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Abstract

We present datasets containing urban traffic and rural

road scenes recorded using hyperspectral snap-shot sensors

mounted on a moving car. The novel hyperspectral cameras

used can capture whole spectral cubes at up to 15 Hz. This

emerging new sensor modality enables hyperspectral scene

analysis for autonomous driving tasks. Up to the best of the

author’s knowledge no such dataset has been published so

far.

The datasets contain synchronized 3-D laser, spectrometer

and hyperspectral data. Dense ground truth annotations

are provided as semantic labels, material and traversabil-

ity. The hyperspectral data ranges from visible to near in-

frared wavelengths. We explain our recoding platform and

method, the associated data format along with a code li-

brary for easy data consumption. The datasets are publicly

available for download.

1. Introduction

In the field of autonomous driving environment percep-

tion and, in particular, drivability analysis is a key fac-

tor. Given input data, the correct semantic interpretation

of a road scene is crucial for successfully navigating au-

tonomous cars. Often laser scanners are used for environ-

mental perception where the geometric nature of the envi-

ronment or the difference in height of individual segments

are investigated to classify the scene.

On closer examination of the established methods, it is

quickly clear that the complexity of traffic scenes and espe-

cially unstructured environments in off-road scenarios can

not be adequately depicted and recorded utilizing only uni-

modal sensory. In order to achieve a comprehensive repre-

sentation of the environment, the use of multimodal sensory

is necessary, which may be achieved by the additional use

of suitable camera systems. Here the hyperspectral imag-

ing could provide great advantages. Hyperspectral data al-

low a more detailed view of the composition and texture

of materials, plants and floor coverings than normal cam-

eras. It is an important and fast growing topic in remote
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(a) Example plots of hyperspectral spectra captured with the

NIR-camera. Street (gray) and vegetation (green).
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(b) Example plots of hyperspectral spectra captured with the

VIS-camera. Sky (blue) street (gray) and vegetation (green).

Figure 1: Examples of spectral plots of NIR-camera and

VIS-camera for different materials.

sensing where typically a few tens to several hundreds of

contiguous spectral bands are captured. Researchers use

so called line-scanning sensors on Landsat, SPOT satel-

lites or the Airborne Visible Infrared Imaging Spectrometer

(AVIRIS) for acquiring precise spectral data. These line-

scanning sensors provide static information of the Earth’s

surface and allow a static analysis. This area has been firmly

established for several years and is essential for many appli-

cations like earth observation, inspection and agriculture.

Additionally onboard realtime hyperspectral image analy-

sis for autonomous navigation is an exciting and promising

new application scenario. We want to explore this new re-

search area and investigate the use of hyperspectral imaging
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in the area of autonomous driving in traffic and off-road sce-

narios. But a drawback of established sensory are the scan-

ning requirements for constructing a full 3-D hypercube of

a scene. By utilizing line-scan cameras, multiple lines need

to be scanned, while for cameras using special filters several

frames have to be captured to construct an spectral image

of the scene. The slow acquisition time is responsible for

motion artifacts which impede the observation of dynamic

scenes. Therefore, new sensor techniques and procedures

are needed here.

This drawback can be overcome with novel highly compact,

low-cost, snapshot mosaic (SSM) imaging using the Fabry-

Perot principle. Since this technology can be built in small

cameras and the capture time is considerably shorter than

that of filter wheel solutions allowing to capture a hyper-

spectral cube at one discrete point in time. We used this

new sensory class and installed these hyperspectral cam-

eras together with additional sensory on land vehicles driv-

ing through urban and suburban areas building an all new

dataset for semantic scene analysis.

The main purpose of this dataset is to investigate the use

of hyperspectral data for computer vision especially in road

scene understanding to potentially enhance drivability anal-

ysis and autonomous driving even in off-road scenarios.

An example of several spectras of classes we reconstructed

is given in Figure 1, where differences in the spectral re-

flectances of different material classes can be spotted.

In this paper we present new datasets including raw data

and several hundred hand labeled hyperspectral data cubes

(hypercubes) captured with the use of snapshot mosaic hy-

perspectral cameras which where mounted together with

additional sensory on land vehicles. We want to investi-

gate the use of hyperspectral data for scene understanding

in autonomous driving scenarios. The remainder of this pa-

per is organized as follows. In the following section 2 an

overview of already available datasets for autonomous driv-

ing and especially hyperspectral datasets is given. Then our

general setup is presented in section 3. The preprocessing

and dataset format is explained in section 4. The dataset

itself and annotations are described in section 5. Finally a

conclusion of our work is given in section 6.

2. Related Work

Hyperspectral image classification has been under active

development recently. Given hyperspectral data, the goal of

classification is to assign a unique label to each pixel vector

so that it is well-defined by a given class. The availability

of labeled data is quite important for nearly all classification

techniques. While recording data is usually quite straight-

forward, the precise and correct annotation of the data is

very time-consuming and complicated.

