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Abstract 

 
Most commercial Small Unmanned Aerial Vehicles 
(SUAVs) rely solely on Global Navigation Satellite 
Systems (GNSSs) - such as GPS and GLONASS  to 
perform localization tasks during the execution of 
autonomous navigation activities. Despite being fast and 
accurate, satellite-based navigation systems have typical 
vulnerabilities and pitfalls in urban settings that may 
prevent successful drone localization. This paper presents 
the novel Deep Urban Signatures where a 
deep convolutional neural network is used to compute a 
unique characterization for each urban area or district 
based on the visual appearance of its architecture and 
landscape style. Such information is used to identify the 
district and subsequently perform localization. The paper 
presents the methodology to compute the signatures and 
discusses the experiments carried out using Google maps 
and Bing maps, where the latter is used to simulate 
footage captured by SUAVs at different altitudes and/or 
using different camera zoom levels. The results obtained 
demonstrate that Deep Urban Signatures can be used to 
successfully accomplish district-level aerial drone 
localization with future work comprising accurate 
localization within each identified district. 
 
 

1. Introduction 
When viewed from above, different urban areas have 

dissimilar appearances due to varying building shapes and 
construction patterns, road network topology, vegetation 
and space allocation/utilization density. As humans, it is 
easy to identify the picture in the lower part of Fig. 1 as 
being taken for Heliopolis district in Cairo due to its star-
shaped mesh of straight roads, the proximity of buildings, 
and the high degree of development. On the top of Fig. 1, 
the picture is taken form the upscale Sheikh Zayed City on 
the outskirts of Cairo where in contrast to Heliopolis, 
Sheikh Zayed is characterized by gated residential 
compounds, curved roads, and still to be developed areas. 

Cairo also suffers from many slum districts that grew 
sumptuously without proper urban planning. When 
observing aerial imagery of different slum districts shown 
in Fig. 2, it is evident that each slum has its own distinctive 
visual appearance due to used building materials, 
economic factors and demand levels. The unique 
circumstances of each location results in a unique visual 
fingerprint that differentiates each district and which we 

Deep Urban Signatures . In case of drone losing 
GPS navigation signals, these signatures can be computed 
on-board to autonomously guide the drone to regions with 
better GPS coverage and/or away from dense residential 
areas. 
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Figure 1: Shows the difference between images from Zayed City 
(top) and Heliopolis (bottom). 
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1.1. GNSS-Denied Environments 
A Global Navigation Satellite System (GNSS) is a 

Medium Earth Orbit (MEO) satellite constellation that 
provides autonomous geo-spatial positioning. GNSS 
allows receiver devices to determine their location 
(longitude, latitude, and altitude) using timed radio signals 
transmitted along a line of sight from satellites. Common 
GNSS Systems include GPS, GLONASS, Galileo, Beidou 
and other regional systems. The term GPS, which is the 

Positioning System, is 
commonly used interchangeably with GNSS in UAV 
navigation literature. The GPS satellites orbit at 20,180 km 
above sea level and transmits L1 signals for civilian usage 
at 1575.42 MHz [1]. By the time it reaches earth, and due 
to the large distance traveled, the L1 signal power is 
limited -160 dBW when measured by receiver units, which 
is below the ambient background noise of many places on 
earth especially in urban locations in and around certain 
areas of large cities. In addition to background noise, L1 
signals are also vulnerable to radio interference and loss of 
Line of Sight (LOS). 

2. Deep Urban Signatures 
In this work, we use a satellite image as reference map 

for localization instead of GPS. The typical scenario 
involves a UAV capable of capturing top-down images to 
be compared to a pre-stored onboard reference map. This 
scenario has two challenges: 1) the search space in the 
reference map is massive even if we already know the city 
above which the drone is flying, and 2) there is significant 
difference in appearance between an image captured by a 
drone and the corresponding image patch in the satellite-
based reference map. 

