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Abstract

Recognizing roads and intersections in aerial images is

a challenging problem in computer vision with many real

world applications, such as localization and navigation for

unmanned aerial vehicles (UAVs). The problem is currently

gaining momentum in computer vision and is still far from

being solved. While recent approaches have greatly im-

proved due to the advances in deep learning, they provide

only pixel-level semantic segmentations. In this paper, we

argue that roads and intersections should be recognized at

the higher semantic level of road graphs - with roads being

edges that connect nodes. Towards this goal we present a

method consisting of two stages. During the first stage, we

detect roads and intersections with a novel, dual-hop gen-

erative adversarial network (DH-GAN) that segments im-

ages at the level of pixels. At the second stage, given the

pixelwise road segmentation, we find its best covering road

graph by applying a smoothing-based graph optimization

procedure. Our approach is able to outperform recent pub-

lished methods and baselines on a large dataset with Euro-

pean roads.

1. Introduction

Automatic recognition of roads and intersections from

aerial images is a challenging problem in computer vision

with many applications in UAV localization and navigation.

Several approaches have been proposed over the years, but

the task is still far from being solved. The presence of oc-

clusions, large paved areas, shadows and the inherent am-

biguity of the problem are among the key factors that make

the detection of roads and intersections challenging for au-

tomated systems. Roads could easily be mistaken for other

objects, such as thin constructions or channels of water. One

of the main features that distinguishes a road from other ob-

jects and regions seen from above, is its structure that covers

a larger region with the specific function of connecting one

place to another. All roads belong to a network of roads,

which could be optimally represented as a graph. Differ-

ent from many works dedicated to recognition in aerial im-

ages that segment images at the level of pixels, we recognize

roads and intersections at the level of graphs. The straight

road segments become edges, while intersections and high

curvature road points become nodes.

Viewing roads as graphs has many practical advantages

besides the interesting optimization and theoretical aspects

that graphs bring into light. Most of the current methods

detect roads at the pixel-level, requiring much more stor-

age than a graph representation. Once the road graphs are

recognized, storing them is less costly, while tasks such

as navigation become simpler - by efficiently finding paths

through graphs that connect the desired locations.

In order to solve road graph extraction we tackle it at

two levels. The first is that of pixelwise segmentation of

roads, for which we design a deep learning model based

on generative adversarial networks (GANs). We propose

a novel two-hop GAN architecture – one GAN stacked on

top of another – which detects roads at the first hop and

intersections at the second one (Section 2). At the second

level, a roadmap graph is created by formulating the task

as an optimization problem: find the road graph that fits

best the pixelwise segmentation under certain constraints.

Towards this goal we adapt an efficient smoothing-based

optimization (SBO) algorithm [18] (Section 3).

Our main contributions are the following:

1. We introduce a dual-hop generative adversarial net

(DH-GAN) for producing pixelwise segmentations of

roads and intersection simultaneously at two levels of

interpretation. At the first level, roads are extracted. At

the second level, roads together with the original input,

are passed through the second GAN, which extracts in-

tersections. The full architecture is trained end-to-end,

with two discriminators. We show that this architec-
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ture outperforms previous work that learn intersections

and roads separately.

2. We transform the pixelwise segmentation into

roadmap graphs, by extracting nodes and edges, using

a smoothing based optimization (SBO) approach,

suitable for complex functions that cannot be written

explicitly. We conclude, by demonstrating experimen-

tally, that our combined DH-GAN and SBO approach

has significant improvements in terms of topology and

accuracy over previous segmentation methods and a

greedy sampling-based graph extraction baseline.

Related work: Recognizing roads in aerial images has been

addressed in the literature mainly by methods that use man-

ually designed features [25, 19, 17, 15, 8]. The success of

convolutional neural networks (CNNs) [16, 33, 9] in com-

puter vision has led to greatly improved road detection in

recent literature [27, 32]. Other approaches mix aerial im-

ages with ground images and LIDAR data to improve accu-

racy [35]. The lack of good quality aerial images, as well as

clutter and occlusion can significantly degrade the recogni-

tion performance even for top, state-of-the-art architectures,

as shown in [22]. The local, pixel-level results produced

often require post-processing in aerial image analysis [25],

but generally does not solve the most difficult cases. There

are several directions proposed for recognition of roads in

aerial imagery, such as following road tracks [10], context

modeling using Conditional Random Fields (CRFs) [29],

minimum path methods [34] and neural nets [27]. Roads

and intersections have also been proven to be successfully

used in localization without GPS [5, 2].

