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Abstract 

 

This paper presents a fast vehicle detector which can be 

deployed on NVIDIA DrivePX2 under real-time constraints. 

The network predicts bounding boxes with different aspect 

ratio and scale priors from the specifically-designed 

prediction module given concatenated multi-scale feature 

map. A new data augmentation strategy is proposed to 

systematically generate a lot of vehicle training images 

whose appearance is randomly truncated so our detector 

could detect occluded vehicles better. Besides, we propose 

a non-region-based online hard example mining 

framework which performs fine-tuning by picking (1) hard 

examples and (2) detection results with insufficient IOU. 

Compared to other classical object detectors, this work 

achieves very competitive result in terms of average 

precision (AP) and computational speed. For the 

newly-defined vehicle class (car+bus) on VOC2007 test, 

our detector achieves 85.32 AP and runs at 48 FPS and 30 

FPS on NVIDIA Titan X & GP106 (DrivePX2), 

respectively. 

1. Introduction 

Vehicle detection is a fundamental problem required for 

both Advanced Driver Assistance Systems (ADAS) and 

autonomous vehicle. One expects that vehicles could be 

detected as accurately as possible by an ADAS because the 

function of such a system is to enhance driving safety 

especially for the scenario that the host vehicle and the 

preceding vehicle is very close. That is to say, either 

false-positive or false-negative should be eliminated under 

critical conditions. Before the era of deep learning, 

traditional vehicle detection methods were mostly 

developed under a Hypothesis Generation (HG) + 

Hypothesis Verification (HV) framework [1] that the 

former is to generate region proposals and the latter applies 

a pair of feature extractor and classifier to eliminate false 

positives. To achieve high detection performance, one has 

to employ a star-structured architecture consisting of root 

and parts filters with associated deformation models for 

object detection.  DPM [2] can successfully handle 

deformable object detection even when the target is 

partially occluded. However, it leads to heavy 

computational costs due to a large number of repeated 

feature extraction and classification tasks in a sliding 

window search framework. 

Recently, image classification has been significantly 

improved by deep ConvNets, such as Alexnet [3], 

GoogLeNet [4], VGG16 [5] and the powerful ResNets [6]. 

Object detection is a challenging task and its recent 

advances are driven by the success of region-based 

convolutional neural networks (RCNNs) [7]. Although 

RCNNs were computationally expensive originally, their 

computational cost has been drastically reduced by sharing 

convolutions, inspired by [8], across proposals generated 

by Selective Search [9]. This idea brought up Fast R-CNN 

[10] which achieves near real-time efficiency using very 

deep networks-VGG16, when ignoring the time spent on 

region proposal generation. Proposals were the test-time 

computational bottleneck in the object detection systems 

and its computation was significantly reduced by region 

proposal network (RPN) which was proposed in Faster 

R-CNN [11]. Although Faster R-CNN achieves 4-5 FPS, it 

is still far from the requirement of real-time object 

detection. i.e., 30 FPS. Recently, YOLO [12] made a 

break-through by realizing an end-to-end framework. It 

reframes object detection as a single regression problem. 

The last layer is simply the probability of an object, the 

class it belongs to and the location it is in the image. This 

work achieves 45 FPS in PASCAL VOC 2007 [13] test 

dataset with mAP of 63.4. Its sped-up version, Fast YOLO, 

further reaches 155 FPS with mAP of 52.7% on the same 

dataset. However, poor localization precision was also 

reported according to the analysis in their work. 

In order to better accommodate objects of different sizes, 

Faster R-CNN reported that using 9 anchor boxes brings 

the benefit of mAP boost while the size and aspect ratio of 

each prior are manually selected. Recently, the idea of 

multi-scale feature map is introduced so that receptive 

fields match objects of different scales. As opposed to 

Overfeat [14] and YOLO that operate on a single scale 

feature map, SSD [15] expects object at different size to be 

detected from lower to higher layers.  MS-CNN [16] 

carefully selects feature maps from early layers to higher 
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ones for generating region proposals from different scales. 

Hypernet [17] aggregates hierarchical feature maps using 

pooling and deconvolution layers to form hyper feature 

maps where RPN generates region proposal from.   