There is only little research in literature on hyperspectral

classification utilizing terrestrial spectral imaging, where

data was not captured from an earth orbit or an airplane but

from cameras which where mounted on land-based vehi-

cles. One of the few examples is the vegetation detection in

hyperspectral images as demonstrated by Bradley et al. [2],

who showed that the use of the Normalized Difference Veg-

etation Index (NDVI) can improve classification accuracy.

Additionally Namin et al. [11] proposed an automatic sys-

tem for material classification in natural environments by

using multi-spectral images consisting of six visual and one

near infrared band.

In the field of classical computer vision, there are now some

established data sets. For example, Geiger et al. [10] pre-

sented a dataset of several hours using a variety of sen-

sor modalities like color cameras, captured from a car for

use in autonomous driving and robotics research. The cap-

tured scenarios vary from inner-city traffic scenes to rural

areas. Another benchmark dataset consisting of 500 stereo

image pairs was published by Scharwchter et al. [13]. They

provide ground truth segmentations containing five object

classes. Blanco et al. [1] published six outdoor datasets in-

cluding laser and color camera data with an accurate ground

truth. Skauli et al. [14] published a dataset of hyperspectral

images displaying faces, landscapes and buildings which

cover wavelengths from 400 − 2000nm. Which extends

the hyperspectral face database, captured in the visible light

spectrum and published by Wei Di et al. [5].

Yasuma et al. [19] presented a framework for designing

cameras that can simultaneously capture extended dynamic

range and higher spectral resolutions. They captured 31 hy-

perspectral images (400 − 700nm) of several static scenes,

with a wide variety of materials, using a tunable filter and a

cooled CCD camera.

Estimates of the frequency of metameric surfaces, which

appear the same to the eye under one illuminant but differ-

ent under another, were obtained from 50 hyperspectral im-

ages of natural scenes[7]. Foster et al. [6] published a small

dataset where they captured time-lapse hyperspectral radi-

ance images five outdoor vegetated and non-vegetated static

scenes. They explored illumination variations on color mea-

surements. A collection of fifty hyperspectral images of

indoor and outdoor scenes captured under daylight illumi-

nation and twenty-five images captured under artificial and

mixed illumination was published by Chakrabarti and Zick-

ler [4]. The problem of segmenting materials in hyperspec-

tral images was recently investigated by Yu et al. [20]. They

use a per pixel classification followed by a super-pixel based

relabelling to classify materials. For evaluation they col-

lected 51 portrait and landscape hyperspectral images from

several above mentioned databases [7, 19, 4, 14] which have

been processed to obtain a common sampling in the range

of 430 − 700nm. To the best of our knowledge there are

only two other datasets which use the same sensor as we

did. Fotiadou et al. [8] propose a deep feature learning ar-
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chitecture for efficient feature extraction, encoding spectral-

spatial information of hyperspectral scenes. They focused

on the classification of snap-shot mosaic hyperspectral im-

ages and built a new hyperspectral classification dataset of

indoor scenes consisting of 90 images. The images where

acquired under different illuminations and different view-

points displaying 10 different objects like bananas, glasses

and other things. The combination of RGB and hyperspec-

tral data was evaluated by Cavigelli et al. [3] on data with

static background and a very small dataset with only a few

images utilizing deep neural nets.

As far as we know, there is no publicly available dataset

with hand labeled hyperspectral data recorded by snapshot

mosaic hyperspectral cameras mounted on a moving land

vehicle capturing driving scenarios. It’s our goal to provide

new datasets which help to investigate the use of hyperspec-

tral data in driving scenarios.

3. Sensor Setup

We have manly recorded two datasets, called HyKo1 and

HyKo2 with different sensor setups which will be illustrated

and described in the next sections. As hyperspectral cam-

era sensors we used the MQ022HG-IM-SM4X4-VIS (VIS)

and MQ022HG-IM-SM5X5-NIR (NIR) manufactured by

Ximea with an image chip from IMEC [9] utilizing a snap-

shot mosaic filter which has a per-pixel design. The filters

are arranged in a rectangular mosaic pattern of n rows and

m columns, which is repeated w times over the width and

h times over the height of the sensor. These sensors are de-

signed to work in a specific spectral range which is called

the active range which is:

• visual spectrum (VIS): 470–630 nm

• near infrared spectrum (NIR): 600-975 nm

The VIS camera has a 4×4 mosaic pattern and the NIR 5×5
which results in a spatial resolution of approx. 512 × 272
pixels (4 × 4) and 409 × 217 pixels (5 × 5). Ideally ev-

ery filter has peaks centered around a defined wavelength

spectrum with no response outside. However contamina-

tion is introduced into the response curve and the signal due

to physical constraints. These effects can be summarized

as a spectral shift, spectral leaking, and crosstalk and need

to be compensated[16, 18, 15, 17]. Additionally we used

a acA2040-25gc color camera from Basler, with a LM6HC

lens from Kowa in the HyKo1 dataset. So it’s possible to

examine differences between color and hyperspectral data.

