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Abstract

Performing image matching in thermal images is chal-

lenging due to an absence of distinctive features and pres-

ence of thermal reflections. Still, in many applications, in-

frared imagery is an attractive solution for 3D object re-

construction that is robust against low light conditions. We

present an image patch matching method based on deep

learning. For image matching in the infrared range, we use

codes generated by a convolutional auto-encoder. We eval-

uate the method in a full 3D object reconstruction pipeline

that uses infrared imagery as an input. Image matches

found using the proposed method are used for estimation

of the camera pose. Dense 3D object reconstruction is per-

formed using semi-global block matching. We evaluate on

a dataset with real and synthetic images to show that our

method outperforms existing image matching methods on

the infrared imagery. We also evaluate the geometry of gen-

erated 3D models to demonstrate the increased reconstruc-

tion accuracy.

1. Introduction

Object detection in the infrared range proves to be a ro-

bust solution for such applications as pedestrian detection

[22, 21], face recognition [49, 56] and autonomous driving

[53]. Still, 3D object pose estimation and model reconstruc-

tion with infrared images are challenging due to low image

contrast or absence of feature points.

Despite these disadvantages, thermal cameras have sev-

eral benefits that make them attractive for 3D object re-

construction and pose estimation. Firstly, they are robust

against degraded visual environments such as dust, fog,

and low light conditions. Secondly, infrared cameras are

used for 3D reconstruction of objects that have a distinc-

tive texture only in the infrared range, e.g. an aerial sur-

vey of geysers [33]. Finally, rich, multi-view, multispec-

tral infrared image datasets are highly demanded nowadays

to train deep learning based object recognition algorithms

[60, 53, 2]. While such datasets are readily available for the

visible spectrum [34, 9, 13, 55] only a few small datasets

for the infrared range [60, 22, 53, 3, 27] can be found to

date. One way to easily obtain large datasets with infrared

imagery is to generate it synthetically using reconstructed

3D models with real infrared textures.

1.1. 3D reconstruction and thermal imaging

3D object reconstruction techniques such as Structure

from Motion (SfM) [40], simultaneous localization and

mapping (SLAM) [7], Semi-global Matching (SGM) [19,

4], silhouette-based 3D reconstruction [48] and Shape from

Interaction [38] prove to be fast and robust techniques for

3D model generation from the imagery captured in the vis-

ible range. SfM requires sparse image matching using key-

point descriptors for preliminary orientation of each image.

Evaluation of SfM on the infrared imagery shows that com-

monly used key point descriptors like SIFT [36] or SURF

[1] fail to obtain feature points [15, 57]. Still, SfM pro-

vides a convenient pipeline for generation of digital eleva-

tion models with thermal textures [33]. Another approach

for scene reconstruction with a thermal camera is an LSD-

SLAM algorithm [7]. A recent evaluation showed that it

also fails to match the infrared imagery due to low image

contrast [57]. Thus a feature extraction method that is ro-

bust to low contrast details is required for 3D object recon-

struction in the thermal range.
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Recently, new approaches for feature matching based on

deep learning methods [43, 26, 10, 25] have demonstrated

excellent performance.The patch matching problem could

not be solved directly by image classification using deep

neural networks as the number of possible image patches

is unlimited. In [26] it is proposed to use a convolutional

auto-encoder (CAE) to overcome this problem. The CAE

is trained under an unsupervised learning approach to com-

press an image patch into a low dimensional code and re-

store the original image from that code. If a good restora-

tion quality is achieved, the CAE has learned to extract the

most informative bits of information from the original im-

age. Hence, the code could be used to perform sparse image

matching.

In this paper, we propose a new method for image

patch matching based on a CAE using an approach inspired

by [26]. We evaluate our method in a full 3D object re-

construction pipeline and use infrared images as an input

(fig. 1). Firstly, we perform feature matching using a CAE

codebook. Secondly, we use image patch correspondences

to perform estimation of the camera pose. Finally, we use

SGM for dense point cloud reconstruction.

