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Abstract

Estimating the 6D pose of natural objects, such as veg-

etables and fruit, is a challenging problem due to the high

variability of their shape. The shape variation limits the

accuracy of previous pose estimation approaches because

they assume that the training model and the object in the

target scene have the exact same shape. To overcome this

issue, we propose a novel framework that consists of a local

and a global hypothesis generation pipeline with a mutual

verification step. The new local descriptor is proposed to

find critical parts of the natural object while the global esti-

mator calculates object pose directly. To determine the best

pose estimation result, a novel hypothesis verification step,

Mutual Hypothesis Verification, is proposed. It interactively

uses information from the local and the global pipelines.

New hypotheses are generated by setting the initial pose us-

ing the global estimation and guiding an iterative closest

point refinement using local shape correspondences. The

confidence of a pose candidate is calculated by comparing

with estimation results from both pipelines. We evaluate

our framework with real fruit randomly piled in a box. The

potential for estimating the pose of any natural object is

proved by the experimental results that outperform global

feature based approaches.

1. Introduction

Robotic bin picking is an essential task in the indus-

trial environment. Industrial parts usually have an identi-

cal shape when they are manufactured using a CAD model.

Robotic arms pick these parts and place them at a particular

position with a particular pose [18, 9]. The robotic manip-

ulation becomes easier if the robot knows the exact pose of

the target object. Aside from this typical scenario, target

objects are often natural and are randomly piled in a box,

e.g., fruit and vegetables. Natural objects have individual

shape variations even though they belong to the same class.

The shape variation of an object makes it difficult to train a

pose estimator and evaluate the estimated pose. A sufficient

Figure 1. Pose estimation results of bananas and apples in a box.

First column: reference images. Second column: results using the

VFH. Third column: results using our framework. Green objects

are accurate estimations. Bright green and red parts are critical

parts which are used for evaluation.

number of training examples need to be collected to cover

most of the shape variations and 6D poses of a class. Nev-

ertheless, it is hard to collect training data in the real envi-

ronment because of the limited number of samples and the

difficulty of annotating exact 6D pose information. Thus,

we need to train a pose estimator using a small number of

examples or synthetically generated data.

The variation of shape creates an additional challenge

for verifying the correctness of the estimated pose. A com-

mon technique is to compute the average distance between

the corresponding points of the estimated object and the test

scene [1]. However, this assumes that a perfect rigid trans-

formation exists, which is not the case for natural objects.

Therefore, it is necessary to compare positions of specific

local parts of an object, e.g., whenever the stalk of an apple

is detected correctly, the pose of the apple must be decided

correctly. Hence, the position of detected local parts should

be involved when candidates of possible poses are verified.

In this paper, we propose a novel framework for estimat-

ing the pose of natural objects regardless of highly varied

shapes. We use a novel local descriptor to detect particular

local shapes and a global estimator to analyze global shapes.
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The robust estimation is achieved by our Mutual Hypothe-

sis Verification (MHV) that uses mixed information derived

from local and global shapes. As a summary, our paper pro-

vides the following contributions:

• A novel hypothesis verification step, Mutual Hypothe-

sis Verification, is proposed to obtain the best estima-

tion using combined information of the local and the

global estimation pipelines, which is robust to individ-

ual shape variations of natural objects. Unlike previ-

ous work, additional hypotheses are generated by this

mixed information. A novel cost function determines

the best estimation by comparing pose candidates with

outputs of both pipelines.

• We propose a novel local shape descriptor to find user-

defined critical parts of an object. Our novel training

method enables the descriptor to be background invari-

ant. Furthermore, we employ a CAD model to gen-

erate a synthetic template database that contains pose

information of an object. This database enables a pose

of an object to be directly estimated without grouping

of correspondence points.

The remainder of the paper is organized as follows. In

Section 2, we provide an overview of work related to 6D

pose estimation of objects. The proposed framework and

its details are explained in Section 3. In Section 4, we eval-

uate and analyze our framework using real objects and an

industrial stereo sensor. Final remarks and plans for further

work is discussed in Section 5.

2. Related work

In this section, we introduce an overview of the previ-

ous studies of pose estimation using 2.5D point cloud data.