The hyperspectral cameras and the color camera are syn-

chronized using a custom build hardware trigger. Unfor-

tunately we couldnt’t synchronize the Velodyne HDL-32E

along with cameras, because there is no direct interface for

triggering the Velodyne HDL-32E itself. For the VIS and

the NIR camera we used the LM5JC10M lens from Kowa.

(a) Example raw image data taken by the VIS camera.

(b) Example raw image data taken by the NIR camera.

(c) A schematic representation of a hypercube and an interpo-

lated plot of a single data point.

Figure 2: Raw image VIS camera with visible mosaic pat-

tern. And a schematic representation of a hypercube con-

structed from the captured data.

Figure 3: Hyperspectral cameras used to capture the new

datasets.

Additionally the NIR camera was equipped with a 16mm

VIS-NIR lens from Edmund Optics in some sequences, like

displayed in Figure 3. Some example raw data can be seen
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(a) Velodyne HDL-32E1 (b) Qmini Wide

Figure 4: Additional sensory utilized in our datasets.

in Figure 2.

Additionally we used several Velodyne HDL-32E sensors

to gather 3D pointclouds in our datasets. The sensor ro-

tates with 10HZ has 32 laser beams and delivers 700 000

3D points per second. It has a 360 deg horizontal +10 to

−30 vertical field of view.

To get a ground truth of the illumination of the scene we in-

tegrated a Qmini Wide spectrometer manufactured by RGB

Photonics with an USB interface. It delivers 2500 spectral

reflectance values from 225 − 1000nm through an optical

fiber element, like displayed in Figure 4.

3.1. Sensor Calibration

Sensor calibration is crucial for sensor fusion. We cali-

brated our cameras intrinsically before every run and did an

extrinsic calibration to allow a registration and data fusion

with the Velodyne HDL-32E sensors. For calibrating multi-

ple cameras with multiple laser range finders we developed

a robust and complete methodology which is publicly avail-

able and will be published anytime soon. Here we will give

a brief introduction. Registering laserscanners with cam-

eras is non-trivial as correspondences are hard to establish,

known 3D reference geometry is required. Therefore our

system consists of two phases. First we perform bundle

adjustment2 on a custom build marker system to obtain a

reference 3D geometry using camera images. Then we ob-

serve this geometry in different poses with all the sensors

that need calibration and perform non-linear optimization3

to estimate the extrinsic transformation. It allows the accu-

rate estimation of the 3D poses of configurations of optical

markers given a set of camera images.

4. Data Preprocessing and Format

In this section we briefly describe our preprocessing and

data format used for our datasets.

1Source: http://velodynelidar.com/hdl-32e.html
2https://github.com/cfneuhaus/visual_marker_

mapping
3https://github.com/cfneuhaus/multi_dof_

kinematic_calibration

4.1. Preprocessing

During recording, the hyperspectral cameras provide the

images in a lossless format with 8 bits per sample. There-

fore the raw data captured by the camera needs a special

preprocessing. We need to construct a hypercube with spec-

tral reflectances from the raw data like seen in Figure 2.

This step consists of cropping the raw-image to the valid

sensor area, removing the vignette and converting to a three

dimensional image, which we call a hypercube. Reflectance

calculation is the process of extracting the reflectance sig-

nal from the captured data of an object. The purpose is to

remove the influence of the sensor characteristics like quan-

tum efficiency and the illumination source on the hyper-

spectral representation of objects. We define a hypercube

as H : Lx × Ly × Lλ → IR where Lx, Ly are the spatial

domain and Lλ the spectral domain of the image. A visual

interpretation of such a hypercube is displayed in Figure 2c.

The hypercube is understood as a volume, where each point

H(x, y, λ) corresponds to a spectral reflectance. Derivated

from the above definition a spectrum χ at (x, y) is defined

as H(x, y) = χ, where χ ∈ IR|Lλ| and |Lλ| = n · m.

The image with only one wavelength, called a spectral band

H(z) = Bλ=z , is defined as follows: Bλ : Lx × Ly → IR.

This image contains x = (x, y) the wavelength sensitivity

λ for each coordinate. After our preprocessing we get the

following hypercube dimensions:

VIS 510× 254× 16

NIR 407× 214× 25

4.2. Data Format

The extracted hyperspectral data is saved as MATLAB level

5 mat-files4. Every mat-file holds exactly one frame with

the following data.

image Holds the raw image as captured by the camera like

shown in Figure 2. The raw image has a resolution of

2048×1088pixels for both cameras. Depending on the

camera type, a defined number of pixels at the borders

is not valid.

data Holds the preprocessed hyperspectral data in form of

a hypercube as described in section 4.1.

label * Holds the labels, in form of a mask, which were

assigned to the data during the annotation step.

wavelengths Holds a list with the primary wavelength sen-

sitivities for every band in the hypercube as defined by

the manufacturer.