We evaluate our method on real data to show that it out-

performs previous methods such as SIFT [36] and other

deep convolutional feature point descriptors [43, 58] on

the infrared images. To perform the evaluation, we cre-

ated a multi-view stereo infrared imagery dataset (MVSIR)

with accurate ground truth 3D models of test objects and

a camera calibration data. The dataset could be used

for evaluation of 3D object reconstruction methods on in-

frared imagery and training of feature matching algorithms

on patches of thermal images. The MVSIR dataset is

publicly available from http://www.zefirus.org/

mvsir17/.

We provide a comparison of the accuracy of 3D mod-

els generated using CAE-based image matching and SGM

and well-established 3D object reconstruction techniques to

show that our matching method helps to achieve a better

accuracy on the complex infrared imagery.

1.2. Contributions

In this paper, we present three key technical contribu-

tions:

1. New image patch matching method based on deep

learning,

2. Pipeline for 3D reconstruction from thermal images

based on the proposed patch matching,

3. Thermal image dataset MVSIR with ground truth data

for evaluation of 3D reconstruction quality.

First two contributions achieve state-of-the-art results on

the created thermal image dataset. Our main contribution is

Figure 1. Infrared image matching and 3D reconstruction using

the CAE. We detect feature points and create local image patches.

We find patch correspondences using the CAE codebook trained

for abstract image patch classes. Patch point correspondences are

used for camera pose estimation. We perform dense 3D point re-

construction using semi global matching.

a new image patch matching method based on deep learn-

ing. The method uses a CAE to build unique patch codes

that condense discriminative features of an image patch.

To perform the matching an additional table (codebook) is

used. The codebook defines correspondence between CAE

code and patch class ID, that defines an abstract patch type

(blob, line, etc.)

2. Related work

3D object reconstruction from imagery has a history of

more than 50 years. In recent years an intense research ac-

tivity is focused on 3D object reconstruction, pose estima-

tion and scene understanding with a monocular camera. Ro-

bust image matching is an essential element of most of the

proposed approaches. Most of the modern software for 3D

object reconstruction use approaches based on analytically

developed feature descriptors [36, 1].

The availability of low-cost thermal cameras stimulated

an active research in the field of 3D object reconstruction

and pose estimation in the infrared range [16, 52, 39, 33, 24,

57, 42, 44]. An evaluation of hand-crafted feature descrip-

tors on the infrared imagery [16] outlined complexities of

image matching in the infrared range such as infrared reflec-

tions, infrared halo effects, saturation and history effects.

Still, the research proved that the 3D object reconstruction

and image matching in the infrared range are possible. The

combination of Harris detector [17] and normalized correla-

tion for image matching demonstrated the best performance

among classic image matching approaches.The evaluation
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of methods that do not use feature points such as the LSD-

SLAM [7, 57] showed that they also could not recover scene

geometry due to lack of contrast in features in thermal im-

ages. Thus, the main problem of 3D reconstruction and pose

estimation in the infrared range is the poor performance of

existing image matching methods on the thermal imagery.

Standard approaches like SfM compute the parameters

of interior and exterior orientation of the camera based on

the robust matching of keypoints. Hence, if the object does

not provide sufficient texture, the quality of orientation and

calibration drops significantly. As an alternative, thermal

images can be oriented by means of given 3D control points,

e.g. targeted in a way that they can be measured in thermal

imagery as well. As shown by [37], a thermal camera can be

calibrated with high accuracy and used for subsequent 3D

reconstruction in a classical photogrammetric workflow.

Image matching methods that use finite object planes

such as plane sweep matching or PatchMatch [11, 6, 12]

seem to be robust on low-textured areas. Still, such meth-

ods require diffuse Lambertian reflection properties of the

observed surface and regularization conditions to provide

smoothness between adjacent local planes. To our knowl-

edge, there is no previous work for applying these methods

to the thermal imagery.

Recent research on image matching has proven that deep

learning based feature descriptors [54, 43, 26] outperform

their hand-crafted predecessors in matching accuracy. Deep

learning based descriptors can be divided into two broad

groups. The first group is based on classical deep con-

volutional neural networks (CNN) for image classification

[30, 45]. To perform matching top layers of the network are

removed. The output of the remaining layers is used as a

code to find feature correspondences.