Hard negative mining was a very popular technique 

for enhancing the object detection accuracy. However, it 

needs to freeze the model for selecting the hard negative 

results and then put them into negative training results. In 

Fast R-CNN, the fg-bg (foreground-background) ratio is 

1/3. OHEM [18] claimed that changing this ratio in training 

Fast R-CNN would decrease mAP so they proposed to train 

only hard examples without keeping this heuristic 

parameter. Only those region proposals with higher loss 

would contribute to the back propagation (BP) and the 

mAP is significantly boosted for this reason. YOLO also 

suffers from such inconvenience because most images 

contain only a few objects so they specifically set the 

parameters for balancing fg-bg loss. The imbalance makes 

YOLO sensitive to the weighting parameters in the loss 

function.  
Most on-road vehicle datasets are captured with limited 

viewing angles or at fixed distances. LISA 2010 dataset [19] 

is entirely composed of rear-viewed front vehicles. Urban 

Traffic Surveillance (UTS) dataset [20] provides vehicle 

images captured by surveillance systems. KITTI dataset 

[21] is specifically designed for autonomous driving and all 

images are collected in real-driving scenario. Vehicles in 

this dataset suffer from scale variation, occlusion and 

truncation than previous ones. However, cars and buses in 

PASCAL VOC 2007 and 2012 are more diverse and 

challenging because their appearances are fully or partially 

seen at different distances, aspect ratios, sizes and viewing 

angles. Car simulation software, such as Carsim [22], could 

easily generate a massive amount of data with 

auto-generated ground truth (GT). In this paper, we also 

investigate the possibility of using Carsim in vehicle 

detector development. 

Inspired by the advantages and drawbacks of previous 

works, in this paper, we propose a fast vehicle detector 

which two-dimensionally relates the outputs of a CNN to a 

given image. The improvements include (1) an efficient 

basenet, GoogLeNet, combined with a multi-scale-based 

prediction module which carefully merges spatially-rich 

information from low-level features with high-level 

semantic information encoded in upper layers, (2) a heavy 

data augmentation strategy specifically designed for 

vehicle detection and (3) a Non-region-based OHEM 

(NOHEM) strategy which significantly boosts the AP. 

Comparisons with the state-of-the-art methods on these 

benchmarks demonstrate the advantages of the proposed 

method for vehicle detection. 

2. Fast Vehicle Detector 

This section describes the proposed framework and 

the associated training methodology. As can be seen in 

Figure 1, if an image is fed into our CNN with a prediction 

module on top, the vehicle inside is expected to be detected. 

Our prediction module is based on the concatenated 

multi-scale feature maps together with 2 more convolution 

layers on top. As shown in Figure 2, the last layer is the 

output and it is spatially interpreted as a fixed number of 

grids responsible for detecting objects whose centers of the 

object windows are located inside. Our design has the 

following key features: 

 

 
Figure 1: Our CNN model. 

 

 
Figure 2: Our prediction module. 

 

Efficient Basenet: Most object detectors applied 

pre-trained CNNs. SSD is with VGG16.  YOLO proposed a 

CNN whose performance is close to GoogLeNet. Faster 

R-CNN is with ZF-net [23] for ablation studies and 

achieved better performance using VGG16 and 

ResNet-101. Generally speaking, using better basenet is 

beneficial to the subsequent detection task. VGG16 and 

ResNet-101 achieve 0.912 & 0.937 for single crop, top-5 

accuracy at 22 FPS & 19 FPS respectively on Titan X for 

224×224 images. 1 However, vehicle detection is mostly 

expected to run in real-time. Although there are alternative 

choices, such as ResNets with fewer layers, we applied 

GoogLeNet because of its simplicity and fast inference 

speed (56 FPS with our two extra layers and 65 FPS 

without on Titan X for 448×448 images). Since we use a 

448×448 image as our input, we pre-trained the whole 

GoogLeNet on 1000-way ImageNet classification [24] with 

448×448 images from scratch and finally reached top-5 

accuracy of 0.895 and top-1 accuracy of 0.6995 at 2.4 

million iterations. Besides, we also tried to fine-tune the 

original GoogLeNet with 448×448 images for 0.24 million 

iterations. The fine-tuning followed the recommended 

GoogLeNet pre-training parameters with 0.9 momentum, 

0.0002 weight decay but the learning rate is lowered to 

                                                           
1 https://github.com/jcjohnson/cnn-benchmarks 
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0.0001.This attempt reached top-5 accuracy at 0.9109 and 

top-1 accuracy with 0.715. The quantitative results had 

proved that fine-tuning with higher resolution training 

images is better than training from scratch. Most 

importantly, the improved accuracy did boost the 

subsequent detection. 