This paper aims to reduce the search space in the 
reference map by identifying the district above which the 
drone is flying by using the Deep Urban 
Signature . After district identification, a second phase is 
carried out, called Neighborhood Retrieval, to achieve 
drone localization within recognized district. Typically, 
the drone image covers a neighborhood or a subarea of the 
district and the Neighborhood Retrieval phase computes 
the closest neighborhood to the location of the drone. The 
paper explains how Deep Urban Signatures are computed  
using a Convolutional Neural Network (CNN) [2]. In fact 
CNNs have been extensively used in tasks such as object 
recognition [3], object localization [4], and semantic 
segmentation [5], and it will be shown how they extract a 
range of descriptive features from aerial images sufficient 
to discriminate different districts and achieve enhanced 
localization. 

3. Related Work 
The idea of geo-localization in GPS denied 

environments using aerial images has been studied in [6]. 
The objective was to estimate the relative position for 
autonomous navigation and the absolute position for 
increasing the reliability of the system. A query image is 
captured from the on-board camera to be matched with 
reference images using Hausdorff distance [7]. Then, the 
absolute location is inferred to reduce the error 
accumulated during the calculation of the relative position. 
In [8], a query image is used for matching with a geo-
referenced image to calculate the absolute position based 
on the normalized cross-correlation of intensity values of 
both the reference and the query images. A more recent 
approach for geo-localization is developed in [9] where 
mutual information [10] is used for image registration. 

The above research uses template based techniques for 
image registration; the query image is passed over every 
possible position in the geo-referenced images, where the 
latter are typically stitched to form a map. In this work, we 
use a CNN to extract unique identifiers for different 
districts that are used during testing to classify the district 
to which the query image belongs. This approach has the 
advantage of being more robust and scalable compared to 
template based systems. While the latter scales linearly 
during testing and suffers from a sharp decrease in 
reliability, in the CNN based approach the test time 
remains constant as the size of the database increases and 
adapts better to variable query image size/resolution. 

Additional related work can be found in the literature 
that uses other input data than aerial images and its 
localization objective is within a specified region. In image 
geo-localization [11] [13], a vision-based technique is 
used to estimate the geographic location given a street 
level image not an aerial image. It is a more challenging 
problem due to the difference in viewpoints between 
training and testing images. Similar to [13], our work  
takes a classification approach to geo-localization using 
CNNs. However, [13] uses street level images which, 
unlike aerial maps now available for most parts of the 
world and being updated regularly, are not accessible for 
many locations especially in developing countries. In 
Simultaneous Localization and Mapping (SLAM) [14] 
[15], UAV localization is achieved within the mapped 
environment and [16] [17] describe how SLAM is used for 
autonomous navigation in GPS-denied environments. 
However, SLAM algorithms typically use other sensors 
than the camera for 3D mapping and the objective of 
localization is restricted to the local environment. 

Recently, CNNs gained considerable popularity in 
image classification by winning the ImageNet competition 
[18] by AlexNet [3] in 2012. AlexNet architecture 
consisted of multiple consecutive layers of convolutional 
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and max pooling layers followed by fully connected layers. 
Many CNNs have emerged since then with different 
architectures and deeper models such as VGGNet [19] and 
ResNet [20]. Feature extraction with CNNs is commonly 
used in visual analysis tasks where it has proved to 
outperform previously-used global descriptors [21]. 
Another important practice in CNNs is using models pre-
trained on different dataset for different tasks other than 
classification. Pretrained VGGNet has been used in image 
segmentation [4] [17] and multiple object detection [4] 
whereas [23] uses AlexNet for object localization. In [22], 
a pretrained VGGNet is applied for segmentation of 
satellite images. In our work, pretrained models are used 
for classification, and in conjunction with neighborhood 
retrieval, provide an integrated framework for aerial drone 
localization. 