4https://www.mathworks.com/help/pdf_doc/matlab/

matfile_format.pdf
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5. Dataset

Our dataset can be accessed and downloaded through

https://wp.uni-koblenz.de/hyko/. The web-

site provides the hyperspectral data as well as source code

for loading and more detailed technical information about

the data. Further details about usage rights are given on the

website.

At the moment we provide raw datalogs as rosbags5

recoreded using the middleware ROS[12] where each used

sensor publishes data on its own topic. Additionally we pro-

vide annotated hyperspectral data-cubes which where ex-

tracted and preprocessed from the rosbags in the form of

matlab-files like described in section 4.2. For the HyKo1

dataset the following sensors were mounted on a car:

• One VIS and one NIR camera

• One color camera

• One Velodyne HDL-32E

• One Qmini Wide spectrometer

For the HyKo2 dataset the following sensors were mounted

on a truck:

• One VIS and one NIR camera

• Two Velodyne HDL-32E

• One Qmini Wide spectrometer

In all our datasets all cameras are synchronized using a cus-

tom build hardware trigger.

5.1. Data extraction

We took the rosbags and extracted a hyperspectral cube of

each camera every 4 seconds, so we got several hundred hy-

percubes each representing one frame. Due to the fact that

our sensors are mounted on land vehicles we have to deal

with illumination changes and direct sunlight on the sensor

which distorts the reflectance calculation. Two examples

are given in Figure 5, where the illumination is too strong

or too weak. So we filtered the data after extraction and

sorted out all the data in which more than 20 percent of the

data was over or underexposed. The filtered data was then

used in the annotation process.

5.2. Annotations

As there is no labeling tool available, which is able to han-

dle our hyperspectral data correctly, we developed our own,

which will be made publicly available too. The annota-

tions were done by hand for all hypercubes of each dataset.

During the labeling process not all hyper-pixels have been

5http://wiki.ros.org/rosbag

(a) Overexposed VIS data.

(b) Underexposed VIS data.

Figure 5: Examples of filtering over and underexposed data

captured with the VIS camera from the HyKo2 dataset.

assigned classes. This is due to the fact, that border ar-

eas between materials are not unambiguously assignable.

And as later results have shown no errors arised from this

constraint. For annotation we introduced three annotation

classes called semantic, material and drivability, as shown

in Figure 6.These annotation classes were inspired by the

annotations of other data sets from the areas of hyperspec-

tral image processing and semantic scene analysis. So over

the past months we annotated several hundred hypercubes.

Sky Road Sidewalk

Lane

Grass

Vegetation Panels Building

Vehicle Human

(a) Annotation based on semantic classes.

Paper Chlorophyll Sky

Street

Soil Wood Metal

Plastic

(b) Annotation based on material classes.

Sky drivable

rough Obstacle

(c) Annotation based on drivability classes.

Figure 6: Introduced annotation classes

Statistics of our labeling work are displayed in Figure 7.
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(a) Statistics of dataset HyKo1 captured with VIS camera and

drivability labels.
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(b) Statistics of dataset HyKo1 captured with NIR camera and

drivability labels.
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(c) Statistics of dataset HyKo2 captured with VIS camera and

drivability labels.

Some examples of our annotations in different annotation

classes are presented in Figure 8.

6. Discussion and Conclusion

In this work, we have presented a freely available synchro-

nized and calibrated autonomous driving dataset capturing

different scenarios. It consists of hours of raw-data streams

and several hundred hyperspectral data cubes. To the best

ch
lo

ro
ph

yl
l

sk
y

st
re

et
so

il

w
oo

d

m
et

al
0

2

4

6

·106

N
u
m

b
er

o
f

la
b
el

s

(d) Statistics of dataset HyKo2 captured with VIS camera and

material labels.
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(e) Statistics of dataset HyKo2 captured with VIS camera and

semantic labels.

(f) Tulf Dataset vis semantic

Figure 7: Object and label occurence statistics of our

dataset.

of our knowledge it’s the first dataset including snapshot

mosaic hyperspectral hyperspectral data from the visible to

the near infrared range, color image data, 3D pointclouds

and illumination information captured by a spectrometer.

We provide semantic, material and drivability labels for

many of the sequences. Our goal is to examine the use of

hyperspectral data for semantic scene understanding espe-

cially in autonomous driving scenarios. Furthermore we are

constantly working on improving our dataset and we will

continue integrating new scenes and labeled data into our

datasets.
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