The second group of deep learning based descriptors is

based on the unsupervised learning approach. As the num-

ber of possible image points in a dataset could reach billions

of classes, it is often impossible to choose good classes at

the training stage. In [26] it is proposed to use CAE to over-

come this difficulty. The usage of CAE for 6D pose es-

timation with RGB-D data have shown the state-of-the-art

results on various datasets. The other benefit of CAE is their

robustness to previously unseen data. All in all, deep learn-

ing based architectures provide a robust solution for local

patch matching that can adapt to arbitrary kind of features

and spectral range.

The final stage of modern 3D object reconstruction

pipelines is the dense image matching and point cloud gen-

eration. Most of the well-known matching algorithms rely

on some features based on pixel brightness. Silhouette im-

age features [8] and volumetric graph-cut based approaches

[51] require sharp edges on image for robust performance.

Hence, they could not be directly applied for dense image

matching in the infrared range. SGM algorithm has proven

Figure 2. Example of patch selection from an infrared image.

to be a robust solution for dense image matching in images.

As SGM methods provide a reliable performance on low

or non-textured image areas, they seem to be a promising

solution for dense image matching in infrared imagery.

3. Methodology

This section presents all stages of the proposed 3D object

reconstruction pipeline. Firstly, we discuss the proposed

CAE for local feature representation and the training pro-

cess. Secondly, we present feature correspondence based

camera orientation estimation. Finally, we discuss the 3D

model generation using SGM.

3.1. Local Patch Extraction

A standard approach for local patch selection from an

image is based on feature point detectors. However, they

perform unstable on infrared imagery [16]. To obtain the

local patch representation, we use a uniform sampling of

the image (fig. 2). Usually, the resolution of thermal cam-

eras is lower than for cameras of the visible range. Hence,

the patch has to be small in pixel dimensions to be invariant

to perspective transformations. Inspired by the previous re-

search [26] with RGB-D cameras of comparable resolution

we have selected the patch size of 28 × 28 pixels.

3.2. Convolutional Autoencoder

An auto-encoder (AE) can be considered a special case

of a feed-forward neural network. AE accepts some input

x and attempts to copy it at its output y [14]. The net-

work consists of two main parts. The first part is an en-

coder function h = f(x) that condenses the input x to a

hidden layer h that produces a code F containing all values

required to perform the reconstruction of the input. The sec-

ond part is a decoder that attempts to reconstruct the input

ŷ = g(F ). Since the code F has a lower dimension than

the original image, during the training AE tries to capture

the most salient features of the training dataset. After the

training stage, the output of a hidden layer could be used

as a code F . As the code condenses the most discrimina-

tive features of the input patch it could be used to perform

an efficient search for a corresponding image patch. Re-

cent research [47, 26] have shown that convolutional layers
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Figure 3. Architecture of the CAE.

increase the quality of AE reconstruction. AE with con-

volutional and deconvolutional layers are commonly called

convolutional auto-encoders.

To develop an effective CAE architecture for infrared im-

age matching, we have considered following qualities of the

input data. Firstly, the CAE has to work with relatively

small image patches due to the low resolution of infrared

sensors. Secondly, it should have a small number of learn-

ing parameters to obtain good convergence properties on

small datasets of infrared image patches.

Firstly, we have experimented with an architecture pro-

posed in [47]. While it demonstrated an excellent perfor-

mance on MNIST dataset [31], training on more complex

datasets showed that it tends to converge to the mean value

of the dataset. After analysis of training results, we con-

cluded that architecture [47] did not have enough training

parameters and decided to increase the number of convolu-

tional filters. We adopted the base architecture proposed in

[41]. Our contribution to the architecture was the following.

Firstly, we scaled convolutional and deconvolutional layers

to achieve the target image size of 28×28 pixels. Secondly,

we replaced tanh activation layers with sigmoid layers to

obtain more effective error back propagation [32] and in-

crease the stability of training on datasets with low-textured

images. We have experimented with three dimensions of

code F to find a compromise between the reconstruction

quality and the compression ratio. The final architecture of

the CAE network is presented in figure 3 and table 1.