 

Data Augmentation: This skill is crucial to train either a 

classifier or a detector. Fast and Faster R-CNN horizontally 

flip the input image with probability of 0.5. YOLO 

introduces random scaling and translation of up to 20% of 

the original image size and adjusts the exposure and 

saturation of the image by up to a factor of 1.5 in the HSV 

color space. SSD’s strategy is more diverse in that they 

randomly sample a patch that overlaps the object with 

certain size and horizontally flipping. Our strategy is 

similar in that we want to enhance the detection capability 

even when it is heavily occluded so we also resize the 

vehicles in the training images with 0.1 to 0.9 of the 

original size if their area is above a predetermined threshold 

and this image is horizontally flipped with 0.5 probabilities. 

And there is also a probability of 0.5 for this vehicle to be 

truncated by a new window that only contains at least 25% 

of its appearance visible. We found this strategy very useful 

in dealing with vehicles occluded by each other. While 
only a few of them are partially seen, the ones that 
are entirely seen were chosen to be randomly 
resized, rotated, horizontally-flipped, recolored, 
cropped or put in the boundary to make them 
truncated to a random extent. Our detector is 
therefore doing better in learning the essence of 
vehicle’s appearance. Finally, in order to improve the 

detector capability in detecting vehicles with fuzzy 

appearance, we randomly blur the training image with 

either mean filter, median filter or, Gaussian blur.   
 

Multi-Scale Feature Maps and Bounding Box Priors: 
Objects can appear at a variety of scales. A single receptive 

field cannot match this variability. MS-CNN selected four 

different feature maps to generate region proposals. 

Hypernet directly generates region proposals from a hyper 

feature map concatenated by three feature maps coming 

from lower to higher layers. We approach the idea of 

multi-scale features by concatenating feature maps from 

inception_4a, inception_4d and inception_5b in GooLeNet. 

Then, two more additional convolutional layers are stacked 

on top. Besides, each layer is followed by Batch 

Normalization [25] and PReLU[26].  

Faster R-CNN predicts bounding boxes using 

hand-picked priors. The input image of single-shot detector 

like YOLO is normalized to 448×448 so it is equivalent to a 

single anchor box. Most detection errors by YOLO as 

described in their work could be attributed to localization 

error. SSD did not suffer from this problem comparatively 

because they use multi-scale feature maps together with 

three default boxes to internalize the idea of multi-anchor 

box. However, instead of hand-picked priors, we perform 

k-means algorithm in exploring better priors. In our study, 

we found that using 3 priors (318x313, 212x176, 63x56) 

reached best performance in PASCAL VOC07 test and the 

overhead to add more priors is not significant because only 

several more feature layers are necessary to be stacked on 

the top layer. 

 

 
Figure 3: Flowchart of Non-region-based Hard Example 

Mining- initial version. 

 

 
Figure 4: Flowchart of Non-region-based Hard Example 

Mining- final version. 

 
Non-region-based Online Hard Example Mining:  

Hard negative mining is a classical training skill in training 

object detector. The basic procedure is to collect initial 

training data, freeze this model, run detection on test data 

with Ground-Truth, collect false-positive results and 

re-train the model with the false detection results. Within 

some iteration cycles, the detection capability could be 

quantitatively boosted. With the advent of GPU, it is 

inefficient to freeze the model every time we found 

negative results. OHEM introduced a framework for 

region-based detectors, such as Fast R-CNN, to do BP for 

foreground or background objects with higher loss. 
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However, this framework could only be applied for 

region-based detectors. 