4. Dataset 
We generated a dataset of satellite images from Google 

maps [24] and Bing maps [25]. Google maps are 
considered our reference maps, and due to lack of real 
drone imagery, Bing maps are used to generate a simulated 
drone footage. The dataset contains images representing 
seven different districts in Cairo, Egypt with resolution of 
1.19 meter/pixel. The districts and their characteristics are 
as follows: 

1. Sheikh Zayed City: a modern district located in the 
west of Cairo and distinguished with curved roads, 
gated compounds, under-devolvement, and green 
areas. 

2. Nasr City: a developed district located east of Cairo 
and is famous for its Manhattan road planning. 

3. Heliopolis: a developed district located east of Cairo 
and planned as a collection of roundabouts that 
encompass triangular blocks. 

4. Fatimid Cairo: a historical old district in the middle 
of Cairo with the most distinctive features being 
large ancient mosques scattered all over the area. 

5. Manshit Naser: a slum area east of Cairo. It is a very 
crowded area with poor or no planned infrastructure 
and extremely narrow clearances between buildings. 

6. Al-Khsus: another slum area east of Cairo. While 
being very crowded like Manshit Naser, this slum 
expansion formed a pattern of long narrow alleys. 

7. The 5th Settlement: a modern upscale underdeveloped 
district south of Cairo. In this district, buildings are 
organized in back to back rows with many small 
green areas around. 

 
For each district, images from both Google and Bing 

maps are partitioned into fixed-size tiles. The tiles were 
downloaded and stitched back into larger image which we 
will call District Map. Table 1 shows different image 

dimensions of each District Map in pixels and in meters. 
 

District Name Dimensions in 
pixels 

Dimensions in 
meters  

Sheikh Zayed City 4413 x 7917 5251 x 9421 
Nasr City 3328 x 4096 3960 x 4874 
Heliopolis 3328 x 2304 3960 x 2741 

Al Fatimid Cairo 1024 x 1280 1945 x 1523 
Manshit Naser 1792 x 1792 2132 x 2132 

Al-Khsus 2819 x 2048 3354 x 2437 
The 5th Settlement 4096 x 4352 4874 x 5178 
Table 1: Dataset District Maps with dimensions in pixels 
(middle) and meters (right). 
 

Fig. 2 provides sample images from the District Maps 
dataset. As seen in figure, there is a difference in 
appearance between Google and Bing maps. Also, both 
sources didn't record their images at the same time which 
resulted in different degree of development in 
corresponding areas manifested in streets and buildings. 
These differences will help test model generalization when 
using Deep Urban Signatures. 

5. Experiments 
Enhanced drone localization is achieved by firstly 

carrying out district-level localization, i.e. recognizing the 
district over which the drone is flying, and secondly 
neighborhood-level localization, i.e. finding drone location 
within the recognized district using Neighborhood 
Retrieval. This Section presents experiments related to 
these two levels of localization and discusses obtained 
results. 

5.1. District-Level Localization 
District classification is the first level of localization and 

the output of this phase is the district above which the 
drone is flying. It thus narrows down the drone location to 
one of the District Maps in the dataset. An important factor 
in district classification is the area needed to be able to 
reliably capture Deep Urban Signatures. Therefore, the 
each of the District Maps was partitioned using different 
window sizes to investigate the effect of this factor on 
model performance. Table 2 shows the covered area in 
meters by each window. 
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Window Dimensions 
(pixels) 

Window Dimensions 
(meter) 

200 x 200 238 x 238 
300 x 300 357 x 357 
400 x 400 476 x 476 
500 x 500 595 x 595 
600 x 600 714 x 714 

Table 2: Window dimensions used in district classification in 
pixels and meters. 