Road vectors (graphs) are available for most of the

planet. However, they are sometimes misaligned or have

a poor level of detail. Some methods attempt to correct

the roadmaps by aligning them to real rectified aerial im-

ages [24]. Topological road improvement methods trace

back to [6]. A more recent approach [29] uses CRFs in con-

junction with a minimum cost path algorithm to improve

topology, which takes into account cues such as context,

presence of vehicles and smoothness between road widths.

The same authors previously proposed a metric for topology

measurement [36].

Several other methods for road vectorization have been

proposed. The approach in [28] starts with multispectral

satellite imagery and ends with road vectors. Their method

includes texture analysis with manually tuned parameters

and genetic guided clustering – used only for creating the

road raster map. For generating roadmaps, they employ a

genetically guided road vector identification algorithm, fol-

lowed by a fuzzy shell clustering. They seem to test only on

two images. Other work [26] starts from binary road seg-

mentation images and produces road graphs. The number

of test images is again small. Finally, the approach in [3]

requires raster maps for input and not aerial imagery. Fur-

thermore, the proposed algorithm has no knowledge of high

level features such as intersections, and does not have to

deal with real problems, such as occlusion, shadows, park-

ing spaces or paved areas.

2. Recognition of roads and intersections

We propose DH-GAN, which consists of two conditional

GANs with different roles: one network is capable of pre-

dicting pixelwise roadmaps, whilst the other outputs inter-

section locations. Recently, conditional generative adver-

sarial networks (cGANs) have become a general-purpose

solution for image-to-image translation problems [12]. Our

task is to translate RGB images into roadmaps and then fur-

ther translate these predictions into intersection locations.

For this purpose, we employ two cGANs: the first GAN

learns a road pixelwise segmentation generator G1 and a

discriminator D1 (that detects G1’s misleading road out-

puts). Similarly, the second GAN learns an intersections

segmentation generator G2 and discriminator D2 (that de-

tects G2’s misleading intersections outputs). The second

level generator and discriminator have access to both the

original RGB as well as the road segmentation output from

G1. The dataflow and overall architecture are illustrated in

Figure 1.

2.1. Our Formulation

Similar to [38], we apply adversarial loss for both our

mappings (G1 : X1 → Y1 for roads and G2 : X2 → Y2 for

intersections), each with their discriminators D1 and D2.

We express the loss for the mapping function G1 : X1 → Y1

and its discriminator D1 in 1:

LcGAN (G1, D1, X1, Y1) = Ey∼pdata(y)[logD1(y)] +

Ex∼pdata(x)[log(1−D1(G1(x))] (1)

The same loss function is used for both generators G1

and G2, as they share the same objective. Generators

are trained to produce indistinguishable outputs from the

target samples. The generated samples are verified by

an adversary network, the discriminator. While G1 tries

to minimize the objective function, D1 will try to max-

imize it in order to detect inconsistencies (i.e. G∗ =
argminG1

maxD1
LcGAN (G1, D1, X1, Y1)).

The objective of our DH-GAN is to match the distribu-

tion of the generated images to the data distribution in the

target domain. That is, roads labels for the first hop and in-

tersections for the second. The full adversarial loss used for

training our model is expressed in 2:
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Figure 1. Proposed DH-GAN architecture. The first level conditional GAN learns to produce road segmentations through the generator-

discriminator pair (G1, D1). The second level GAN, which learns to recognize intersections, is trained simultaneously with the first level

in an end-to-end fashion and has access to both RGB input as well as the roads produced by the first level. Our experiments prove that

intersections produced by the two level architecture are superior to those learned independently from roads.

L(G1, G2, D1, D2) = LcGAN (G1, D1, X1, Y1) +

LcGAN (G2, D2, X2, Y2) (2)

2.2. Implementation

In our experiments, we used the same network archi-

tectures for G1 and G2, namely an adapted version of ”U-

net” [31]. Similarly, for D1 and D2, we employed a variant

of ”PatchGAN” [12]. Finally, we followed the guidelines

in [30] for designing our networks.

