
Distributed Bundle Adjustment

Karthikeyan Natesan Ramamurthy

IBM Research

knatesa@us.ibm.com

Chung-Ching Lin

IBM Research

cclin@us.ibm.com

Aleksandr Aravkin

University of Washington

saravkin@uw.edu

Sharath Pankanti

IBM Research

sharat@us.ibm.com

Raphael Viguier

University of Missouri-Columbia

rvbb3@missouri.edu

Abstract

Most methods for Bundle Adjustment (BA) in computer

vision are either centralized or operate incrementally. This

leads to poor scaling and affects the quality of solution as

the number of images grows in large scale structure from

motion (SfM). Furthermore, they cannot be used in scenar-

ios where image acquisition and processing must be dis-

tributed. We address this problem with a new distributed BA

algorithm. Our distributed formulation uses alternating di-

rection method of multipliers (ADMM), and, since each pro-

cessor sees only a small portion of the data, we show that

robust formulations improve performance. We analyze con-

vergence of the proposed algorithm, and illustrate numeri-

cal performance, accuracy of the parameter estimates, and

scalability of the distributed implementation in the context

of synthetic 3D datasets with known camera position and

orientation ground truth. The results are comparable to an

alternate state-of-the-art centralized bundle adjustment al-

gorithm on synthetic and real 3D reconstruction problems.

The runtime of our implementation scales linearly with the

number of observed points.

1. Introduction

Estimating accurate poses of cameras and locations of

3D scene points from a collection of images obtained by the

cameras is a classic problem in computer vision, referred to

as structure from motion (SfM). Optimizing for the camera

parameters and scene points using the corresponding points

in images, known as Bundle Adjustment (BA), is an impor-

tant component of SfM [7, 8, 21].

Many recent approaches for BA can be divided into

three categories: (a) those that pose BA as non-linear least

squares [10, 13, 21], (b) those that decouple the problem

in each camera using a triangulation-resection procedure

for estimation [15, 18], and (c) those that pose and solve

BA in a linear algebraic formulation [6]. Some important

considerations of these methods are reducing the computa-

tional complexity by exploiting the structure of the prob-

lem [1, 4, 13], incorporating robustness to outlier obser-

vations or correspondence mismatches [2, 26], distribut-

ing the computations or making the algorithm incremental

[9, 11, 23, 24, 5] and making the algorithm insensitive to

initial conditions [6]. In this paper, we develop robust dis-

tributed BA over camera and scene points.

Our approach is ideally suited for applications where im-

age acquisition and processing must be distributed, such

as in a network of unmanned aerial vehicles (UAVs). We

assume that each UAV in the network has a camera and a

processor; each camera acquires an image of the 3D scene,

and the processors in the different UAVs cooperatively es-

timate the 3D point cloud from the images. Therefore, we

use the terms camera, processor, and UAV in an equiva-

lent sense throughout the paper. We also assume that cor-

responding points from the images are available (possibly

estimated using a different distributed algorithm), and are

only concerned about estimating the 3D scene points given

the correspondences.

Robust approaches, such as [2, 26], are typically used to

protect world point and camera parameter estimates from

effects of outliers, which for BA are incorrect point cor-

respondences that have gone undetected. In contrast, we

use robust formulations to accelerate consensus in the dis-

tributed formulation. Depending on how distribution is

achieved, every processor performing computation may see

only a small portion of the total data, and attempt to use it

to infer its local parameters. Small sample means can be ex-

treme, even when the original sample is well-behaved (i.e.

even when re-projection errors are truly Gaussian). In the

limiting case, each processor may only base its computation

on one data point, and therefore outliers are guaranteed to

occur (from the point of view of individual processors) as an

artifact of distributing the computation. Hence we hypothe-

2146

size that using robust losses for penalizing re-projection er-

rors, and quadratic losses for enforcing consensus improves

performance.

(a)

(b)

Figure 1: (a) Original configuration of cameras A, B and

scene points 1, 2, 3, 4, 5, (b) distributing both the camera

parameter and scene point estimation with the constraints

A1 = A2 = A3, B1 = B2 = B3, and 3A = 3B.