Tombari et al. [14] introduced a local feature descriptor

which has been widely used to find correspondence between

two point cloud samples. Instead of matching local shapes,

the whole shape of an object has been used to estimates the

pose. Rusu et al. [12] proposed a global feature that en-

codes geometry and viewpoint of an object from 3D point

cloud data. Wohlkinger et al. [16] proposed a unique feature

that uses CAD model as a training set and estimates object’s

pose by comparing features from a set of templates of poses

with a feature from a segmented object in a target scene.

Recently, Convolutional Neural Network (CNN) based

approaches achieve outstanding results in RGB and RGB-

D image recognition as well as 6D pose estimation. Kehl

et al. [7] employed a convolutional auto-encoder that was

trained on a large collection of random local patches to have

a powerful local descriptor. The training data for the auto-

encoder does not require any annotation. Thus, it is easier

to extract training samples from real images. However, a lot

of correspondences of local features occurs when objects in

the same class are in a box, which causes a high number of

false positives. CNNs are also used for global pose estima-

tion using segmented clusters. Wohlhart et al. [15] used a

whole image of an object as an input to a CNN descriptor

to calculate a global feature. The pose was determined by

comparing features from training data with a feature from

the input scene. Doumanoglou et al. [4] proposed a network

to estimate object pose directly in the quaternion represen-

tation without comparing features. Recently, Park et al. [11]

used Alexnet [8] trained by synthetically generated data to

directly estimate the pose of bananas on a table. However,

these global approaches need reasonable segmented inputs.

In addition, the shape of the object in any particular pose

should differ from the other view points.

Although a local or global feature performs well in a spe-

cific environment, it is better to use them together to take

advantage of multiple sources of information. Aldoma et

al. [1] and Fäulhammer et al. [5] employed global and lo-

cal features together to generate hypotheses and verify them

by a cost function, which computes the average distance of

closest points from the object in the scene and the estimated

model. However, the verification step is not applicable to

natural objects because the shape difference between the

target object and the training model is also included in the

distance error. Hence, a new verification step is required to

obtain the best result.

In this paper, we employ both global and local descrip-

tors together to combine the advantages of each. In contrast

to previous work [1, 5], pose hypotheses are generated by

individual descriptors as well as by combining the informa-

tion from both descriptors. This combined information is

also used for the verification step to determine the reliability

of the estimation results. We use CNNs for both descriptors,

which requires a large amount of dataset for training. Wu

et al. [17] and Carlucci et al. [3] showed that the synthetic

images generated by CAD models could train a CNN for

object classification. Thus, we use a CAD model to create

synthetic examples to overcome the small number of train-

ing examples.

3. Method

The overview of the proposed framework is shown in

Figure 2. The input to the framework is a segmented cluster

from the target scene in 2.5D point cloud format. The input

is fed into the local pipeline and the global pipeline sepa-

rately for matching local features and estimating the global

pose. The purpose of the proposed framework is to find the

best rigid transformation matrix Tbest ∈ R
4×4 that maps

points from the known model M to the segmented cluster

of the target scene S . Both the local and global pipelines

require CAD models to generate a template database of lo-

cal shapes and training examples of global shapes. CAD

models are also converted to the point cloud format.
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Figure 2. An overview of the Mutual Hypothesis Verification framework.

3.1. CNN based local descriptor

A CNN based local descriptor is trained by uniformly

sampling local patches of randomly piled objects in a box.