A naïve way to implement this idea in non-region-based 

detectors is shown in Figure 3. In a given mini-batch of N 

images, the loss sum in every training image is sorted. Then, 

some training images with lower loss are nullified to do BP. 

The cost of such BP is nearly the same as before and no 

additional mechanism should be re-designed.  This is 

similar to the idea of region-based OHEM but the AP boost 

is marginal in our case because such a framework would 

only perform BP by selecting the images with higher loss in 

a single mini-batch. In fact, after our detector is trained 

using standard BP, global hard examples are distributed in 

sparse training images based on the current snapshot and 

the training images possessing higher loss might not be 

quantitatively hard enough.  

We proposed Non-region-based OHEM (NOHEM) to 

train a CNN with images possessing loss higher than a 

threshold instead of higher loss. Our framework is shown in 

Figure 4. As can be seen, the left module would keep 

performing inference until the number of hard images 

possessing loss higher than a predetermined threshold is 

reached. Typically, it is the number of a mini-batch. An 

alternative way is to infer every training image and pick the 

ones, equal to N, with top losses. However, it is quite time 

consuming because we have to perform inference for every 

training image before doing a single BP. Last but not least, 

this framework is only designed for fine-tuning after 

standard training is completed. NOHEM is carried out for 

two times. The 1st one is performed after standard training 

is finished and the loss function is the same. The 2nd one 

uses the loss function designed for IOU boosting. 

 

Non-Maximal Suppression: Non-maximum 

suppression (NMS) is usually a post-processing step to 

obtain the final detection results. It sorts all detection boxes 

on the basis of their scores and then the detection bounding 

box with the maximum score is selected and all others with 

a significant overlap (using a pre-determined threshold) are 

suppressed. Soft-NMS, an algorithm [27] which decays the 

detection scores of all other objects as a continuous 

function of their overlap with the detection box that 

possesses maximum score, is applied to our detector. Using 

the linear version of Soft-NMS is proved beneficial in our 

experiments. 

 

Loss function of Training and Fine-tuning: Our 

training includes 3 stages with different loss functions. The 

1st stage applies standard training using object loss and 

non-object loss as (1) and (2). The 2nd one adopts the same 

loss functions, but the whole CNN is fine-tuned using the 

proposed NOHEM. The 3rd one fine-tunes the network 

using (3) which is designated for IOU boosting and still 

applies our NOHEM. Since the latter two only fine-tune the 

CNN, their learning rate is relatively low.   

At the beginning, the class, objectness and the bounding 

boxes are learned altogether. For an object whose center of 

object window locating in grid ij, i.e., ܩ௜௝ א ሺܱܾ݆݁ܿݐሻ,  its 

loss function is  

1

2 2( (G - ) (G -1) )

                                                                             

                                                 

α α
∈ ∈

+ k
m m om ij ij object ijn { prior , ,..,prior } m {wሺ n ሻ,hሺ n ሻ,x , y } Ĝ

2                        (G -1)      (1)

                                 

α+
cclass ij

where ܩ௜௝௢  denotes the objectness score;  ܩ௜௝௖  the class score; 

( ௜௝௫ܩ , ௜௝௬ܩ ) the coordinate of object. G୧୨௪ሺ௣௥௜௢௥ೖሻ  and G୧୨௛ሺ௣௥௜௢௥ೖሻstand for the regressed width and height in terms 

of the kth prior estimated by k-means clustering based on 

the width and height statistics. ܩ෠௜௝௫ ෠௜௝௬ܩ , , ෠௜௝௪ܩ  and ܩ෠௜௝௛  

represent the location and size GT of the object locating at 

grid ij. For ܩ௜௝ ב ሺܱܾ݆݁ܿݐሻ, i.e., no object whose center of 

object window locates in grid ij, its loss function is 

( ) ( )
2 2

.                                                 (2)α α
−

+ o c

non object ij class ijG G  

There are 2 terms for non-object grid. The first one is the 

objectness score and the 2nd is the class score. Although in 

this work, our goal is only to detect 1 type of object-vehicle, 

we still keep class score that typical multi-class object 

detectors possess because determining if there is an object 

locating in a grid by considering the class score and 

objectness score rather than the latter only would slightly 

boost the AP.  