Our proposed robust BA approach supports a natural dis-

tributed parallel implementation. We distribute the world

points and camera parameters as illustrated for a simple case

of 2 cameras and 5 scene points in Figure 1. The algorithm

is developed using distributed alternating direction method

of multipliers (D-ADMM) [3]. Each processor updates its

copy of a set of parameters, while the updated estimates

and dual variables ensure consensus. Distributing both the

world points and the camera parameters yields iterations

with O(l) required operations in a serial setting, where l
is the total number of 2D observations. In a fully parallel

setting, it is possible to bring the time complexities down

to O(1) per iteration, a vast improvement compared to tra-

ditional and sparse versions of BA, whose complexities are

O((m + n)3) and O(m3 +mn) respectively [13] (with m
and n the number of cameras and 3D scene points). We

also exploit the sparsity of the camera network, since not all

cameras observe all scene points.

Another optimization-based distributed approach for BA

was recently proposed [5] 1. Authors of [5] distributed cam-

era parameters, and performed synthetic experiments us-

ing an existing 3D point cloud reconstruction, perturbing

it using moderate noise, and generating image points us-

ing known camera models. We go further, distributing both

world points and camera parameters in a flexible manner,

and we implement the entire BA pipeline for 3D reconstruc-

tion: performing feature detection, matching corresponding

points, and applying the robust distributed D-ADMM BA

1The initial version of our method was proposed at the same time as [5]

technique in real data settings.

The rest of the paper is organized as follows. We provide

background in Section 2, and present the new formulation

in Section 3. We show experiments and results on synthetic

and real data in Section 4, and conclude with Section 5.

2. Background

2.1. The camera imaging process

We denote the m camera parameter vectors by {yj}
m
j=1 ,

the n 3D scene points as {xi}
n
i=1, and the 2D image points

as {zij}. Each 2D image point zij ∈ R
2 is obtained by the

transformation and projection of a 3D scene point xi ∈ R
q

by the camera yj ∈ R
p. BA is an inverse problem, where

camera parameters and 3D world points are estimated from

the observations {zij}. The forward model is a non-linear

camera transformation function f(xi, yj).
The number of image points is typically much smaller

than mn, since not all cameras image all scene points. The

camera parameter vector (yj) usually includes position, Eu-

ler angles, and focal length. In this discussion, we assume

focal length is known for simplicity, and yj ∈ R
6 comprises

Euler angles α, β, γ and the translation vector t ∈ R
3.

Denote the diagonal focal length matrix as K ∈ R
3×3,

with the first two diagonal elements set to the focal length

and the last element set to 1. The rotation matrix is repre-

sented as R = R3(γ)R2(β)R1(α), where R1, R2, R3 are

rotations along the three axes of R3. The camera transfor-

mation is now given as z̃ = Rx + t. The final 2D im-

age point z is obtained by a perspective projection, with

co-ordinates given by

z1 =
z̃1
z̃3

, z2 =
z̃2
z̃3

. (1)

2.2. Bundle adjustment

Given the 2D points in multiple images that represent the

same scene point, BA is typically formulated as a nonlinear

least squares problem:

min
{xi},{yj}

m
∑

j=1

∑

i∈S(j)

‖zi,j − f(xi, yj)‖
2
2. (2)

The set S(j) contains i if the scene point i is imaged by

the camera j. The number of unknowns in this objective is

3n+6m, and hence it is necessary to have at least this many

observations to obtain a good solution; in practice the num-

ber of observations is much larger. Problem (2) is solved

iteratively, with descent direction (δx, δy) found by replac-

ing f in (2) by its linearization

f(x+ δx, y + δy) ≈ f(x, y) + J(x)δx + J(y)δy,

where J(x) = ∂xf, J(y) = ∂yf . The Levenberg-

Marquardt (LM) algorithm [16] is often used for BA.