 
Commercial drones such as Phantom DJI have cameras 

with 94-degree field of view [26]. The corresponding 
height of the drone to capture the biggest window size 
(714x714) is approximately 333 meters. This height 

should be easily reached with most drones but some 
countries set a limit for flying height to be less than 333 
meters. 
5.1.1 Data Configuration 

District maps are partitioned using different window 
sizes to test the area of the region to be covered by the 
drone image in order to capture a robust Deep Urban 
Signature. Since the districts have different sizes, applying 
non-overlapping windows will generate different number 
of patches for each district map. To balance the number of 
patches from different districts, overlapping windows were 
used where the degree of overlap is increased for smaller 
districts. The same partitioning is applied on district maps 

 

 
Figure 2: Images of seven districts in the dataset. Districts are (from left to right): Sheikh Zayed City, Nasr City, Heliopolis, Fatimid 
Cairo, Manshiet Nasr, AlKhsos and the 5th Settlement. 

 
from Google and Bing, and a separate model is trained for 
each window size. Google district maps are used for 
training and validation whereas Bing district maps are used 
for testing. To expand the dataset size, data augmentation 
is applied on training patches by rotating them with 
random angle in the range of [-10, 10] degrees and by 
horizontal and vertical flipping.  
5.1.2 District Localization Model 

A deep convolutional neural network is used for district 
level localization that consists of pretrained convolutional 
layers of VGG16 [19] followed by two fully connected 

layers. VGG16 layers are frozen whereas the fully 
connected layers are trained from scratch using Adam 
optimizer [27]. The objective of our model is to classify 
the district of an image patch. For the different window 
sizes, the same model architecture was used. VGG16 
achieved high accuracy on the ImageNet challenge. It is 
shallower than other deep models such as Inception [28] 
and ResNet [20] which achieved higher accuracies but 
have more time and memory requirements. Global average 
pooling is used after the last convolution layer as in [29] 
for enhanced time and memory efficiency. Global average 
pooling is subsequently followed by a fully connected 
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layer then a Softmax layer for classification. 
5.1.3 District Localization Results 

Comparing different window sizes quantitatively isn't 
straightforward as each window size generates different 
image patches. But we can consider the overall accuracy 
on each window size as the localization success rate that 
will face a flying drone. So, the window size that has 
higher accuracy should be better to use. Fig. 3 shows that 
accuracy gets higher by increasing the window size from 
100x100 to 500x500 as the Deep Urban Signature appears 
better. However, accuracy starts to decrease after 
500x500. Our explanation for this behavior is that bigger 
window sizes generate smaller datasets, which in effect 
makes the training more difficult. 

  
Figure 3: Plot shows the model accuracy percentage versus 
different window sizes in pixels. 
 

 

Figure :  Google maps versus Bing maps. Left column shows images from Bing maps and second column are the corresponding images 
on Google. There is a difference in appearance between the two sources. In addition, some buildings in Google maps do not exist in 
Bing maps. 
 

 
The Confusion matrix of 500x500 window model is 
presented in Fig.  and provides the conflict between 

classes. One conflict area is between Sheikh Zayed, the 5th 
Settlement and Nasr City which is sensible as these three 
districts are quite new and have green areas and swimming 
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pools between the building blocks. Another reasonable 
conflict is between the 5th Settlement and Heliopolis 
districts. 

The results show that models pretrained on human-view 
images can be used successfully in satellite images which 
has been previously studied in [22]. However, we still 
have some conflict areas between different districts due to 
using a pretrained network on street view images from 
ImageNet [30]. Results will be improved when we have 
sufficient data to train a neural network (or tune some 
layers in a pretrained one). Another way to improve the 
results should be using a pretrained neural network on 
areal images. 

 

 
 

Figure : Confusion matrix of district classification model on 
500x500 Window. 

5.2. Neighborhood-Level Localization  
This is the second level of localization after district 

recognition.  The output is the closest neighborhood to the 
 within the recognized district. 