The 2nd loss function is designed to boost the IOU using 

hard examples because detection results with insufficient 

IOU would be treated as the localization error.  This loss 

function is designed to fine-tune the whole network in an 

attempt to increase the IOU of each detected object whose 

objectness score is high but its IOU is below 0.5 (PASCAL) 

and 0.7 (KITTI car) which are the thresholds for 

determining if an object is successfully detected with 

precise bounding box. We define a new loss function which 

only fine-tunes the detected objects whose IOU is slightly 

lower than the required value to be considered true positive 

(TP). For a grid ܩ௜௝ א ሺܱܾ݆݁ܿݐ, ௜௝൯ܩ൫ܷܱܫ > ,ߚ ௜௝௢ܩ >  ,ሻߛ
i.e., object belonging to ܩ௜௝ with IOU higher than 0.4 )ߚ for 

PASCAL VOC, and 0.6 for KITTI car) and objectness 

higher than γ( 0.6), its loss function is 

1

2

{ ,..., { ( ), ( ), ,} }

ˆ ).                                          ( )) 3( (α
∈ ∈

− 
k

m

ij ij

n prior prior m w n h n x

m

y

n G G
  

Since this is a fine-tuning procedure, the learning rate is 

set to 0.0001 and the parameter ߙ௠ is also set to 1/100 of its 

original value in training by using eq. (1). 

3. Experimental Results 

We evaluate our detector on PASCAL VOC2007 dataset, 

KITTI detection benchmark, and Carsim-generated dataset 
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which is self-collected and is only used for testing. Our 

training all follows the same setting. Each grid in 14×14 

feature maps contains 3 objects with corresponding 3 

objectness scores and 1 class score. Therefore, there will be 

16 values describing objects whose center of object 

window is located in a grid as shown in Figure 2. The 

starting learning rate is 10-3 and it is divided by 10 for every 

16k iterations and the total iterations are 48k. The weight 

decay and momentum are set to 0.0005 and 0.9, 

respectively. 

3.1. PASCAL VOC2007 

In VOC 2007 trainval and VOC2012 trainval, there are 

totally 16551 training images. In VOC2007 test, there are 4 

952 images. However, our work only focuses on the vehicle 

class which is the superclass of car-class and bus-class. If 

we tried to select training images of car (1161+721) or bus 

(421+186), the AP might not be promising because the 

appearances of bus are essentially similar to those of car. 

Some training or testing photos contain both of them. If 

both classes are trained separately, the other would be 

treated negative data and this is harmful to learn the essence 

of vehicle’s appearance. Therefore, we defined a new class 

called vehicle which is composed of car & bus classes for 

both training (1420) and test images (825).  

 

Detection Frameworks Train  FPS 

Fast R-CNN 2007+2012 0.5 

Faster R-CNN VGG-16 2007+2012 7 

Faster R-CNN ResNet 2007+2012 5 

YOLO 2007+2012 45 

Fast YOLO 2007+2012 155 

SSD300 2007+2012 46 

SSD500 2007+2012 19 

This work  2007+2012 48 

Table 1: Detection frameworks on PASCAL VOC 2007.  

 

 Bus Car Vehicle 

(Car+Bus) 

Fast R-CNN 81.6 78.6 80.1 

Faster R-CNN VGG-16 83.1 84.7 83.9 

Faster R-CNN ResNet 85.1 85.3 85.15 

SSD 300 81.1 80.8 80.95 

SSD 500 84.9 85.6 85.25 

YOLO 71 65 68 

Fast YOLO 60 67 63.5 

This work  85.32 

Table 2: PASCAL VOC 2007 test detection results. 

 

In Table 1, we compare our work to other famous 

detectors in terms of training data and FPS (assessed on 

Maxwell Titan X). As can be seen, our vehicle detector is 

only slower than Fast YOLO. As shown in Table 2, our 

model achieves state-of-the-art AP in the newly-defined 

vehicle class in VOC07 test. Although other detectors are 

designed for multi-class detection, our work could be easily 

extended to detect 20 classes, the original number of class 

in PASCAL VOC, because only 19 more feature maps are 

required in the last layer. In our experiment, the processing 

time would only increase a few milliseconds for an image, 

so such a comparison is fair. Figure 5 visualizes the 

comparison of this work and other detectors in terms of AP 

and FPS. Last but not least, our detector could run 48 FPS 

on Titan X and 30FPS on GP106 (DrivePX2). 