2147

The naive LM algorithm requires O((m + n)3) op-

erations for each iteration, and memory on the order of

O(mn(m + n)), since we must invert of an O(m + n) ×
O(m + n) matrix at each iteration. However, exploiting

matrix structure and using the Schur complement approach

proposed in [13], the number of arithmetic operations can

be reduced to O(m3 + mn), and memory use to O(mn).
Further reduction can be achieved by exploiting secondary

sparse structure [10]. The conjugate gradient approaches in

[1, 4] can reduce the time complexity to O(m) per iteration,

making it essentially linear in the number of cameras.

Another popular approach to reduce the computational

complexity involves decoupling of the optimization by ex-

plicitly estimating the scene point using back-projection in

the intersection step and estimating the camera parameters

in the resection step [18]. The resection step decouples into

m independent problems, and hence the overall procedure

has a cost of O(m) per iteration. A similar approach, but

with the minimization of ℓ∞ norm of the re-projection error

was proposed in [15]. It was shown to be more reliable and

degraded gracefully with noise compared to ℓ2 based BA al-

gorithms. Recently Wu proposed an incremental approach

for bundle adjustment [23], where a partial BA or a full BA

is performed after adding each camera and associated scene

points to the set of unknown parameters, again with a com-

plexity of O(m). We use the ADMM framework to develop

our approach.

2.3. Alternating Direction Method of Multipliers

ADMM is a simple and powerful procedure well-suited

for distributed optimization [12], see also [3]. In order

to understand D-ADMM, consider the objective h(x) :=
∑n

i=1 hi(x). We introduce local variables with a consensus

equality constraint:

min
{xi},u

n
∑

i=1

hi(xi)

subject to xi − u = 0, i ∈ {1, . . . , n}.

(3)

To solve this problem, we first write down an augmented

Lagrangian [19]:

lφ(x, u, r, ρ) :=

n
∑

i=1

hi(xi) + rTi (xi − u) +
ρ

2
φ(xi, u),

(4)

where ρ > 0 is the penalty parameter, ri is the Lagrangian

multiplier for the constraint, and φ(xi, u) is the augmen-

tation term that measures the distance individual variables

xi and the consensus variable u. We then find a saddle

point using three steps to update {xi}, u, and {ri}. Typ-

ically φ(xi, u) is chosen to the squared Euclidean distance

in which case (4) becomes the proximal Lagrangian [19],

but other distance or divergence measures can also be used.

3. Algorithmic formulation

3.1. Distributed estimation of scene points and cam-
era parameters

We distribute the estimation among both the scene points

and the camera parameters as illustrated in Figure 1. We

estimate the camera parameter and the scene point corre-

sponding to each image point independently, and then im-

pose appropriate equality constraints. Eqn. (2) can be writ-

ten as

min
{xj

i
},{yi

j
},{xi},{yj}

m
∑

j=1

∑

i∈S(j)

φm(zi,j − f(xj
i , y

i
j)), (5)

such that xj
i = xi, ∀i, and {j : i ∈ S(j)}, (6)

yij = yj , ∀j, and {i ∈ S(j)}. (7)

The augmented Lagrangian, with dual variables rji and sij ,

is given by

m
∑

j=1

∑

i∈S(j)

φm(zi,j − f(xj
i , y

i
j)) + rjTi (xj

i − xi) + siTj (yij − yj)

+ (ρx/2)φa(x
j
i − xi) + (ρy/2)φa(y

i
j − yj)

(8)

Here φa measures the distance between the distributed

world points and their consensus estimates, and distributed

camera parameters and their consensus estimates. For φm

we compare squared Euclidean and Huber losses, and φa is

always the squared Euclidean loss.