We also have experimented with two loss functions. A

classic Euclidean distance based loss is not robust to CNN

designs with deconvolutional layers [61]. We use cross-

entropy loss (logistic loss) given by

Lsc = −
1

n

∑

i∈(w,h)

(

yi log ŷi + (1− yi) log(1− ŷi)

)

, (1)

Layer Size out Kernel Stride

Input 1× 28× 28
Convolution 8× 13× 13 4× 4 2

Convolution 16× 5× 5 4× 4 2

Inner Product F

Deconvolution 8× 5× 5 5× 5 2

Deconvolution 1× 28× 28 8× 8 5

Table 1. CAE architecture. F is the size of the trained feature code.

where w, h are layer dimensions, y is the pixel value of the

target image at point (x, y), and ŷ is the pixel value of the

image reconstructed by CAE at point (x, y). We found out

that an addition of a Gaussian noise just before the final

sigmoid layer as proposed in [14] increases the stability of

the training process. The standard deviation of the Gaussian

noise uniformly increases from 0 to 0.5 during the training

process.

3.3. Training dataset

CAE training requires a large dataset with a high vari-

ance of random image patches. To train the developed

CAE architecture, we generated a multi-view stereo in-

frared dataset (MVSIR) with 1 million of image patches

of different feature points. We varied emission intensity

with random uniform noise. The dataset includes synthetic

image patches of three test objects. Test objects from the

dataset are presented in figure 4. 3D models of objects were

generated using a fringe projection 3D scanner [28] with the

accuracy of 0.1 mm. Real infrared textures were captured

using the FLIR P640 thermal camera with a lens of 130 mm.

To create the training dataset we used a technique simi-

lar to [18]. We sample image patches by placing a virtual

camera on an icosahedron and pointing it to a feature point.

Feature point locations were selected by detecting distinc-

tive feature using the Harris corner detector on original in-

frared textures. 3D coordinates of the feature points were

obtained by back projection to 3D space. To perform patch

matching, we assign each 3D feature point on a test object

a unique patch ID. The patch ID is stored in the codebook

with the patch code F generated by CAE. All in all, we

sample a set of 3D points on test objects and assign each 3D

point an unique patch ID. For each patch ID, we generated

7000 image patches sampled from different viewpoints.

3.4. Patch matching

To perform patch matching, we prepare the codebook

that establishes correspondences between the patch code

and the patch ID of a unique 3D point on a test object. To

generate the codebook, we process all image patches from

the training dataset using the CAE to receive the code F .
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(a) Gnome Visible (b) Gnome Infrared (c) Gnome Ground truth 3D model

(d) Car Visible (e) Car Infrared (f) Car Ground truth 3D model

(g) Head Visible (h) Head Infrared (i) Head Ground truth 3D model

Figure 4. Examples of test objects, infrared imagery and ground truth 3D models from the dataset.

We perform matching using a voting-based approach.

For a given patch I , we generate a code F using the CAE.

After that, we query n nearest neighbors from the codebook.

The patch ID d(I) is defined by the patch ID of a majority

vote of its neighbors. To filter false correspondences, we

define the probability p that the patch I has a patch ID z, as

a ratio of majority count to the selected number of nearest

neighbors n

p = P (d(I) = z) =
|{b ∈ B : b = z}|

n
, (2)

where B is a set of path IDs of nearest neighbors.

Let I1, I2 be two image patches to be matched. Then

the probability ppair that they have a similar patch ID z is

defined as follows

ppair =

{

P (d(I1) = z) · P (d(I2) = z), d(I1) = d(I2)

0, otherwise
.

(3)

While voting approach demonstrated a good perfor-

mance for pose estimation of a known object [26], its usage

for stereo correspondences matching requires a large code-

book with patches of 3D points similar to 3D points of the

selected object. To find out the robustness of our match-

ing method to previously unseen data we perform matching

using the codebook from a different test object.

4. Camera calibration and pose estimation

To perform 3D object reconstruction, we use patch codes

produced by CAE. The patch matching is performed using

nearest neighbor search. We filter correct matches using

threshold and use them to estimate the camera pose (camera

external orientation parameters).