 

 
Figure 5: AP and FPS on VOC07 test dataset. 

 

Figure 6: Some detection results on VOC07 test dataset. 

 

 Figure 6 demonstrates some typical detection results 

including non-, slightly-, heavily-occluded or truncated 

vehicles.  
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3.2. KITTI Val Set Evaluation 

In this section, we evaluate the proposed approach on the 

challenging KITTI object detection benchmark dedicated 

to autonomous driving. This dataset is composed of 7481 

training images and 7518 testing images. Since GT 

annotations for the testing set are not released, we use 

train/validation splits from the training set to validate our 

method. To compare our approach with other 

state-of-the-art methods, we use train/val splits as indicated 

by [28, 29]. We follow every setting that leads us to the best 

results in PASCAL VOC. As can be seen in Table 3, since 

the required IOU is higher than PASCAL VOC, our results 

seems not better. However, if we follow the same IOU 

required by PASCAL VOC, our results are satisfactory in 

that most of the closest vehicles in path could be 

successfully detected. 
 

  AP(IOU=0.7) 

Method Time Easy Moderate Hard 

3DVP 40s 80.48 68.05 57.20 

Faster-RCNN 2s 82.91 77.83 66.25 

Ours 0.02 62.41 52.41 47.15 

  AP(IOU=0.5) 

Ours 0.02 83.75 78.48 74.92 

Table 3: Vehicle detection results on KITTI val sets. 

 

 YOLO 

 

Faster 

R-CNN 

VGG-16 

This 

work 

Scenario 1 (12 vehicles) 0.676 0.999 0.992 

Scenario 2 (3 vehicles) 0.873 1 1 

Scenario 3 (3 vehicles) 0.955 1 1 

Scenario 4 (3 vehicles) 0.685 0.963 0.999 

Scenario 5 (3 vehicles) 0.673 0.982 0.999 

Table 4: AP comparison of YOLO, Faster R-CNN and our 

work in 5 scenarios.  

3.3. CarSim-Generated Data Evaluation 

CarSim-generated driving data is not realistic enough to 

replace real-world driving data for training but it could be 

used to test a vehicle detector given vehicles viewed at any 

designated viewing angles and no manual labeling is 

necessary. 

In order to assess whether or not our model trained by 

VOC07+12 trainval would be capable of detecting on-road 

vehicles, we use CarSim to generate on-road vehicles with 

auto-generated GT.  As shown in Figure 7, there are totally 

12 different vehicle types including sedan, truck, SUV, etc. 

And, none of them is or looks like bus because we only 

want to quantitatively evaluate our detector and other 

famous detector’s “car” detection capability. In scenario-1, 

each vehicle maneuvers with the same pre-set trajectory 

and the frames of each video is the same (1052 frames). 

Totally, there are 12624 frames. The purpose of this 

experiment is to assess a vehicle detector’s capability in 

detecting all kinds of vehicles in a controlled environment. 

Therefore, the background of each video is the same.  For 

scenario-2 to -5, vehicle-1, -6 and -8 in Figure 7 are 

selected for conducting the following experiments. Each 

setting, in terms of a fixed distance and tilt angle pairs, 

ranging from (4.4m, 0˚), (8m, 0˚), (5m, 25˚), (8m, 20˚), 

creates 360-degree view of the selected vehicle for 241 

frames. So, there are 723 frames for each scenario other 

than the 1st one. We compare YOLO, Faster R-CNN with 

our work on all of the CarSim-generated data. 

 

 

 

 
Figure 7: 12 vehicle types in Carsim from top to bottom 

and left to right. 

