

Abstract

We present a novel method for recovering 6D object

pose in RGB-D images. By contrast with recent holistic or

local patch-based method, we combine holistic patches and

local patches together to fulfil this task. Our method has

three stages, including holistic patch classification, local

patch regression and fine 6D pose estimation. In the first

stage, we apply a simple Convolutional Neural Network

(CNN) to classify all the sampled holistic patches from the

scene image. After that, the candidate region of target

object can be segmented. In the second stage, as proposed

in Doumanoglou et al. [16] and Kehl et al. [17], a

Convolutional Autoencoder (CAE) is employed to extract

condensed local patch feature, and coarse 6D object pose

can be estimated by the regression of feature voting.

Finally, we apply Particle Swarm Optimization (PSO) to

refine 6D object pose. Our method is evaluated on the

LINEMOD dataset [5] and the Occlusion dataset [10, 5],

and compared with the state-of-the-art on the same

sequences. Experimental results show that our method has

high precision and good performance under foreground

occlusion and background clutter conditions.

1. Introduction

The task of recovering 6D object pose has gained much
more focus, because of its application in augmented reality
and robotic intelligent manipulation to name but a few.
Although it is a well-studied problem in computer vision,
there are still remain many challenges such as foreground
occlusions, background clutter, multi-instance objects and
large scale and pose changes. As for sufficiently textured
object, several methods based on sparse feature key-point
matching [1, 2, 3, 4] demonstrate good results. Otherwise,
objects have little texture and common local appearance
descriptors are not discriminative enough to provide
reliable correspondences for key-point matching. Recently,
Hinterstoisser et al. [5, 6, 7] and related [8, 9] presented
holistic template-based methods which can deal with 6D

Figure 1. Some results (zoomed view) of recovering 6D object
pose on (a) the LINEMOD dataset [5], (b) the Occlusion dataset.
Each detected object is augmented with its 3D model and its
coordinate system. The background is kept in gray for better
visibility.

pose estimation of texture-less objects in a heavily cluttered
scene. But, these methods suffer in the condition of
foreground occlusions. In order to deal with above issues,
several dense local feature-based methods like Brachmann
et al. [10, 11] and Tejani et al. [12] employed a generalized
Random Forest classifier and some simple pixel-based
features. Although these methods has been proven to robust
towards foreground occlusion, manually designed features
are difficult to make discriminative for various objects. In
recent years, much impressive performance boost in
computer vision has been brought by convolutional neural
networks (CNNs), which can automatically learn
discriminating features from raw image. For instance, [13,
14, 15] mainly utilized CNNs to extract features and [15]
trained CNNs to directly regress 6D object pose. These
methods have moderate accuracy and cannot be directly

Combined Holistic and Local Patches for Recovering 6D Object Pose

Haoruo Zhang

Shanghai Jiao Tong University
Shanghai, P.R.China
zhr@sjtu.edu.cn

Qixin Cao
Shanghai Jiao Tong University

Shanghai, P.R.China
qxcao@sjtu.edu.cn

2219

applied to recovering 6D object pose without fine 6D pose
estimation. Meanwhile, these holistic methods don’t have
enough robustness for occlusions. Next, Doumanoglou et
al. [16] and Kehl et al. [17] presented local patches-based
methods which trained autoencoder (AE) or convolutional
autoencoder (CAE) to extract discriminating features from
local patches and used these features to create 6D pose
hypotheses. Although features of local patches can perform
reliable 6D object detection and pose estimation under
foreground occlusions, 2D-3D correspondences from local
patches would still have much more noise.

In this paper, we propose a novel method which
combines holistic patches classification, local patches
regression framework and fine 6D pose estimation. As
shown in Figure 1, the proposed method performs well on
the public dataset. The input of proposed method is RGB-D
image provided by a consumer-level RGB-D sensor. The
main contribution of our work consists of three parts:
Firstly, we generate normalized holistic RGB patches,
apply a CNN to classify these patches and roughly locate
object in 2D image. In this way, candidate region can be
segmented from the scene image. Secondly, we apply local
RGB-D patches regression framework to recover 6D object
pose roughly after candidate region segmentation. Features
of local patches are extracted by CAE. Thirdly, we employ
iterative optimization algorithm for fine 6D pose estimation
after roughly 6D object pose regression. Experiments show
that the proposed method has good performance for objects
in some public datasets.