The ADMM iteration is given by

(x
j(k+1)
i , y

i(k+1)
j) := argmin

{xj

i
},{yi

j
}

φm(zi,j − f(xj
i , y

i
j))

+ r
j(k)T
i (xj

i − x
(k)
i) + s

i(k)T
j (yij − y

(k)
j)

+ (ρx/2)φa(x
j
i − x

(k)
i) + (ρy/2)φa(y

i
j − y

(k)
j), (9)

x
(k+1)
i :=

1

|j : i ∈ S(j)|

∑

j:i∈S(j)

(

x
j(k+1)
i + (1/ρx)r

j(k)
i

)

,

(10)

y
(k+1)
j :=

1

|i ∈ S(j)|

∑

i∈S(j)

(

y
i(k+1)
j + (1/ρy)s

i(k)
j

)

,

(11)

r
j(k+1)
i := r

j(k)
i + ρx

(

x
j(k+1)
i − x

(k+1)
i

)

, (12)

s
i(k+1)
j := s

i(k)
j + ρy

(

y
i(k+1)
j − y

(k+1)
j

)

. (13)

The equation (9) has to be solved for all j ∈ S(i), i ∈
{1, . . . ,m}, and it can be trivially distributed across mul-

tiple processes. When φm is squared ℓ2 distance, (9) can be

2148

solved using the Gauss-Newton method [17], where we re-

peatedly linearize f around the current solution and update

(x, y). When φm is the Huber loss, we use limited memory

BFGS (L-BFGS) [17] to update the distributed scene points.

Upon convergence, we will obtain the consensus estimates

xi and yj for all scene points and cameras.

3.1.1 Convergence Analysis

We show that under certain assumptions the proposed D-

ADMM algorithm in Section 3.1 converges, using the non-

convex and non-smooth framework developed by [22].

Theorem 1 The D-ADMM algorithm proposed in Section

3.1 to the stationary point of the augmented Lagrangian in

8 when:

1. f(., .) is the perspective camera projection model,

2. φm is any convex, smooth loss function, and φa is the

squared Euclidean loss.

3. ρx and ρy are sufficiently large.

Proof Let dij be the stack of {xj
i , y

i
j}, and d̂ = [d̂ij]∀i,∀j .

Similarly each pair of consensus variables are stacked as

the vector ĉij = [xT
i y

T
j]

T , and ĉ = [ĉij]∀i,∀j . d̂ and ĉ are

respectively equivalent to x and y in [22]. We show that the

five assumptions (A1-A5) of [22, Thm. 1] are satisfied.

1. Given our assumptions, the objective function in (6) is

coercive, i.e., it tends to ∞ as d̂ → ∞ (A1).

2. The feasibility and sub-minimization path conditions

are also satisfied since the constraint matrices are eas-

ily seen to be full rank (A2-A3).

3. Each additive part of the objective φm(zi,j−f(xj
i , y

i
j))

is restricted prox-regular if φm is a smooth convex

function and f is the perspective camera model. The

gradient will be steep when z̃3 in (1) is less than some

ǫ > 0 and φm(zi,j − f(xj
i , y

i
j)) is prox-regular for

ǫ > 0; hence A4 in [22, Thm. 1] holds.

4. Our objective with respect to the consensus variable is

identically 0, which is trivially regular (A5).

Since all the assumptions hold, the iterative algorithm in

eqns. (9)-(13) converges to a stationary point of the aug-

mented Lagrangian for sufficiently large ρx and ρy .

3.1.2 Time Complexity

Optimizing (9) takes O(l) time for each round of updates,

since (9) must be solved l times, with each solve requiring

constant time. The time complexity of the consensus steps

for camera parameters and world points given by (10) and

(11) are O(m) and O(n) respectively. For the Lagrangian

parameter updates given by (12) and (13), the time com-

plexity is O(l). Hence the dominant time complexity of the

proposed algorithm is O(l) for each round. Since the al-

gorithm can be trivially parallelized, the complexity can be

brought down to O(1) for each round, if we distribute all

the observations to individual processors.

3.1.3 Communication Overhead

Considering a sparse UAV network, assume that each world

point is imaged by d cameras. Each camera needs to main-

tain a copy of the consensus world points xi. Therefore to

update xi using (10), each camera needs to obtain d− 1 in-

dividual estimates of xj
i and send its version of xj

i to d− 1

other cameras. Values rji can be updated locally in each

camera, given xj
i , xi and previous versions of rji using (12).

Hence, for each world point we have a communication over-

head of 3(d − 1)d floating points per iteration (each world

point is a 3D vector). Hence for n world points, the com-

munication overhead is 3(d− 1)dn floating points per iter-

ation, where d depends on the distance of the camera from

the scene.