Generator Architecture. We used a fully convolutional

encoder-decoder network. The encoder consists of 9 down-

sampling modules (stride-2 convolution followed by Batch

Normalization [11] and Leaky ReLU [21]). Given an input

image of 512x512 pixels and 64 filters (for the first con-

volution), we reduce the spatial dimension by a factor of

two and double the number of filters after each downsam-

pling module up to 512 filters, until a bottleneck layer of

size 1x1x512. This representation results in the loss of high

frequency information. We solve this problem using skip

connections, as previously addressed in [12, 37].

The decoder mirrors the encoder, but uses fractionally-

strided convolutions with stride 1
2 to upsample the feature

maps up to the size of the original image. Skip connections

concatenate the feature maps of the encoder with the corre-

sponding channels of the decoder.

Discriminator Architecture. We use PatchGAN, a fully

convolutional network with 5 downsampling modules, as

explored in [12]. We determined that an increase in the

number of parameters of the discriminator results in a very

small performance gain.

Training details. We optimize our negative log-

likelihood objective using mini-batch stochastic gradient

descent and apply the Adam solver [13], with a learning

rate of 0.0002 and momentum of 0.5. The weights are ini-

tialized with values sampled from a normal distribution with

zero-mean and standard deviation of 0.02. We trained our

models for 200 epochs and determined the 60th to be the

best - overfitting was noticeable after this threshold. We

used Torch [4] for training and testing our architecture, on

a Tesla K40 GPU. Our architecture is trained from scratch

end-to-end.

3. Extracting roadmaps

We propose a method of extracting a graph from raster

road images. We show that this not only increases road pre-

cision, especially at a topological level, but also greatly re-

duces the storage requirements for a specific image. Before

we present our full method, we first present in more detail

our graph formulation and then lay down the steps of a sim-

pler and effective baseline for finding such road graphs.

Graph formulation: Let us represent a roadmap by a

graph G = (V,E), where V is a set of nodes i, each with

an associated position (xi, yi) on the road map image and

E represents a set of edges (i, j) ∈ E that have associ-

ated a straight line segment lij in the image, between lo-

cations (xi, yi) and (xj , yj). This formulation, also known

as a vector representation, is an approximation that is very

useful for efficiently storing, displaying and working with

roadmaps. The pixelwise road segmentation M with fixed

road width can be immediately recovered (approximately)

from this vector representation, by drawing the nodes and

the edges and dilating them accordingly, to obtain the de-

sired road width. Since edges in the graph correspond to

straight road segments in the image, the nodes correspond

either to road points with nonzero curvature or to intersec-

tions.
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Now we define two functions that are useful for evalu-

ating the quality of a graph representation with respect to

the pixelwise representation. It is clear that the two are not

identical and that the graph is only an approximation of the

pixelwise segmentation. The first measure we propose is to

evaluate edges. Let c(i, j) be the cost of edge (i, j) defined

as the average distance, along the edge, to the nearest road

point in the segmentation map M . This cost is intuitive, it

measures how far on average is a given edge from the actual

road map M . This measure, which is related to the classic

Chamfer distance, can be quickly computed with a standard

distance transform. The second measure, denoted S(V ),
evaluates the quality of the overall graph. It evaluates how

well the road vector fits the pixelwise raster map M . We de-

fine S(V ) to be the standard intersection over union score

(IOU), between the graph drawn on the map with dilated

edges (according to a given road width) and the pixelwise

binary map M .

3.1. Sampling approach

We first present our greedy baseline method for roadmap

extraction from the road segmentation map M . It is an ef-

ficient approach and a simpler alternative to the smoothing-

based optimization approach presented in 3.2. We start by

thinning the road segmentation M obtained from the dual-

hop GAN architecture. Initial graph nodes are then sam-

pled along the thinned roads at equal intervals, with a fixed

length ls that is found using a small validation set, such

that the number of nodes is kept small, while the overall

score S(V ) remains close to the maximum. As expected,

that maximum S(V ) is obtained when maximum number of

points is used and nodes are neighbors in the image. There-

fore, we need to make a trade-off between accuracy and

computation and storage costs.