The paper is organized as follows. Section 2 provides an
overview of related work, and the proposed method is
described in section 3. In section 4, we present evaluation
of our method compared to the state-of-the-art on three
public datasets. Finally, we conclude the paper in section 5.

2. Related Work

Recovering 6D object pose has been a long-standing and
intensely researched activity in the field of computer vision
and intelligent robotic application. Sparse feature key-point
matching methods [1, 2, 3, 4] perform well on very textured
objects. However, when applied to texture-less objects,
common local feature descriptors are no longer
discriminative enough to provide reliable correspondences.
Therefore, many recent methods are presented, which don’t
employ any sparse feature key-points, including
template-based methods [6, 8, 19, 20, 21], shape-based
methods [22, 23, 24, 25, 26], dense feature-based methods
[27, 28, 10, 11, 12, 13, 29], sparse feature-based methods
[30, 16, 17] and direct regression methods [14, 15]. In
consideration of the type of feature, these methods can also
be divided into two main categories which are holistic
methods and local methods.

Figure 2. The brief pipeline of holistic patch classification.

As for holistic methods, 6D pose of the target object is
predicted from its holistic appearance. Template-based
methods mainly detect objects in the scene by employing
holistic templates extracted from rendered views of 3D
models. In Hinterstoisser et al. [5, 6, 7], each template is
presented as one 6D pose of object and it consists of several
quantized color gradient and surface normal. This method
performed robust object detection in the clutter background.
Recently, Cai et al. [19], Hodaň et al. [20], Zhang and Cao
[21] employed cascade-type and hash-coded voting
framework to optimize template matching and improved
the accuracy of 6D pose estimation. In addition, Rusu et al.
[23, 24] presented FPFH and VFH descriptors which are
extracted from holistic point cloud model of the target
object. Wohlhart et al. [15] applied deep network to
directly regress 6D object pose from holistic patches, and it
does hint towards replacing hand-crafted features with
auto-learned ones for this task. Although these methods
have high recognition rate in the clutter background, their
recall drops quickly with partial foreground occlusions.

On the other hand, local methods mainly employ various
discriminating local feature to regress 6D object pose.
Brachmann et al. [10, 11] use a random forest to obtain
pixelwise dense predictions. The split function in random
forest is based on some simple pixel comparisons. Each
decision tree in forest is trained to jointly predict where it is
located in object coordinate system, which object the pixel
belongs to. Each pixel in the scene can make a 3D
continuous prediction about only its local correspondence
to a 3D model. Then, the 6D object pose can be estimated
using a PnP algorithm from these 2D-3D correspondences.
Drost et al. [25] and Choi et al. [26] proposed oriented point
pair feature which is also a kind of local feature. In these
methods, several pairs of points is sampled from the scene
and they are used to vote for 6D pose hypotheses of
corresponding object. Doumanoglou et al. [16] and Kehl et
al. [17] used local patch feature which can be extracted by

2220

AE or CAE. After feature generation, Doumanoglou et al.
[16] trained a Hough Forest by utilizing learnt features, and
determined object classes and poses by utilizing 6D Hough
voting. In Kehl et al. [17], local patch features of scene
were matched against a codebook of synthetic model view
patches and cast 6D object votes. Although these local
patch-based methods are robust to occlusions, clutter
background will lead to much noise for 6D object voting.

In summary, to the best of our knowledge, we are among
the first to focus on the approach of combining holistic
patch classification with local patch regression. The
accuracy of the proposed method will be compared with the
state-of-the-art, as shown in experiments.

3. Proposed Method

In this section, we will give a detailed description of the
proposed method. Firstly, we will describe how to generate
normalized holistic RGB patches. The model of holistic
patches classifier is a CNN, which will be discussed
subsequently. After that, candidate region segmentation
will be described. Secondly, we will give a description of
local patch feature regression in the segmentation image.
Finally, we will describe how to recovering optimal 6D
object pose and present our iterative optimization algorithm
for fine 6D pose estimation.