3.1.4 Generalized Distributed Estimation

The problem (9) requires each processor to estimate p+q >
2 parameters from a single 2D observation. To control

the variability of individual estimates as the algorithm pro-

ceeds, we generalize the approach to use more than one ob-

servation and hence more than one scene point and camera

vector during each update step. This generalized step pro-

vides flexibility to adjust the number of 3D scene points and

cameras based on computational capability of each thread in

a CPU or a GPU. We solve

(X
j(k+1)
i , Y

i(k+1)
j) := argmin

{Xj

i
},{Y i

j
}

φm(Zi,j − f(Xj
i , Y

i
j))

+ r
j(k)T
i (Xj

i −X
(k)
i) + s

i(k)T
j (Y i

j − Y
(k)
j)

+ (ρx/2)φa(X
j
i −X

(k)
i) + (ρy/2)φa(Y

i
j − Y

(k)
j), (14)

where

X
j(k+1)
i :=

[

x
j(k)
i1

x
j(k)
i2

. . . x
j(k)
iπ

]T

,

Y
i(k+1)
j :=

[

y
i(k)
j1

y
i(k)
j2

. . . y
i(k)
jκ

]T

(15)

4. Experiments

We perform several experiments with synthetic data and

real data to show the convergence of the re-projection er-

ror and the parameter estimates. We also compare the per-

formance of the proposed approach a the centralized BA

algorithm that we implemented using LM. The LM stops

2149

when the re-projection error drops below 10−14, or when

the regularization parameter becomes greater than 1016. We

implement our distributed approach in a single multi-core

computer and not in a sparse UAV network, but our archi-

tecture is well-suited for a networked UAV application.

4.1. Synthetic Data

We simulate a realistic scenario, with smooth camera

pose transition, and noise parameters consistent with real-

world sensor errors. Using the simulation, we evaluate the

error in the estimated 3D scene point cloud and the camera

parameters, and investigate how estimation error of camera

pose affects the final tie points triangulation.

The camera positions are sampled around an orbit, with

an average radius 1000m and altitude 1500m, with the cam-

era directed towards a specific area. To each camera pose,

a random translation and rotation is added as any real ob-

server cannot move in a perfect circle while steadily aiming

always in the same exact direction. The camera path and the

3D scene points for an example scenario are shown in Fig-

ure 2. In practice, tie points are usually visible only within

a small subset of the available views, and it is generally not

practical to try to match all key points within each possible

pair of frames. Instead, points are matched within adjacent

frames. In our synthetic data, we create artificial occlusions

or mis-detection so that each point is only visible on a few

consecutive frames.

Figure 2: Camera flight path (blue) and 3D scene points

(red) for an example synthetic data set.

4.2. Convergence and Runtime

We investigate convergence of the re-projection error and

parameters for D-ADMM BA, comparing the convergence

when φm is squared ℓ2 vs. Huber in (5), and φa always

the squared ℓ2. The number of cameras is 5, the number

of scene points is 10, and the number of 2D image points

(observations) is 50. We fix the standard deviation for the

additive Gaussian noise during the initialization of the cam-

era angles and positions to be 0.1. We vary the standard

deviation of noise for the scene points from 0.2 to 1.7. In-

troducing robust losses for misfit penalty helps the conver-

gence of the re-projection error significantly, see Figure 3,

(a) vs. (c). This behavior is observed with the convergence

of the scene points, see Figures 3, (b) vs. (d), and cam-

era parameters. The Huber penalty is used to guard against

outliers; here, outliers come from processors working with

limited information. The performance degrades gracefully

with noise, see Figure 3, (c) and (d).

(a) Rep. errors: φm in (5) is ℓ2 (b) MSE: φm in (5) is ℓ2

(c) Rep. errors: φm in (5) is Huber (d) MSE: φm in (5) is Huber

Figure 3: Choosing φm loss to be Huber penalty leads to

better performance in distributed BA, even when there are

no outliers in the original data. Panels (a) and (c) compare

reprojection errors, while (b) and (d) compare MSE of scene

points. In all figures, curves correspond to values σ of scene

variance, as shown in the legend. Consensus penalty φa is

always ℓ2.