4.1. Camera calibration

An accurate camera calibration is required as a prelim-

inary stage of 3D object reconstruction. We calibrate the

camera using a camera model in a form [5] and an original
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Figure 5. Testfield used for the infrared camera calibration.

Figure 6. Image orientation. Point correspondences for ten random

patch classes are shown. Patch ID probability p is shown using

points transparency.

software [29]. We use a planar testfield (fig. 5) with known

spatial coordinates of reference points to perform the cali-

bration.

For calibration 20 images were acquired. The root-mean

square error at reference points for the estimated parameters

of the camera model was about 0.1 mm. The estimated in-

terior parameters of the camera were used for camera pose

estimation and 3D reconstruction.

4.2. Pose estimation

To determine the camera pose, we use the corresponding

points which were roughly found using the CAE. While the

CAE allows us to find corresponding features in two im-

ages, the accuracy of points coordinates is not sufficient for

an accurate pose estimation. We refine the initial coordi-

nates estimates to sub-pixel accuracy using the correlation

technique. The results of image patches matching and sub-

pixel measuring are shown in figure 6.

For camera poses estimation we perform robust non-

linear minimization of the measurement (re-projection) er-

rors by bundle adjustment [46, 35]. We use a redundant

number of corresponding points to minimize the squared

re-projection error for the detected 2D points xij in an im-

age j as a function of the unknown image pose parame-

ters (R,X) and unknown 3D point positions pi using non-

linear least squares. For the projection equations:

xij = f(pi,Rj ,Xj), (4)

the iteratively minimized re-projection errors are

E =
∑

i,j

(

∂f

∂x
∆x+

∂f

∂R
∆R+

∂f

∂X
∆X − rij

)

, (5)

where rij = xij − x̂ij is the current residual vector (2D

error in the predicted position) and the partial derivatives

are with respect to the unknown pose parameters (camera

rotation and translation and 3D point coordinates).

To determine the real scale of the object we use the

known distance between reference points presented in the

working area.

It is worth mentioning that the quality of parameters es-

timation by bundle adjustment procedure depends on the

distribution of used points in images of processing image

set. To check the results of camera pose estimation, we use

a set of control points with known 3D coordinates located

in the working area. The relative differences in pose param-

eters determined by bundle adjustment and by control 3D

points lay in 2% limits showing a reasonable accuracy of

pose estimation.

4.3. SemiGlobal Matching

The well-known semi-global matching approach [19, 20]

uses rectified stereo pairs for pixel-wise matching based on

a cost function that consists of a term for dissimilarity and

two penalty functions for disparity distances. The aggre-

gated cost space is searched in different paths providing

the best matching disparity. SGM is usually combined with

multi-view stereo (MVS) in order to model a complete 3D

object from multiple views. The results in figure 8 have

been computed with semi-global block matching provided

by OpenCV which is a modified implementation of [20].

The point clouds computed from multiple views are finely

registered using iterative closest point algorithm to provide

a final 3D model.

As outlined in [4], SGM can be converted to object space

(OSGM). In this case, a voxel space is created where the

standard SGM cost function is replaced by a new cost func-

tion based on XYZ values directly. OSGM is able to process

all given images simultaneously without the need of recti-

fied normalized stereo pairs. The desired voxel resolution

can be set arbitrarily, e.g. with respect to the given ground

sampling distance of the camera. Besides the reconstructed

3D model, OSGM directly derives true orthophotos.

5. Evaluation

In this section, we present an evaluation of the developed

patch matching method. Firstly, we evaluate the CAE abil-

ity to reconstruct arbitrary infrared image patches and ex-
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Figure 7. PR curves for the CAE, SIFT, DCFPD, and CNN on two splits of the MVSIR dataset.

Figure 8. A 3D reconstruction (MVS and OpenCV semi-global

block matching).

tract discriminative features for image matching. Secondly,

we compare the matching accuracy to other feature descrip-

tors. Finally, we evaluate our matching method in the full

3D object reconstruction pipeline and compare it to 3D re-

constructions generated by well-established algorithms. For

3D model evaluation, we adopt methodology proposed in

[40] to measure the accuracy of the generated surface.

