen, our vehicle detector is

only slower than Fast YOLO. As shown in Table 2, our

model achieves state-of-the-art AP in the newly-defined

vehicle class in VOC07 test. Although other detectors are

designed for multi-class detection, our work could be easily

extended to detect 20 classes, the original number of class

in PASCAL VOC, because only 19 more feature maps are

required in the last layer. In our experiment, the processing

time would only increase a few milliseconds for an image,

so such a comparison is fair. Figure 5 visualizes the

comparison of this work and other detectors in terms of AP

and FPS. Last but not least, our detector could run 48 FPS

on Titan X and 30FPS on GP106 (DrivePX2).

Figure 5: AP and FPS on VOC07 test dataset.

Figure 6: Some detection results on VOC07 test dataset.

 Figure 6 demonstrates some typical detection results

including non-, slightly-, heavily-occluded or truncated

vehicles.

60

65

70

75

80

85

90

-40 10 60 110 160

A
v

e
ra

g
e

 P
re

ci
si

o
n

Frame Per Second

Fast R-CNN Faster R-CNN VGG-16

Faster R-CNN ResNet YOLO

Fast YOLO SSD300

SSD500 This Work

226

230

3.2. KITTI Val Set Evaluation

In this section, we evaluate the proposed approach on the

challenging KITTI object detection benchmark dedicated

to autonomous driving. This dataset is composed of 7481

training images and 7518 testing images. Since GT

annotations for the testing set are not released, we use

train/validation splits from the training set to validate our

method. To compare our approach with other

state-of-the-art methods, we use train/val splits as indicated

by [28, 29]. We follow every setting that leads us to the best

results in PASCAL VOC. As can be seen in Table 3, since

the required IOU is higher than PASCAL VOC, our results

seems not better. However, if we follow the same IOU

required by PASCAL VOC, our results are satisfactory in

that most of the closest vehicles in path could be

successfully detected.

 AP(IOU=0.7)

Method Time Easy Moderate Hard

3DVP 40s 80.48 68.05 57.20

Faster-RCNN 2s 82.91 77.83 66.25

Ours 0.02 62.41 52.41 47.15

 AP(IOU=0.5)

Ours 0.02 83.75 78.48 74.92

Table 3: Vehicle detection results on KITTI val sets.

 YOLO

Faster

R-CNN

VGG-16

This

work

Scenario 1 (12 vehicles) 0.676 0.999 0.992

Scenario 2 (3 vehicles) 0.873 1 1

Scenario 3 (3 vehicles) 0.955 1 1

Scenario 4 (3 vehicles) 0.685 0.963 0.999

Scenario 5 (3 vehicles) 0.673 0.982 0.999

Table 4: AP comparison of YOLO, Faster R-CNN and our

work in 5 scenarios.

3.3. CarSim-Generated Data Evaluation

CarSim-generated driving data is not realistic enough to

replace real-world driving data for training but it could be

used to test a vehicle detector given vehicles viewed at any

designated viewing angles and no manual labeling is

necessary.

In order to assess whether or not our model trained by

VOC07+12 trainval would be capable of detecting on-road

vehicles, we use CarSim to generate on-road vehicles with

auto-generated GT. As shown in Figure 7, there are totally

12 different vehicle types including sedan, truck, SUV, etc.

And, none of them is or looks like bus because we only

want to quantitatively evaluate our detector and other

famous detector’s “car” detection capability. In scenario-1,

each vehicle maneuvers with the same pre-set trajectory

and the frames of each video is the same (1052 frames).

Totally, there are 12624 frames. The purpose of this

experiment is to assess a vehicle detector’s capability in

detecting all kinds of vehicles in a controlled environment.

Therefore, the background of each video is the same. For

scenario-2 to -5, vehicle-1, -6 and -8 in Figure 7 are

selected for conducting the following experiments. Each

setting, in terms of a fixed distance and tilt angle pairs,

ranging from (4.4m, 0˚), (8m, 0˚), (5m, 25˚), (8m, 20˚),

creates 360-degree view of the selected vehicle for 241

frames. So, there are 723 frames for each scenario other

than the 1st one. We compare YOLO, Faster R-CNN with

our work on all of the CarSim-generated data.

Figure 7: 12 vehicle types in Carsim from top to bottom

and left to right.