We also compare D-ADMM BA with the centralized LM

BA and present the results in Figure 4 (a) and (b). The num-

ber of camera parameters and 3D scene points are (10, 40),
(15, 100), (25, 100), (30, 200), (100, 200), and (100, 250);
with the number of observations increasing as shown on the

x-axis of Figure 4. In most settings, D-ADMM BA has a

better parameter MSE than centralized LM BA. The run-

time of the proposed approach with respect to the number

of observations and parallel workers is shown in Figure 4

(c). The parallel workers are configured in MATLAB, and

the runtime is linear with respect to the observations and

reduces with increasing workers. Our implementation is a

simple demonstration of the capability of the algorithm —

a fully parallel implementation in a fast language such as C

can realize its full potential.

2150

(a) (b) (c)

Figure 4: (a) MSE between the actual and estimated camera parameters, (b) MSE between the actual and estimated scene

points, (c) runtime of the proposed D-ADMM algorithm with increasing number of processor cores.

4.3. Real Data

To demonstrate the performance of D-ADMM BA, we

conducted experiments on real datasets with different set-

tings. All experiments are done with MATLAB on a PC

with a 2.7 GHz CPU and 16 GB RAM.

In our SFM pipeline, SIFT feature points [14] are used

for detection and matching. The relative fundamental ma-

trices are estimated for each pair of images with sufficient

corresponding points, which are used to estimate relative

camera pose and 3D structure. Next, the relative parame-

ters are used to generate the global initial values for BA.

The datasets were downloaded from the Princeton Vision

Group and the EPFL Computer Vision Lab [20].

Since there are no ground truth 3D structures available

for the real datasets, we compare the dense reconstruction

results obtained using the method of [25]. The first dataset

has five images and a sample image is shown in Figure 5

(a). After keypoint detection and matching, centralized LM

BA and D-ADMM BA are given the same input. There are

a total of 104 world points and 252 observations. The fi-

nal re-projection error of LM and D-ADMM are 0.93 and

0.67 respectively. Figure 5 (c) and (d) shows that the dense

reconstruction quality of LM and the D-ADMM are sim-

ilar. Figure 5 (b) shows the convergence of re-projection

error for the D-ADMM algorithm. Figure 6 (a) shows the

convergence of re-projection error for different values of

ρ = ρx = ρy . Setting ρ to a high value accelerates con-

vergence.

We also estimate camera parameters and scene points,

applying the approach of Section 3.1.4 to the same data

set. Figure 6 (b) shows that as the number of scene points

per iteration increase, the runtime decreases, with 32 scene

points per iteration giving the fastest convergence, see fig-

ure 6 (c). Figure 6 (d) compares re-projection errors with

different number of cameras in each iteration. Initial values

are the same as in the castle-P30 experiment (Figure 11),

and the number of scene points in each iteration is 64. Re-

projection errors decrease faster as the number of cameras

in each iteration increases.

We perform distributed BA on the Herz-Jesu dataset data

set provided in [20] using the approach in Section 3.1.4.

This data set has seven images, 1140 world points, and 2993

observations. In this experiment, the LM BA algorithm us-

ing the same setting as in previous experiments does not

converge and has the final re-projection error about 2500.

Therefore, the dense reconstruction result is not presented.

D-ADMM BA with eight scene points in each update step

has a final re-projection error of 0.76. Figure 7(b) shows the

dense 3D point cloud estimated with D-ADMM BA.

Additional results on other datasets (fountain-P11, entry-

P10, Herz-Jesu-P25, and castle-P30) are presented in Table

1, Figure 8, 9, 10 and 11. σ is mean re-projection error.

Figure 8, 9, 10 and 11 present different perspectives of the

dense reconstruction results to show the robustness of 3D

parameter estimations.

Table 1: The dataset information and experiment results.