The local descriptor should be invariant to the background

of the target object to avoid extracting features from the

highly cluttered surrounding. We can ignore occluded ob-

jects behind the target objects in this scenario because they

are not reachable by the robot arm. Hence, we propose a

novel method to train a local descriptor that is robust to

various backgrounds using a Convolutional Auto-Encoder

framework (CAE). The CAE framework has been used for

semantic segmentation of 2D images [2] as well as dimen-

sionality reduction of RGB-D images [7]. Hence, we em-

ploy CAE to extract the feature vector of local shapes while

reducing the effect of backgrounds. The overview is shown

in Figure 3. The segmentation information of objects is

given when the data is collected as introduced in Section

4.1. To keep the 3D information of local patches as much

as possible, we use a 3D voxel grid as an input. Previous

studies showed that the 3D voxel grid filled with the Trun-

cated Signed Distance Function (TSDF) contains enough

information for a local descriptor [19, 13]. Thus, the in-

put of the encoder is a 3D voxel grid array of a local patch

with TSDF values. The output of the decoder is also the

3D voxel grid filled with TSDF values. When training the

network, we assign the input with the local patch extracted

from the real dataset without segmentation information and

the target output with only points included in the dominant

segment. Therefore, we guide the output of the encoder

to have closer values regardless of background. Euclidean

loss between the target output Vtgt and the computed output

from the network Vest is given by,

Llocal =
1

2N

N
∑

n=1

||Vtgt − Vest||
2

2. (1)

3.2. Generation of Local Templates and Matching

The primary purpose of the local descriptor is to find crit-

ical shapes of an object that can be defined by a user. The

important part of the target object differs among domains,

e.g., the detection of the stalk of an apple is essential if the

stalk should face upward. Hence, we use an annotation tool

to indicate the significant part of the target object manu-

ally using a CAD model of the target class. The annotated

parts are used to generate templates of local patches L. The

annotated CAD model is placed in the particular distance

from the virtual camera with uniformly sampled poses. Lo-

cal patches of the parts are saved in a database if the parts

are still visible after removing the self-occluded parts. Each

template Li stores the feature vector Li
f that is encoded by

the local descriptor, the part number Li
p, the rotation matrix

Li
r ∈ R

3×3 and the relative position of the object’s center

from the center of the local patch Li
t ∈ R

3×1. Even if the

user selects only one part as a critical shape, this set of tem-

plates enables a locally matched shape to define the pose of

an object without additional grouping of other local points.

In the test phase, key-points are uniformly sampled from

the input segment and encoded using the local CNN de-

scriptor. The Kd-tree is used to find ten nearest neighbor

templates from the database. To determine whether each

nearest template is similar or not, we train a small decision

network that performs better than simply using an l2 dis-

tance of local features [6]. A CAD model is used to train

the decision network. The positive pairs of similar local

shapes are generated from the center of the same point with

different random noise and random scaling of the object size

in the same pose. The negative samples are extracted ran-

domly from points that do not belong to the user defined

parts. The decision network has an input as a concatenated

feature vector of a template and a local patch. The input

is followed by two fully connected layers with 1024 out-
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Figure 3. The convolutional auto-encoder architecture of proposed local descriptor. The output of the fully connected layer in the middle,

which has 256 dimensions, is used as a feature vector to match with local templates.

puts and two outputs. The last two outputs are regarded as

a probability of similarity and dissimilarity of the pair. If

the local shape is turned out to be similar with the template

Li, the CAD model M is initially positioned using the ro-

tation Li
r and the relative position of the centroid Li

t. After

removing the self-occluded part from M, we calculate the

average distance of the closest points between the aligned

model and the target scene S . The new local hypothesis

Pnew = Li is stored in the local hypotheses pool P if the

mean distance is less than a threshold θl.

3.3. Pipeline using Global Shapes

The role of the global pipeline is to estimate the pose di-

rectly by analyzing the whole shape of the segmented clus-

ter. Park et al. [11] used 2D images in three channels by

mapping each component, x,y and z, of surface normals per

each pixel instead of using pure depth images in one chan-

nel. They used Alexnet with initial weights trained by the

Imagenet dataset and achieved acceptable recognition rate

with few bananas placed freely on a table. We simplify their

method and reduce the complexity of training by removing

pair-wise training and the dependency on depth intensity for

each pixel. The output of the CNN is a quaternion repre-

sentation of the rotation transformation that has four values,

and the loss function of the network is a simple Euclidean

loss between ground truth pose qgt and the estimated pose

qest as described by

Lglobal =
1

2N

N
∑

n=1

||qgt − qest||
2

2. (2)

We generate synthetic training images using the same

CAD model that is employed in the local pipeline. The

shape of the CAD model is morphed by randomly defined

scaling and shearing factors. The morphed model is placed

at a certain distance from the virtual camera in a pose de-

fined uniformly (e.g., every five degrees for each axis). Oc-

cluded parts are removed using z-buffering. Random noise

is applied to every training image to simulate sensor noise,

occlusion, and segmentation errors. A randomly placed

rectangle removes points inside it to simulate partial oc-

clusion and segmentation errors. In addition, we apply ad-

ditional noise on boundary regions by randomly removing

points or adding Gaussian noise on depth measurements. If

the shape of the target object is invariant to particular axis,

the axis is ignored while training the estimator.