5.1. CAE Evaluation

The developed architecture was implemented using

Caffe [23] and trained using an NVIDIA Titan GPU. We

Figure 9. Result of CAE reconstruction with various dimensions

of code F .

used a fixed learning rate of 6 · 10−3. The training was

completed in 20000 iterations with a batch size of 100. The

average error of the Euclidean loss function after training

was about 1.5. Firstly, we evaluated the CAE reconstruc-

tion quality visually by processing infrared image patches

that were not included in MVSIR dataset and presented on

figure 9. The top row of the figure shows input images that

were fed into a CAE. Bottom rows present the reconstruc-

tion produced by the CAE with different dimensions of the

code F . All dimensions were sufficient to obtain an accu-

rate reconstruction of the input image. Only the CAE with

F = 64 shows few features of the input images.

To evaluate discriminative qualities of the code gener-

ated by a CAE we use the test part of the MVSIR dataset.

We compare the discriminative quality of codes produced

by the CAE with SIFT, deep convolutional feature point de-

scriptors (DCFPD) [43] and stereo matching CNN [59]. We
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(a) σPS = 5.69 mm (b) σ3DZ = 5.21 mm (c) σSGM = 5.01

Figure 10. Evaluation result for the Gnome statue. Distances from the ground truth model are presented in false color.

Train Test SIFT DCFPD CNN CAE-64

Gnome Head 0.51 0.72 0.83 0.93

Gnome Car 0.28 0.47 0.66 0.89

Table 2. PR AUC for the three MVSIR dataset splits.

use precision-recall curve (PR) and area under the curve

(AUC) as performance metrics. The possible number of

patch combinations in the test part of MVSIR dataset is ex-

cessive. We reduce the number of patch pairs to 10000 pos-

itive random pairs and 30000 random negative pairs. We

compare pairs using the euclidean distance between codes

F1, F2 for two patches. We use SIFT implementation from

the VLFeat project [50]. The PR curve for a sample split

of the MVSIR dataset is presented in figure 7. The detailed

results for PR AUC are given in table 2.

5.2. Evaluation of 3D reconstruction

We compare the accuracy of reconstructed 3D models

with three other algorithms implemented in open source and

commercial software: Agisoft PhotoScan (PS), 3DF Zephyr

and PMVS (Visual SfM). As a ground truth data, we use 3D

models generated by a 3D scanner based on fringe projec-

tion. The 3D scanner [28] provides 0.1 mm accuracy for

reconstructed reference 3D models. To evaluate the devia-

tion of 3D models obtained by various techniques from the

reference 3D model we transform them to a common coor-

dinate system and display deviations using pseudo colors.

The accuracy of the reconstructed surfaces is presented in

figure 10 and table 3.

6. Conclusion

We showed that convolutional auto-encoders are capable

of extracting features from low or non-textured objects to

perform robust patch matching from multi view stereo in-

frared imagery. The CAE prove to generalize from training

Method Gnome Car Head

PMVS 6.91 - -

PS 5.69 6.12 6.71

3D Zephyr 5.21 6.11 5.34

Ours 5.01 2.81 4.41

Table 3. Standard deviation of distances in mm to the ground-truth

3D model of evaluated methods on the MVSIR dataset. ‘-’ indi-

cates that the method has failed during point matching stage.

dataset to previously unseen data and are robust to image

matching challenges specific to the infrared range such as

high noise level and local changes of temperature contrast.

To compare the CAE-based image matching technique

with the well-known state-of-the-art image matching algo-

rithms, we designed a new MVSIR dataset with infrared

images, ground truth point correspondences and reference

3D models. We showed that application of the CAE for fea-

ture matching on thermal imagery provides the better per-

formance compared to other feature descriptors.

We evaluated a set of 3D reconstruction algorithms

(SfM, Visual SfM, SGM, 3DF Zephyr) on MVSIR dataset

to find out which one works better for thermal imagery.

SGM (using the developed technique for patch matching)

have demonstrated the best accuracy of 3D reconstruction.

We demonstrated that proposed 3D reconstruction

pipeline allows obtaining 3D models based on thermal im-

agery with reasonable accuracy for tasks of infrared 3D

modeling and pose estimation and for a creation of datasets

for deep learning in the infrared spectra.
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