Edges are then established between any two nodes that

are closer than a specific threshold distance le and have the

edge cost c(i, j) < θe. Both thresholds le and θe are chosen

to maximize the F-measure w.r.t to the OSM [1] ground

truth road map on the validation set. We also make sure that

links do not lay over others by a simple procedure which

connects node pairs in the increasing order of the distance

between them - we do not allow links that overlap with ex-

isting ones. We then search for collinear points and remove

those nodes and their links, which are replaced by a single

line segment. We present the main steps of our method in

Algorithm 1.

The resulting method gives good results, with a few

drawbacks: since it is a greedy procedure it tends to ei-

ther over-connect nodes (introducing unnecessary links) or

miss connections and brake roads, depending on the fixed

threshold parameters chosen. It is clear that for improved

results, we need an optimization procedure that searches for

the optimal roadmap in an iterative fashion. That is because

there is no way to know the optimal number and locations

of nodes and their links by reasoning at the local level in a

greedy fashion.

Algorithm 1 Roadmap extraction baseline

1) Obtain thinned roads from the initial segmentation M .

2) Sample points at equal distances ls on thinned roads

and initialize road graph vertices V with the sampled

points.

3) Initialize edges in the increasing order of their lengths.

Accept an edge (i, j) only if its cost c(i, j) < θe and does

not overlap with existing ones.

4) Remove collinear points and their edges. Add the nec-

essary edges between the endpoints of the corresponding

road segment.

5) Mark as intersections nodes that are close to the inter-

sections found by DH-GAN or those that belong to more

than two edges (e.g. deg(i) > 2).

3.2. Roadmap optimization

Finding the optimal roadmap by reasoning at a global

level requires the optimization of a complex nonlinear func-

tion S(V ). The graph nodes (number and locations) and

edges are not known and the overlap over union measure is a

relatively sophisticated function that cannot be expressed in

closed form w.r.t to the graph parameters. At the same time,

the number of nodes and edges should be kept to a mini-

mum in order to obtain an efficient representation. There-

fore, the optimization task, like many in computer vision, is

very challenging and computationally expensive.

Two popular algorithms used for such problems are

Markov Chain Monte Carlo (MCMC) [7] and Simulated

Annealing (and their variants) [14]. While these meth-

ods theoretically find the global optimum, in practice they

lack efficiency and require a very large number of samples.

Here we take a more efficient strategy and adapt to our case

the relatively recent smoothing-based optimization (SBO)

method [18]. The algorithm is applicable to the maximiza-

tion of non-negative functions, for which the only require-

ment is the ability to evaluate the function at a given point.

No closed-form formula is required. Moreover, the func-

tion does not need to be differentiable or smooth. The key

insight behind SBO is that searching for the optimum of

a function can be achieved by looking for the maximum

through the scale space of that function [20]. We discuss

some theoretical aspects here in order to better explain the

usage of SBO in our case. We refer the reader to [18] for

more theoretical insights.

Smoothing-based optimization: For a given non-

negative multi-dimensional function f : R
n → R+ its

(smooth) scale space function is defined as F (µ, σ2I) =
∫

g(x;µ, σ2I)f(x)dx, where g is a multidimensional Gaus-
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sian (of dimension n) with mean µ and covariance matrix

σ2I . In our case, the function is S(V ) and at a given time

step t in the optimization process µ(t) represents the value

of the parameter (w.r.t which we optimize). Along with σ(t)

it also represents the parameters of the Gaussian distribution

from which we sample the next values of the parameters.

The following update rules for (µ, σ) indicate both how the

parameters changes from one step to the next as well as how

the Gaussian distribution changes: (i represents dimension

indices and g(t)(x) = g(x;µ(t), σ(t))):

1. µ(t+1) =
∫
xg(t)(x)f(x)dx∫
g(t)(x)f(x)dx

.

2. σ(t+1) =
√

1
n

∫
(
∑

n

i=1(xi−µi)2)g(t)(x)f(x)dx∫
g(t)(x)f(x)dx

.

These updates ensure that the values of the smoothed

function (the scale space function) increases from one it-

eration to the next. The algorithm converges when σ goes

to zero and a maximum of the original function f is found.