In test time, a depth image is converted to a 2D image

in three channels using the values of surface normal, the

same way as in training. Then, the rotation of the object

is estimated directly. The CAD model is roughly placed

at the centroid of the segmented cluster and rotated to the

estimated pose, then self-occluded parts are removed. The

new centroid of the CAD model is obtained to match with

the centroid of the segmented cluster again. Finally, the

initial pose GT of the global hypothesis G is defined as

GT =

[

Gr 2C − Gc

O 1

]

, (3)

where Gr ∈ R
3×3 denotes the rotational matrix converted

from the quaternion pose output of the global estimator net-

work, C ∈ R
3×1 is the centroid of the segmented target

object, and Gc denotes the centroid of the CAD model after

removing the self-occlusion points. O ∈ R
1×3 is a matrix

which has zero for all entries.

3.4. Mutual Hypothesis Verification

The purpose of the MHV step is to verify the best result

given the set of hypotheses from the local pipeline P =
{P1, . . . ,Pi, . . . ,Pn} and the global pipeline G.
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Joining of similar local hypotheses is performed to re-

move redundant hypotheses generated from the same local

parts and to find correspondence points generated from dif-

ferent local parts to make local hypotheses stronger. In the

first iteration, local hypotheses that have the same part num-

ber are combined. Pi and Pj are combined if the distance

between centers of local patches is less than ρs and the pose

difference of local hypotheses is less than θs as described

by

||Pi
t − Pj

t ||2 < ρs ∧Dmax(P
i
r,P

j
r ) < θs,

where,Pi
p = Pj

p .
(4)

The function Dmax(A,B) obtains the maximum angular

difference between rotational matrix A and B ∈ R
3×3.

Combined hypotheses generate a new final hypothesis F
and more hypothesis are merged based on their average cen-

ter Ft and average rotational pose Fr. When the hypothesis

Pi does not find any similar hypotheses, a new final hy-

pothesis is created. Thus, all of the local hypotheses should

belong to at least one final hypothesis.

In the second iteration, every final hypothesis is com-

pared with others to create a new final hypothesis if part

numbers are not a subset of the other final hypothesis. In

this case, centers of local parts must have a sufficient dis-

tance to each other and have a small angular difference as

described by

||F i
t −F j

t ||2 > ρd ∧Dmax(F
i
r,F

j
r ) < θd,

where,F i
p /∈ Fj

p ∧ F j
p /∈ F i

p.
(5)

As a result, a new hypothesis Fnew based on multi-

ple parts is created with overall rotational pose Fnew
r

and a set of center points for each part Fnew
t =

{Fnew
t,1 , · · · ,Fnew

t,p , · · · ,Fnew
t,n }, where Fnew

t,p denotes the

center point of the part number p in the new hypothesis. In

addition, Fnew
p is a set of local part numbers that were in-

cluded in the hypothesis.

Joining of the global hypothesis is performed after gen-

erating a set of final hypotheses from local hypotheses. Ev-

ery final hypothesis F i from the local hypotheses generates

a new hypothesis Fnew with the global estimation G. The

new hypotheses have the same initial rotational pose and

translation of G while storing a set of centroids of each part

F i
t in the hypotheses F i. Each centroid of local parts in

F i
t is used to guide the ICP step to locate the corresponding

part of the CAD model to the scene. As a result of this step,

the number of final hypotheses is doubled. Finally, the pure

global hypothesis G is also added to the final set of hypothe-

ses F without any correspondence from local hypotheses.

Refining pose and calculating cost is performed with

the set of final hypotheses F = {F1, · · · ,Fn}. Each final

hypothesis is refined by the ICP algorithm. If the final hy-

pothesis includes local correspondences of local parts, cor-

respondences are weighted by a factor of α. This means

distance errors between these correspondences are stronger

by the factor of α than errors between general closest points

when the ICP tries to minimize the average distance error.