As can be seen in Table 4, in scenario-1, YOLO

underperforms others when vehicles are relatively small in

the maneuvering. In the rest scenarios, YOLO is slightly

better because vehicle size is bigger. However, Faster

R-CNN (VGG-16) and our method achieve very promising

result for almost all scenarios. It is worth mentioning that

the only imperfect detection results of Faster R-CNN is due

to false negative results instead of detecting a vehicle as a

bus but this is possible because we directly use the

downloaded version so originally it is a 20-class detector.

4. Model Analysis

In order to quantitatively improve our detector, we have

carried out several controlled experiments to examine how

each component affects the final performance. For all of the

following experiments, the training data are all VOC 07+12

with the same training iteration and learning rate.

4.1. Basenet Comparison

ResNet family is highly possible to boost the detection

capability of a detector because ResNet-101, ResNet-152

has achieved promising Top-1 and Top-5 accuracy. Using

them as basenet is beneficial to directly boost the detection

capability. However, in consideration of the possibility to

deploy our detector on an embedded system, only

ResNet-18 and ResNet-32 are compared in our experiments.

ResNet-18 and ResNet-32 obtain 0.861 & 0.881 for single

crop, top-5 accuracy on Titan X for 224×224 images. Both

227

231

of them slightly underperform GoogLeNet. In order to

unbiasedly analyze the capability of basenets, we simply

add two more convolution layers on top of each of them.

The output size is all with 448×448 input images and 7×7

output grid setting, as the basic version of our work in the

ablation study.

Basenet FPS(TitanX) FPS (GP106) AP

GoogLeNet 56 36 68.8

ResNet-18 58 33 68.1

ResNet-32 34 15 69.6

Table 5: Vehicle detection results for our initial version.

Figure 8: AP corresponding to different IOU thresholds.

As shown in Table 5, the FPS of ResNet-18 and

GoogLeNet are not significantly different but the AP of the

latter is slightly higher. ResNet-32 is significantly slower

but it could achieve better result. Since real-time

applicability is the major concern to ADAS and

autonomous vehicle, we choose

computationally-economical GoogLeNet as our basenet.

4.2. Ablation study

We made some improvements based on the original

version of our work to achieve the final result. A summary

result could be found in Table 6.

4.3. IOU Fine-tuning Analysis

Insufficient IOU is a major reason to consider a

detection result as TP. As can be seen in Figure 8, there is

an approximate AP 4% difference between 0.4 IOU and 0.5

IOU. After our NOHEM is applied to fine-tune the correct

detection results with IOU>0.4 in PASCAL, the AP is

boosted for nearly 0.5%.

5. Conclusion

We developed a fast vehicle detector which achieves

very competitive results in vehicle detection. Major

improvements have been made by introducing the idea of

multi-scale feature maps, size priors and most importantly

the NOHEM. We found that the AP could still be boosted

by only training with hard examples after standard training

stops improving AP. Besides, insufficient IOU for objects

to be counted as TP is also alleviated by fine-tuning only

the weightings describing the location and the size of the

detected objects. Our method achieves 48 FPS on Titan X

and 30 FPS on GP106 (DrivePX2) and it is therefore able to

function in real-time for ADAS or autonomous vehicle.

In the future, we will try to use more realistic vehicle

training data generated by car simulators using more

powerful 3D engine, such as Unity3D, to learn the essence

of vehicle appearances.

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0
.4

0
.4

1

0
.4

2

0
.4

3

0
.4

4

0
.4

5

0
.4

6

0
.4

7

0
.4

8

0
.4

9

0
.5

AP

IOU

AP before IOU fine-tuning

AP after IOU fine-tuning

Table 6 Each design decisions that lead to better performance in terms of AP.

 Car Bus Vehicle (Car+Bus)
448×448 Fine-tuning √ √ √ √ √ √ √ √ √

Batch normalization + PReLU √ √ √ √ √ √ √ √

14×14 prediction √ √ √ √ √ √ √
Data augmentation √ √ √ √ √ √

Multi-scale feature √ √ √ √ √
Bounding box priors

 √ √ √ √

NOHEM √ √ √

NOHEM (IOU) √ √
Soft-NMS √

AP 68.2 69.1 68.8 70.1 74.9 77.5 81.2 81.8 82.4 83.9 84.8 85.3

Table 6 Each design decisions that lead to better performance in terms of AP.

228

232

References

[1] Z. Sun, G. Bebis, and R. Miller, “On-road vehicle detection:

a review” IEEE Transactions On Pattern Analysis And

Machine Intelligence, vol. 28, no.5, pp. 694-711, May 2006.

[2] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D.