Dataset Images Scene pts Obs σ

fountain-P11 11 1346 3859 0.5

entry-P10 10 1382 3687 0.7

Herz-Jesu-P25 25 2161 5571 0.87

castle-P30 30 2383 6453 0.84

Settings are fixed across experiments, and the maxi-

mum iteration counter is set to 1600. The experiments on

fountain-P11 and Herz-Jesu-P25 dataset (Figure 8 and 10)

have better dense reconstruction results since there are more

images covering the same regions. The real data experi-

ments show D-ADMM BA achieves similar objective val-

ues (mean re-projection error < 1) as the number of obser-

vations increases; it is not necessary to increase the number

2151

(a) (b) (c) (d)

Figure 5: (a) Original 2D image, (b) re-projection error for D-ADMM BA, (c) dense 3D point cloud estimated with LM BA

(mean re-projection error = 0.93), (d) dense 3D point cloud estimated using D-ADMM BA (mean re-projection error = 0.67).

(a) (b)

(c) (d)

Figure 6: (a) The re-projection error for different values

of ρ, using generalized distribution approach, (b) runtime

of D-ADMM BA (c) re-projection errors with increasing

number of scene points, (d) re-projection errors for multi-

ple cameras per estimation vector.

of iterations as the size of the data increases. D-ADMM BA

scales linearly with the number of observations and can be

parallelized on GPU clusters.

5. Conclusions

We presented a new distribution algorithm for bundle ad-

justment, D-ADMM BA, which compares well to central-

ized approaches in terms of performance and scales well for

SfM. Experimental results demonstrated the importance of

robust formulations for improved convergence in the dis-

tributed setting. Even when there are no outliers in the

(a) (b)

Figure 7: (a) Original 2D image, (b) dense 3D point cloud

estimated with D-ADMM BA (mean re-proj. error = 0.76).

initial data, robust losses are helpful because estimates of

processors working with limited information can stray far

from the aggregate estimates, see Figure 3. Formulation de-

sign for distributed optimization may yield further improve-

ments; this is an interesting direction for future work.

Results obtained with D-ADMM BA are comparable to

those obtained with state-of-the-art centralized LM BA, and

D-ADMM BA scales linearly in runtime with respect to the

number of observations. Our approach is well-suited for use

in a networked UAV system, where distributed computation

is an essential requirement.

2152

(a) (b) (c)

Figure 8: Reconstructed Fountain-P11 views (11 images, 1346 world points, 3859 obs., mean re-proj. error = 0.5).

(a) (b) (c)

Figure 9: Reconstructed Entry-P10 views (10 images, 1382 world points, 3687 obs., mean re-proj. error = 0.7).

(a) (b) (c)

Figure 10: Reconstructed Herz-Jesu-P25 views (25 images, 2161 world points, 5571 obs., mean re-proj. error = 0.87).

(a) (b) (c)

Figure 11: Castle-P30 (30 images, 2383 world points, 6453 obs., mean re-proj. error = 0.84).

2153

References

[1] S. Agarwal, N. Snavely, S. M. Seitz, and R. Szeliski. Bundle

adjustment in the large. In Computer Vision–ECCV 2010,

pages 29–42. Springer, 2010.

[2] A. Aravkin, M. Styer, Z. Moratto, A. Nefian, and M. Brox-

ton. Student’s t robust bundle adjustment algorithm. In Im-

age Processing (ICIP), 2012 19th IEEE International Con-

ference on, pages 1757–1760. IEEE, 2012.

[3] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Dis-

tributed optimization and statistical learning via the alternat-

ing direction method of multipliers. Foundations and Trends

in Machine Learning, 3(1):1–122, 2011.

[4] M. Byröd and K. Åström. Conjugate gradient bundle ad-

justment. In Computer Vision–ECCV 2010, pages 114–127.

Springer, 2010.

[5] A. Eriksson, J. Bastian, T.-J. Chin, and M. Isaksson. A

consensus-based framework for distributed bundle adjust-

ment. In Computer Vision and Pattern Recognition, 2015.

CVPR 2015. IEEE Conference on. Ieee, 2015.