The transformation matrix T resulting from the ICP step is

updated to the final hypothesis F i
T = T . Then, the cost

value is computed as follows,

Ci = weE
i + wgD(Gr,F

i
T ) + wlD(F i

r,F
i
T ) +

wm

F i
N + 1

.

(6)

Ei is the scene fitness value calculated by computing the

average distance of closest points from the transformed

model to the target scene. The function D(A,B) calculates

average rotational difference between the rotation matrix

A ∈ R
3×3 and transformation matrix B ∈ R

4×4. The max-

imum value of the function D is bounded by 15◦. There-

fore, the second term applies a penalty if the final pose dif-

fers from the globally estimated pose while the third term

applies a penalty if the final pose differs from the locally

estimated pose. F i
N denotes the number of local hypothe-

ses that is included in the hypothesis. Thus, the last term

counts how many local correspondences are supporting the

hypothesis F i. we, wg, wl and wm weight each term. The

weights are set to balance how much the pose depends on

the global or local shapes. Hence, the best result is obtained

easily by finding the hypothesis that has the minimum cost

value.

4. Evaluation

The evaluation is performed with real bananas and ap-

ples. Test images are captured with an Ensenso N35, an in-

dustrial stereo sensor that provides only depth information

with a resolution of 640 × 512 pixels. The sensor is fixed

at 0.9m above the ground plane of the target box to mea-

sure all objects in the box. The framework is implemented

on a computer that has an Intel i7-6700K and a NVIDIA

GTX1080, which is used for training both the local and the

global CNN descriptors. The local descriptor is trained us-

ing all samples from both bananas and apples. Thus, the

same local descriptor is used regardless of the target ob-

ject class. A CAD model is employed for each experiment.

CAD models are taken from a public CAD database and

scaled to the real size of the object. The CAD model is used

to generate the template database of the local pipeline and

training images for the global pipeline. The size of input

images for the global pose estimator is set to 64 × 64 pix-

els. The size of a cube for the local shape patch is fixed

as 4cm3. For all experiments, parameters are set as θl =
0.005m, ρs = 0.025m, θs = 15◦, ρd = 0.03m, θd = 30◦

and α = 10.

4.1. Collection of Real Dataset

The ground truth segmentation of our box dataset is an-

notated automatically. We put all object in a box at the be-
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Figure 4. Examples of accurate and false estimation. First column:

the reference image. Second column: accurate estimation. Third

column: false estimation.

ginning, and we pick an object from the box carefully to

avoid moving other objects for every step until picking all

objects. We compute the difference between every consec-

utive scene in reverse order of the recording sequence to

identify newly added cluster for every sequence and anno-

tate the segment as a single object. It is clear that the posi-

tion of the object is the same for further sequences. Hence,

the segment of the object is automatically annotated in fur-

ther scenes unless the object is invisible. Poses of objects

are manually annotated by hand. As we mentioned before,

poses of natural objects are difficult to annotate clearly be-

cause of their different shapes. Instead of defining a trans-

formation matrix of each object, we annotate areas of local

shapes of objects that are important to evaluate the estima-

tion result.

4.2. Experiment with Bananas

We define the stalk and the opposite edge of the banana

as critical parts. We collect five sets of sequences with 30

bananas in the box for each. Hence, approximately 150 test

images are used for evaluation, and 2300+ objects are con-

tained in the dataset regardless of their visibility. The seg-

mentation is not the scope of this paper. Therefore, we use

ground truth segmentation as an input of our framework.

The target segments are selected if more than 95% points

of the object are visible in the current scene. The centroids

of the two critical parts define a 3D vector which represents

the pose of a banana. The angular difference of vectors that

are defined by the estimated pose and the ground pose is re-

garded as a rotational error. The average distance of closest

points between the estimation and the segmented scene is

used to check the translational error and additional pose dif-

ference. In this experiment, we define that the estimation is

accurate if the rotational error is less than 15◦, distances be-

Method S1 S2 S3 S4 S5 AVG

VFH [12] 0.33 0.29 0.24 0.29 0.20 0.26

ESF [16] 0.16 0.13 0.15 0.22 0.17 0.17

Ours Global 0.63 0.71 0.47 0.72 0.74 0.66

VFH+Local 0.68 0.71 0.53 0.60 0.68 0.61

Ours Local 0.66 0.81 0.60 0.63 0.66 0.67

Ours 0.81 0.94 0.63 0.79 0.79 0.79

Table 1. Estimation accuracy of the banana dataset.