Ramanan, “Object detection with discriminatively trained

part based models,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 32. no.9, pp.1627–1645, Sep

2010.

[3] A. Krizhevsky, I. Sutskever and G. Hinton, “ImageNet

classification with deep convolutional neural networks,”

in Advances in Neural Information Processing Systems

(NIPS), 2012.

[4] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed and D.

Anguelov, A. Rabinovich, “Going deeper with

convolutions,” in IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2015.

[5] K. Simonyan and A. Zisserman, “Very deep

convolutional networks for large-scale image recognition,”

in International Conference on Learning Representations

(ICLR), 2015.

[6] K. He, X. Zhang, S. Ren and J. Sun, “Deep residual learning

for image recognition,” in IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2016.

[7] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich

feature hierarchies for accurate object detection and semantic

segmentation,” in IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2014.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid

pooling in deep convolutional networks for visual

recognition,” in European Conference on Computer Vision

(ECCV), 2014.

[9] J. Uijlings, K. van de Sande, T. Gevers and A. Smeulders,

“Selective search for object recognition,” International

Journal of Computer Vision (IJCV), 2013.

[10] R. Girshick, “Fast R-CNN,” in International Conference on

Computer Vision (ICCV), 2015.

[11] S. Ren, K. He, R. Girshick and J. Sun, “Faster R-CNN:

Towards real-time object detection with region proposal

networks,” in Advances in Neural Information Processing

Systems (NIPS), 2015.

[12] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, “You

only look once: Unified, real-time object detection,” in IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2016.

[13] M. Everingham, L. Van Gool, C. K. Williams, J. Winn and

A. Zisserman, “The pascal visual object classes (voc)

challenge,” International Journal of Computer Vision

(IJCV), 2010.

[14] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, Y.

LeCun, “Overfeat: Integrated recognition, localization and

detection using convolutional networks,” in International

Conference on Learning Representations (ICLR), 2014

[15] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.Y

Fu and A. C. Berg, ”SSD: Single shot multibox detector,” in

European Conference on Computer Vision (ECCV), 2016

[16] Z. Cai, Q. Fan, R.S Feris and N. Vasconcelos, ”A unified

multi-scale deep convolutional neural network for fast object

detection,” in European Conference on Computer Vision

(ECCV), 2016.

[17] T. Kong, A. Yao, Y. Chen and F. Sun, “HyperNet: Towards

accurate region proposal generation and joint object

detection,” in IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2016.

[18] A. Shrivastava, A. Gupta and R. Girshick, “Training region

based object detectors with online hard example,” in IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2016.

[19] S. Sivaraman and M.M Trivedi, “A general active-learning

framework for on-road vehicle recognition and tracking,”

IEEE Transactions on Intelligent Transport System, vol. 11.

no. 2, pp. 267-276, 2010.

[20] Y. Zhou, L. Liu, L. Shao and M. Mellor, “DAVE: A unified

framework for fast vehicle detection and annotation,” in

European Conference on Computer Vision (ECCV), 2016.

[21] A. Geiger, P. Lenz and R Urtasun, “Are we ready for

autonomous driving? the KITTI vision benchmark suite,” in

IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2012

[22] Mechanical Simulation Corporation. CarSim® mechanical

simulation, https://www.carsim.com/products/carsim/

[23] M.D Zeiler and R. Fergus, “Visualizing and understanding

convolutional networks,” in European Conference on

Computer Vision (ECCV), 2014.

[24] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S.

Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C.

Berg and L. Fei-Fei, “ImageNet large scale visual

recognition challenge,” International Journal of Computer

Vision (IJCV), 2015.

[25] S. loffe and C. Szegedy, “Batch normalization: accelerating

deep network training by reducing internal covariate shift,”

in International Conference on Machine Learning (ICML),

2013.

[26] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into

rectifiers: surpassing human-Level performance on

ImageNet classification,” in International Conference on

Computer Vision (ICCV), 2015.

[27] N. Bodla, B. Singh, R. Chellappa, and L.S. Davis,

“Improving object detection with one line of code,” in

International Conference on Computer Vision (ICCV), 2017.

[28] Y. Xiang, W. Choi, Y. Lin, and S. Savarese, “Data-driven

3d voxel patterns for object category recognition,” in IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2015.

[29] Y. Xiang, W. Choi, Y. Lin, and S. Savarese, “Subcategory

aware convolutional neural networks for object

proposals and detection,” in IEEE Winter Conference on

Applications of Computer Vision (WACV), 2017.

229