The integrals in the updates are approximated through sam-

pling from the Gaussian at that step.

We adapt SBO for our use case. We start with an ini-

tial graph Vt0 at time t0 over which we apply SBO to op-

timize S(Vt0) w.r.t the nodes locations. The initial nodes

are given by the intersections found by DH-GAN and edges

between them are added only if c(i, j) < θe and are long

enough (lij > le). At the next iteration we add new nodes

(as midpoints of existing edges) and optimize w.r.t their lo-

cations. Again valid edges are added only if they pass the

same tests and do not overlap with existing edges. We con-

tinue by applying SBO again on the nodes locations of the

newly updated graph. The method stops when there is no

improvement in the S(V ) score. It is easy to show that

the method improves S(V ) from one iteration to the next,

since SBO improves it at each iteration and the addition of

new nodes and edges is guaranteed to not lower the exist-

ing S(V ) score. The addition of nodes does not change the

scores (since they are added as midpoints of existing edges)

and new edges are not added if S(V ) decreases. The algo-

rithm for road vectorization is summarized in Algorithm 2

and the representative steps are shown in Figure 2.

It is possible that after the optimization, several road

parts (in the segmentation M ) remain undiscovered (since

they were not connected to any initial intersection). In order

to tackle this problem, we apply the baseline algorithm for

the road leftovers and create a new subgraph for each one.

We then try to join the subgraph to the main graph, if there

is at least an edge connecting the main graph that passes the

tests (lij > le, c(i, j) < θe and S(V ) does not decrease). At

the end, all nodes locations (including the sampled ones) are

optimized with SBO. This method could help the discovery

of new intersections, as later confirmed by the experimental

results.

Algorithm 2 Graph and intersection extraction with SBO

1) Initialize V with the detected intersections.

2) Initialize E with valid edges: c(i, j) < θe, lij < le.

3) Remove collinear points and edges. Add the corre-

sponding line segments.

4) Optimize locations [X,Y]. with SBO:

[X(t+ 1),Y(t+ 1)]← argmaxS(V (X(t),Y(t))).
repeat

Add a new node q as an edge midpoint.

Optimize with SBO: [xq, yq] ←

argmaxS(V (xq, yq)).
Keep midpoint if the score improves.

until Edges lengths > le
5) If valid edges exist add them and go to Step 4. Other-

wise go to Step 6.

6) Use the greedy baseline on isolated roads. Then con-

nect the new sub-graphs to G if valid links exist between

them.

7) Final optimization: [X,Y] ←

argmaxS(V (X(t),Y(t))).
8) Mark as intersections nodes that are close to the inter-

sections found by DH-GAN or those that belong to more

than two edges deg(i) > 2.

9) Return intersections and G with its node locations and

edges.

4. Experiments

We test our methods and compare to recent approaches

on the publicly available European Road Dataset [22]. This

image set offers large variations in roads complexity and

structure. It covers both rural and urban European areas

and contains many difficult cases that have partial occlu-

sions and illumination changes. The dataset contains 200

satellite images (aprox. 276.4 km2) for training, 20 im-

ages (27.7 km2) for validation and 50 images (70 km2) for

testing. The images were automatically aligned with road

maps from OpenStreetMap (OSM) [1] to obtain the ground

truth labels for both roads and intersections. From the 200

1600x1550 RGB training images, we cropped 3200 RGB

512x512px patches for training our DH-GAN. The spatial

resolution is about 1 m2 per pixel.

4.1. Road detection

We evaluate the road detection task using two measures:

the first is the standard maximum F-measure (F1-score)

computed on the pixelwise road segmentation vs. ground

truth and the second is the topological accuracy score pro-

posed in [36] (see Tables 1 and 2).

The topological score is meant to measure the degree

at which the connectivity of the roads found agrees with

the connectivity of the ground truth. It is computed as fol-
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Figure 2. Intermediate results of road extraction with SBO: A - initial intersections (blue) and edges (green), B - pruned edges (after

removing collinear and overlapping points), C - edges and intersections optimized with SBO (green edges with green vertices), D -

sampled leftover roads (green edges with red vertices) connected to the roads optimized with SBO.

lows (see [36] for details): pairs of random points detected

in both ground truth and automatic output are sampled. If

the path connecting the points have similar lengths (within

5%) in both automatic output and ground truth, the pair is

labeled ”Correct”. If there is no link in one of the pairs,

the label is as ”NoConn”, otherwise the label is ”2long” or

”2short” depending on whether the path between the points

in the automated output is longer or shorter than their path

in the ground truth. These labels capture the cases when the

detected roads have been broken (which results in ”2long”)

or have been incorrectly connected (”2short”).