Method S1 S2 S3 S4 S5 AVG

VFH [12] 0.43 0.60 0.44 0.38 0.30 0.43

ESF [16] 0.46 0.65 0.60 0.52 0.25 0.50

Ours Global 0.40 0.53 0.50 0.57 0.28 0.45

VFH+Local 0.52 0.81 0.77 0.78 0.49 0.67

Ours Local 0.51 0.82 0.77 0.80 0.49 0.67

Ours 0.52 0.81 0.77 0.80 0.49 0.68

Table 2. Estimation accuracy of the apple dataset.

tween corresponding critical parts are less than 0.03m and

the average distance error is less than 0.005m. We com-

pare our proposed method with global features ESF [16]

and VFH [12]. Pose templates for global feature matching

are generated by the same method when we generate the lo-

cal patch templates in Section 3.2. The global estimation

is stronger for bananas because of the variability of shapes

from different view points. Hence, the weights of the cost

functions are we = 1.0, wg = 0.5, wl = 0.1 and wm = 0.1,

which weight more on the global estimation and the scene

fitness.

The experiment results are summarized in Table 1, total

708 bananas are visible and used for the evaluation. The

result shows our proposed framework outperforms other

global feature based methods. MHV shows that combin-

ing the global and local pipelines improves accuracy beyond

their individual performances. Interestingly, the combina-

tion of VFH features with our proposed local pipeline is

definitely better than using VFH only. This proves that the

local pipeline guides local estimations properly as expected.

4.3. Experiment with Apples

We collect five sets of sequences with 25 apples in a box

for each. Hence 125 test images and 1600+ objects are con-

tained. Like bananas, the stalk and the opposite concave

part of the apple are defined as critical parts. A thin stem at

the stalk of the apple is barely captured by the sensor while

the surrounding concave shape is well observed. In addi-

tion, in contrast to the banana, the stalk concave and the op-

posite concave cannot be seen at the same time. Also they

cannot be easily distinguishable by only using depth infor-

mation. Hence, we regard those concave shapes as iden-
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tical parts when we evaluate estimated poses. Therefore,

we define that the estimation is accurate if the distances

between the closest concave part of the estimated model

and the ground truth are less than 0.03m and the scene fit-

ness error is less than 0.005m. Apples have similar global

shapes regardless of its pose. Thus, the estimation from the

global pipeline is not reliable, as well as the scene fitness

is also similar even when the estimation is wrong. Hence,

the weights for scene fitness we and global poses wg are set

close to zero while setting a higher weight for the number

of local matches wm. Thus, the weights of the cost function

are set to we = 0.1, wg = 0.01, wl = 0.01 and wm = 2.0.

Table 2 shows the result of the experiment. Total 1057

apples visible more than 95% are estimated. The result

shows that the methods using proposed local descriptor and

verification step outperform the other methods regardless

of the type of the global estimator. The accuracy is higher

than 0.75 for test set 2,3 and 4. However, the test set 1 and

5 show lower accuracy. This is because they contain many

apples that do not have any observed concave part. Hence,

the local descriptor tries to find the closest concave shape

without actually observed points, which causes false esti-

mations. We expect that these false estimations should be

removed by detecting convex shapes, which are not defined

as a critical part in this experiment.

5. Conclusion

We introduced the concept of estimating poses of natural

objects using local and global shapes together. The experi-

mental results show that our proposed framework estimates

poses of natural objects robustly regardless of high shape

variations. The newly designed local descriptor showed par-

ticular superior results for estimating the pose of apples.

The local descriptor helps to decide the pose of an object

even when their global shapes are similar in different poses.

Hence, the framework can be applied to any other vegetable

and fruit by setting appropriate weights for the cost func-

tion. For further work, we will investigate segmentation

methods to extract clusters from the real environment with-

out any prior knowledge. Finally, the output of the frame-

work can be used as an initial pose of a non-rigid regis-

tration step [10] to identify which points belong to critical

parts or proper regions for grasping.
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