3.1. Holistic Patch Classification

In our method, the aim of holistic patch classification is
to roughly localize the target object in 2D image. It has
three parts, including normalized holistic RGB patch
generation, patch classification and candidate region
segmentation. The brief pipeline is shown in Figure 2.

Recently, Zhang and Cao [21] generated normalized
RGB-D patch, in order to reduce the number of template. In
this method, these patches are all scale-independent and
normalized by depth value check. Due to the input shape of
classification network is fixed, the proposed method also
employed scale-independent patches. As shown in Fig. 2, a
list of candidate windows is extracted from a RGB-D scene
image by using sliding window. In the proposed method,
the holistic patch consists of three color channels. The
number of windows is related by step size (e.g. 8 pixels). In
order to ensure that candidate windows have the same scale,
we take depth value at the window’s center point and the
patch pixel size is computed by the relation as follows:

 (/) ,wL f s z  (1)

where Lw is the pixel size of candidate window. All holistic
patches have the same metric size s, which is related with
the bounding box size of target object. Therefore, different
object has different metric size, some details about it will be

Figure 3. The architecture of holistic patch classification network.

Figure 4. The training set generation for the classification task.

discussed in the section 4. In addition, f denotes the focal
length of the camera, and z is the depth value at the
window’s center point. In this way, each holistic patch has
the same scale but different pixel size. We normalize these
patches with the same resolution ratio (e.g. 64×64), which
is related to the input shape of classification network.

Instead of utilizing complex classification network like
VGG [31] and GoogLeNet [32], we employ a much simpler
architecture to classify holistic patches since these patches
has low resolution. Beyond that, simple architecture has
low computational cost and memory footprint. The
architecture of classification network is shown in Figure 3.
Because the number of target objects in some public
datasets is about 10 (e.g. the LINEMOD dataset [5] is 15,
the Occlusion dataset [10, 5] is 8), this kind of simple
network can also work for classification.
 As for network training, we need to generate several
rendered images with different orientation poses to build
training set at first, which is the same with Zhang and Cao
[21]. In this section, we will describe the process of
building training set for objects in the dataset of
Hinterstoisser et al. [5]. Due to this dataset has 15 objects,
the node number of softmax layer in the network is set as 16
(15 objects + 1 background). In order to improve the
generalization of classification network, we need to
augment the training set by using general background, as
shown in Figure 4. As for background images, we
randomly sample 64×64 patch from images in PASCAL
VOC dataset [33]. Meanwhile, we combine random
background patch with normalized rendered object image

2221

to generate final training image. This effort can make the
result of classification not be influenced by the scene. As
shown in Figure 4, the foreground of final training image is
the appearance of object, and the background is random
patch in PASCAL VOC dataset.
 In the testing phase, all the normalized holistic RGB
patches will be fed into the classification network. The
softmax layer of classification network can give us the
probability distribution of categories. In this way, each
patch can obtain the category label which has the maximum
of probability. In this paper, we mainly focus on recovering
6D pose of a single object in the scene. Therefore, we will
segment the candidate region of one target object from the
scene image next. As shown in Figure 2, candidate region
consists of holistic patches associated with target label, and
we will use the segmentation image to regress the 6D pose
of target object as described below.

3.2. Local Patch Regression

Recently, there are some methods which can directly
predict 6D object pose in the scene, such as [14, 15].
However, these methods all have a moderate accuracy and
low robustness to occlusions. Besides, local methods can
keep the high robustness to foreground occlusions
inherently. As inspired by [30, 16, 17], we apply local patch
regression framework to recover the 6D pose of target
object in the segmentation image. In the proposed method,
local patch regression can be divided into three parts,
including local patch feature representation, feature voting,
and 6D pose regression. Figure 5 shows the overview of
this framework.
 Above all, we need to train the network to produce
discriminative local patch features. The aim of our network
is to learn a mapping from high-dimensional local patch
space to a much lower feature space, and we employ a
convolutional autoencoder (CAE) to extract local patch
features. The cost function of this network is a
reconstruction error between the input local patch p and
output po while the inner-most layer condenses the data into
f(p) values. The network architecture is shown in Figure 6.
In order to keep excellent abilities of learning and
generalization, we teach the network regression on a great
number of input local patches by randomly sampling in the
dataset of Doumanoglou at el. [16] instead of Hinterstoisser
et al. [5] (Our method is evaluated in the LINEMOD
dataset [5] and the Occlusion dataset [10, 5]). As shown in
Figure 6, each sampling local patch is normalized by depth
value check which is the same with the part of holistic patch
classification. As for local patch normalization, we
de-mean the depth value and clamp them to a fixed metric
size (e.g. 0.05 m) along x, y, and z axis. Then, we normalize
color and depth value to [-1, 1] and resize local patched to
32×32×4. After network training, we need to build the