In terms of pixelwise detection, both versions of our

method – DH-GAN as well as the combination with the

roadmap creation – outperform several other popular con-

volutional neural networks tailored for semantic segmenta-

tion (LG-Seg-RestNet-IL [23], U-net [31] and GAN [12]).

One advantage of detecting roads as graphs is the low stor-

age cost, with minimum accuracy and topology loss. In

fact, roads generated from the created graphs look better in

terms of connectivity. They now support any operation over

graphs, from finding minimum paths between different lo-

cations to finding specific road patterns by graph matching.

In terms of accuracy, the method that combines DH-GAN

segmentation with SBO for creating roadmaps is superior

to the greedy baseline in all categories. We noticed that the

baseline tends to break roads. DH-GAN with SBO, in turn,

is less accurate than DH-GAN (Tables 1 and 2). This is ex-

pected, as DH-GAN is trained to predict the ground truth

at the pixel-level, without further simplifications. On the

other hand, DH-GAN+SBO is significantly less costly in

terms of storage (see Table 4). However, we believe that in

future work, interpreting roads as graphs has the potential

to improve pixel-level accuracy as well.

4.2. Detecting intersections

We test intersection detection (Table 3) in two cases -

first, we use intersections from OSM for both training and

Method F-measure

GAN [12] 77.70%

LG-Seg-ResNet-IL [23] 81.06%

U-net [31] 79.79%

DH-GAN 84.05%

DH-GAN + Greedy 80.81%

DH-GAN + SBO 81.74%

Table 1. Road detection results. Higher is better.

Method Correct 2long 2short NoConn

GAN [12] 85.80 % 2.00 % 2.23 % 9.97 %

LG-Seg-ResNet-IL [23] 39.85 % 0.60 % 5.17 % 54.38 %

U-net [31] 74.03 % 0.72 % 3.34 % 21.91 %

DH-GAN 89.84 % 0.75 % 1.80 % 7.61 %

DH-GAN + Greedy 68.82 % 1.16 % 6.13 % 23.89 %

DH-GAN + SBO 76.98 % 1.14 % 7.9 % 13.98 %

Table 2. Topological accuracy score. Higher is better for ’Correct’,

lower is better for the other columns.

Labeling Type Method F-measure

OSM GAN [12] 54.89%

DH-GAN 63.01%

DH-GAN + Greedy 31.81%

DH-GAN + SBO 59.79%

Independent GAN [12] 64.42%

DH-GAN 82.65%

DH-GAN + Greedy 43.42%

DH-GAN + SBO 86.00%

Table 3. Intersection detection results. Higher is better.

testing the models. All OSM maps are made of nodes, edges

and relations, thus being efficient for road storage. OSM

does not have a node descriptor labeled ’intersection’, so

we considered the points where two roads meet as an inter-
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Figure 3. Qualitative results for road detection and map generation using graphs. Sampled and SBO roads are drawn from the graph

representation, given a road thickness. Roads extracted with greedy sampling tend to be broken near intersections, while the ones extracted

with SBO are topologically correct.

section. We realized that the intersections taken from OSM

in this manner were not always correct. This is due to the

context needed in order to interpret the presence of an inter-

section. For example, most failure cases were on intersec-

tions close to the image border, where it was impossible to

know if it was a road turn or really an intersection. To bet-

ter evaluate the ability of the models to detect intersections,

we hand-labeled a separate ground truth set for testing (the

training remained the OSM ground truth in all cases). The

performance improved dramatically, even though only the

ground truth at test time changes (see results marked with

’Independent’ in Table 3). For a better understanding of the

differences between the two different ground truth intersec-

tions vs. the automatically detected ones with DH-GAN,

see Figure 4 .