5.2.1 Data Configuration 
Google map of each district is divided into patches of 

size 500x500 pixel with stride 50. For testing, the Bing 
map is also divided using the same approach but the stride 
is perturbed with a uniform random integer in the range of 
[-50, 50] in order to randomly simulate random location. 
5.2.2 Neighborhood Localization Model 

Each patch from Google map is fed to the VGGNet to 
extract the feature map of the 14th and 18th convolutional 
layers to be used as a database for retrieval. Each patch 
from Bing map runs through a nearest neighbor test to get 
the closest patch in Google map. 14th and 18th 
convolutional layer outputs are tested separately as the 
model is pretrained on ImageNet data [30] that is different 

from the satellite data. The early convolutional feature 
map corresponds to mid-level features and the deep 
convolutional feature map corresponds to high-level 
features as mentioned in [31]. The number of features in 
the 14th convolutional layer is 14*14*512 = 100,352 
features which is four times the number of features in the 
18th convolutional layer with 7*7*512 = 25,088 features. 

Error is calculated as the Euclidean distance in meters 
between the coordinates of the top left pixel of the true 
patch and the predicted patch. The queried image captured 
by the drone is assumed to cover an area of 354,025 
(595*595) squared meters at least. Due to memory 
limitations, we were able to apply this experiment on all 
districts except for Sheikh Zayed district. The second 
largest district, The 5th Settlement, requires 4.2 GB of 
RAM for the nearest neighbor retrieval. The time per 
image test sample is around 1 second. Other districts are 
smaller than The 5th Settlement and have less time and 
memory requirements. 
5.2.3 Neighborhood Localization Results 

Table 3 shows the error obtained using the 18th 
convolutional layer over 6 districts. Table 4 shows the 
accuracy obtained using the 14th convolutional layer over 6 
districts. Sheikh Zayed City patches could not be 
generated because  size was bigger than that of 
the available CPU memory. 

 
 

District Error in meters 
Nasr City 533.41 
Heliopolis 394.93 

Fatimid Cairo 46.67 
Manshiet Naser 628.98 

Al Khsus 144.92 
The 5th Settlement 582.71 

Table 3: Results of using the 18th convolutional layer in 
the VGGNet for neighborhood retrieval. 
 

 
District Error in meters 

Nasr City 529.70 
Heliopolis 111.50 

Fatimid Cairo 18.87 
Manshiet Naser 123.18 

Al Khsus 34.06 
The 5th Settlement 387.19 

Table 4: Results of using the 14th convolutional layer in 
the VGGNet for neighborhood retrieval. 

 
Surprisingly, the mean error over the six districts is 

200.75 meters for the 14th convolutional layer and 388.60 
meters for the 18th convolutional layer, which could be 
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attributed to the difference in the dataset distribution 
between ImageNet and the satellite dataset as ImageNet 
contains different objects with different features than the 
aerial images. For example, ImageNet has a large number 
of dogs and cats with high-level features such as a circular 
face and a body, unlike aerial images that consists of roads 
and blocks of buildings. It can thus be concluded that mid-
level features achieve higher accuracy than high-level 
features from pretrained models. However, they suffer 
from an increase in memory requirements, which is four 
fold in the current case. 

6.   Conclusions 
In this paper, we presented the concept of Deep Urban 

Signatures and discussed how they can be used to locate 
the district above which the drone is flying. Knowing the 
district narrows the search space when using satellite maps 
as a reference for localization. A second phase of 
localization is applied to retrieve a neighborhood within 
recognized district and achieve enhanced localization 
accuracy. Our best model which makes use of pretrained 
VGG16-Net can discriminate between 7 different districts 
with average accuracy of 91.2%. For neighborhood 
retrieval an overall localization error of 200.75 meters on 
6 districts has been achieved. 

7. Future Work 
In this work, VGGNet was used to generate initial 

promising results. Fine tuning upper layers in VGGNet is 
expected to produce better results as this network is fully 
trained on traditional images not areal images. However, 
such tuning will require collecting larger dataset in order 
to enable the network to generalize well. Other future work 
includes testing different deep architectures such 
as Inception and ResNet. One concern to raise about our 
pipeline is how the model will classify the areas located on 
the boundaries between different districts. To address this 
issue, a voting mechanism should be devised to resolve 
ambiguity between subsequent batches captured by the 
flying drone.  
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