 

As can be seen in Table 4, in scenario-1, YOLO 

underperforms others when vehicles are relatively small in 

the maneuvering. In the rest scenarios, YOLO is slightly 

better because vehicle size is bigger. However, Faster 

R-CNN (VGG-16) and our method achieve very promising 

result for almost all scenarios.  It is worth mentioning that 

the only imperfect detection results of Faster R-CNN is due 

to false negative results instead of detecting a vehicle as a 

bus but this is possible because we directly use the 

downloaded version so originally it is a 20-class detector.  

4. Model Analysis 

In order to quantitatively improve our detector, we have 

carried out several controlled experiments to examine how 

each component affects the final performance. For all of the 

following experiments, the training data are all VOC 07+12 

with the same training iteration and learning rate. 

4.1. Basenet Comparison 

ResNet family is highly possible to boost the detection 

capability of a detector because ResNet-101, ResNet-152 

has achieved promising Top-1 and Top-5 accuracy. Using 

them as basenet is beneficial to directly boost the detection 

capability. However, in consideration of the possibility to 

deploy our detector on an embedded system, only 

ResNet-18 and ResNet-32 are compared in our experiments. 

ResNet-18 and ResNet-32 obtain 0.861 & 0.881 for single 

crop, top-5 accuracy on Titan X for 224×224 images. Both 
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of them slightly underperform GoogLeNet.  In order to 

unbiasedly analyze the capability of basenets, we simply 

add two more convolution layers on top of each of them. 

The output size is all with 448×448 input images and 7×7 

output grid setting, as the basic version of our work in the 

ablation study.  

 

Basenet FPS(TitanX) FPS (GP106) AP 

GoogLeNet 56 36 68.8 

ResNet-18 58  33 68.1 

ResNet-32 34 15 69.6 

Table 5: Vehicle detection results for our initial version.  

 

 
Figure 8: AP corresponding to different IOU thresholds. 

 

As shown in Table 5, the FPS of ResNet-18 and 

GoogLeNet are not significantly different but the AP of the 

latter is slightly higher. ResNet-32 is significantly slower 

but it could achieve better result. Since real-time 

applicability is the major concern to ADAS and 

autonomous vehicle, we choose 

computationally-economical GoogLeNet as our basenet. 

4.2. Ablation study  

We made some improvements based on the original 

version of our work to achieve the final result. A summary 

result could be found in Table 6. 

4.3. IOU Fine-tuning Analysis  

Insufficient IOU is a major reason to consider a 

detection result as TP. As can be seen in Figure 8, there is 

an approximate AP 4% difference between 0.4 IOU and 0.5 

IOU. After our NOHEM is applied to fine-tune the correct 

detection results with IOU>0.4 in PASCAL, the AP is 

boosted for nearly 0.5%. 

5. Conclusion 

We developed a fast vehicle detector which achieves 

very competitive results in vehicle detection.  Major 

improvements have been made by introducing the idea of 

multi-scale feature maps, size priors and most importantly 

the NOHEM. We found that the AP could still be boosted 

by only training with hard examples after standard training 

stops improving AP. Besides, insufficient IOU for objects 

to be counted as TP is also alleviated by fine-tuning only 

the weightings describing the location and the size of the 

detected objects.  Our method achieves 48 FPS on Titan X 

and 30 FPS on GP106 (DrivePX2) and it is therefore able to 

function in real-time for ADAS or autonomous vehicle. 

In the future, we will try to use more realistic vehicle 

training data generated by car simulators using more 

powerful 3D engine, such as Unity3D, to learn the essence 

of vehicle appearances.  
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Table 6 Each design decisions that lead to better performance in terms of AP. 

 Car Bus Vehicle (Car+Bus) 
448×448 Fine-tuning    √ √ √ √ √ √ √ √ √ 

Batch normalization + PReLU     √ √ √ √ √ √ √ √ 

14×14 prediction      √ √ √ √ √ √ √ 
Data augmentation       √ √ √ √ √ √ 

Multi-scale feature        √ √ √ √ √ 
Bounding box priors    

 

     √ √ √ √ 

NOHEM        √ √ √ 

NOHEM (IOU)        √ √ 
Soft-NMS         √ 

AP 68.2 69.1 68.8 70.1 74.9 77.5 81.2 81.8 82.4 83.9 84.8 85.3 

Table 6 Each design decisions that lead to better performance in terms of AP.
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