We also tried to improve intersection detection by using

the optimization-based algorithm: we combined (set union)

the intersections found by DH-GAN with the graph nodes

of degree at least three. Table 3 shows our results. The

performance improved on the new ground truth test set,

while it slightly decreased on the OSM ground truth. This is

again expected, as DH-GAN was trained on the OSM style

ground truth. Also note that when a separate single-hop

GAN was used for learning intersections (independently of

the road detection GAN), the performance was poorer than

for the DH-GAN models. This further justifies our choice

of the two-hop DH-GAN, at two levels of interpretation,

such that the roads become context for the recognition of

intersections.

Poor quality labels significantly affect the performance
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Method Vertices Edges

LG-Seg-ResNet-IL [23] 782* -

DH-GAN 1345* -

DH-GAN + Greedy 23 21

DH-GAN + SBO 19 17

OSM (ground truth) 29 31

Table 4. Average storage cost. Lower is better. The starred vertices

are obtained by thinning roads from raster segmentations to a sin-

gle pixel width and counting all remaining pixels. Since we only

have a binary image, no edges are present. Apart from our two

graph extraction methods, we also compare with the road vertices

and edges from OSM (ground truth).

of all models. We stress out that all training was performed

on OSM ground truth. W e expect further boost in perfor-

mance by training with better quality ground truth.

Qualitative results: In Figure 3, we present the RGB

imagery next to the detected roads using our models and

the ground truth. We notice that the baseline is good at

tracking the roads’ center, it has noticeable issues around

intersections. It also tends to break roads. DH-GAN+SBO

makes a better trade-off between accuracy and efficiency.

It uses fewer number of points and edges and it matches at

pixel-level, the performance of DH-GAN. In terms of over-

all structure, it produces roads with a realistic look, which

are also well connected. The binary maps are obtained

in the cases of DH-GAN+Greedy and DH-GAN+SBO by

thickening the edges of the graphs with a fixed width.

Computational cost: The average forward time for a

512x512px image is 110ms for both roads and intersection

extraction using a Tesla K40 GPU. We also tested on the Jet-

son TX2 embedded development platform, which yielded

167ms. We believe it would be manageable to generate

raster roads and intersections in near real-time, assuming 1

m2 per pixel spatial resolution and a reasonable flight speed.

The greedy road graph creation baseline is fast (about

200ms for a 512x512px image) and less accurate, while the

SBO-based approach is reasonably fast (a couple of seconds

for a 512x512px image on a desktop PC) and more accurate.

However, SBO is not optimized at neither logical nor soft-

ware levels. Future optimization would make our algorithm

tractable on current generation embedded hardware.

Storage cost: Compared to storing the road or RGB im-

agery, vectorization provides a memory-efficient solution,

by encoding only a few points and the relations between

them. This is often preferred on an UAV, where storage or

transmission capabilities are limited. Furthermore, our op-

timization approach additionally helps to keep meaningful

information, by removing the redundant points, while main-

taining the accuracy (see Table 4). Stored vertices use an

average of 70 times less space compared to the average size

of the compressed grayscale road pixel-level segmentations.

Figure 4. Intersections detection results. OSM intersections near

image edges are very hard to detect due to missing context. In-

dependent labeled ones increase the F1-score by a solid 26% in

conjunction with SBO.

5. Conclusions and Future Work

We introduced an efficient approach for creating vector

roadmaps from aerial images. We first obtain accurate rep-

resentations by producing pixelwise segmentation of roads

and intersections with a novel two-level generative adver-

sarial network, DH-GAN, trained end-to-end. The follow-

ing stage extracts road graph structure and nodes locations

using smoothing-based optimization. We successfully com-

bine aspects from two different research areas in vision,

namely deep learning and nonlinear discrete-continuous

graph optimization. We validate our method on a large

dataset and show improvements over previous methods and

baselines. Both our pixel-level model DH-GAN and our

graph level method, DH-GAN+SBO, produce top quality

results. DH-GAN+SBO is also able to reduce memory costs

and provide a useful road graph representation suitable for

any graph search or matching algorithm. In the future we

plan to automatically improve existing vertex-based maps

or create new ones in regions where road information is

unavailable. We also plan to improve localization by effi-

ciently using graph representations for matching. We aim

to streamline our method for on-board UAV navigation.
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