[6] A. Fusiello and F. Crosilla. Solving bundle block adjustment

by generalized anisotropic procrustes analysis. ISPRS Jour-

nal of Photogrammetry and Remote Sensing, 102:209–221,

2015.

[7] R. Hartley and A. Zisserman. Multiple view geometry in

computer vision. Cambridge university press, 2003.

[8] J. Heinly, J. L. Schonberger, E. Dunn, and J.-M. Frahm. Re-

constructing the world* in six days*(as captured by the ya-

hoo 100 million image dataset). In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 3287–3295, 2015.

[9] V. Indelman, R. Roberts, C. Beall, and F. Dellaert. Incre-

mental light bundle adjustment. In Proceedings of the British

Machine Vision Conference (BMVC 2012), pages 3–7, 2012.

[10] K. Konolige and W. Garage. Sparse sparse bundle adjust-

ment. In BMVC, pages 1–11. Citeseer, 2010.

[11] J. Kopf, M. F. Cohen, and R. Szeliski. First-person hyper-

lapse videos. ACM Transactions on Graphics (TOG),

33(4):78, 2014.

[12] P.-L. Lions and B. Mercier. Splitting algorithms for the sum

of two nonlinear operators. SIAM Journal on Numerical

Analysis, 16(6):964–979, 1979.

[13] M. I. Lourakis and A. A. Argyros. Sba: A software package

for generic sparse bundle adjustment. ACM Transactions on

Mathematical Software (TOMS), 36(1):2, 2009.

[14] D. G. Lowe. Object recognition from local scale-invariant

features. In Computer vision, 1999. The proceedings of the

seventh IEEE international conference on, volume 2, pages

1150–1157. Ieee, 1999.

[15] K. Mitra and R. Chellappa. A scalable projective bundle ad-

justment algorithm using the l infinity norm. In Computer Vi-

sion, Graphics & Image Processing, 2008. ICVGIP’08. Sixth

Indian Conference on, pages 79–86. IEEE, 2008.

[16] J. J. Moré. The levenberg-marquardt algorithm: implemen-

tation and theory. In Numerical analysis, pages 105–116.

Springer, 1978.

[17] J. Nocedal and S. Wright. Numerical optimization. Springer

Series in Operations Research. Springer, 1999.

[18] M. D. Pritt. Fast orthorectified mosaics of thousands of aerial

photographs from small uavs. In Applied Imagery Pattern

Recognition Workshop (AIPR), 2014 IEEE, pages 1–8. IEEE,

2014.

[19] R. T. Rockafellar and R. J.-B. Wets. Variational analysis,

volume 317. Springer Science & Business Media, 2009.

[20] C. Strecha, W. von Hansen, L. V. Gool, P. Fua, and U. Thoen-

nessen. On benchmarking camera calibration and multi-view

stereo for high resolution imagery. In Computer Vision and

Pattern Recognition, 2008. CVPR 2008. IEEE Conference

on, pages 1–8. Ieee, 2008.

[21] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgib-

bon. Bundle adjustment - a modern synthesis. In Vision algo-

rithms: theory and practice, pages 298–372. Springer, 2000.

[22] Y. Wang, W. Yin, and J. Zeng. Global convergence of

admm in nonconvex nonsmooth optimization. arXiv preprint

arXiv:1511.06324, 2015.

[23] C. Wu. Towards linear-time incremental structure from mo-

tion. In 3D Vision-3DV 2013, 2013 International Conference

on, pages 127–134. IEEE, 2013.

[24] C. Wu, S. Agarwal, B. Curless, and S. M. Seitz. Multicore

bundle adjustment. In Computer Vision and Pattern Recogni-

tion (CVPR), 2011 IEEE Conference on, pages 3057–3064.

IEEE, 2011.

[25] J. Xiao, J. Chen, D.-Y. Yeung, and L. Quan. Learning two-

view stereo matching. In Computer Vision–ECCV 2008,

pages 15–27. Springer, 2008.

[26] J. Zhang, M. Boutin, and D. G. Aliaga. Robust bundle ad-

justment for structure from motion. In Image Processing,

2006 IEEE International Conference on, pages 2185–2188.

IEEE, 2006.

2154