Figure 5. The general framework of local patch regression.

Figure 6. The architecture of convolutional autoencoder in our
method. We use sampled RGB-D patches from the dataset of
Doumanoglou at el. [16] to train this network and minimize a
reconstruction error between input and output patches.

codebook of target object. As shown in Figure 5, we sample
normalized local RGB-D patches from each synthetic view
of target object and feed them into the network. Each patch
p will be associated with a condensed feature vector f(p).
Meanwhile, each patch p has its label vector l(p) which
consists of patch category c, the rotational transformation
(rx, ry, rz) from camera coordinate frame to object
coordinate frame, and the patch 3D center point offset to
the object centroid (x, y, z) under object coordinate frame.
The codebook is made up of these feature vectors and
associated label vectors.
 As for feature voting, each sampled scene local patch p is
associated with scene patch vector ls(p) = (xs, ys, zs). These
scene local patches will be fed into the network and
condensed features f(p) will be computed. Then, we can get
k nearest neighbors (e.g. k = 3) from the codebook by

2222

comparing scene patch features with original patch features,
and Euclidean Distance is employed as feature distance.
Each neighbor casts a global vote with the voting label
vector lv(p) = ls(p) – l(p), where l(p) is one of k nearest
neighbors and the rotational transformation is invariant. In
our method, we firstly train features in the codebook and
employ kd-tree structure to rebuild the codebook. In this
way, nearest neighbor search can be very fast. Additionally,
we define a threshold Th on the nearest neighbor distance,
so that k nearest neighbors will only cast vote if they have
an enough confidence. It can decrease a great number of
incorrect vote and reduce the noise sensitivity.
 After feature voting, 6D pose regression need to be used
and it will lead to a coarse 6D pose estimation of target
object. In this stage, a series of crowded votes lv(p) = (xv, yv,

zv, rx, ry, rz) will be divided into two parts. One part
represents translational transformation (xv, yv, zv) and the
other one represents rotational transformation (rx, ry, rz). In
our method, we employ mean shift algorithm with a flat
kernel to regress centers of translation and rotation
respectively. In practical, the kernel size for translation
regression is set as 1 cm and the other one is set as 5 degree.
Additionally, rotational transformation need to be
converted into quaternion space because of its
differentiability. Mean shift algorithm can generate one
center point for each cluster. In our method, we will remain
the center point which has the most votes. Then,
translational regression center and rotational regression
center can make up for the coarse 6D pose estimation.
Because there still remain some noise in feature voting, the
6D pose regression is not precise enough. Therefore, a
stage of fine 6D pose estimation is needed.

3.3. Fine 6D Pose Estimation

In the proposed method, our final goal is to recover
accuracy 6D pose of target object in the scene. In this stage,
the input is a coarse 6D pose estimation, a point cloud
model of the target object. As inspired by [20, 21, 34], we
formulate the fine 6D pose estimation as an optimization
problem. During the process of optimization, many
candidate poses will be produced and each pose can
generate a synthesized rendered depth image. Then, a cost
function is needed to express the error of 6D pose
estimation, and we define the cost by comparing
synthesized rendered depth image with the observed depth
image. In our method, Particle Swarm Optimization (PSO)
is employed to refine 6D object pose, which is proven to be
an efficient approach to optimize the cost function and find
the pose whose rendered depth image is the most similar to
the observed one.

The cost function is made up of two components,
including depth value cost and depth edgelet cost, which
can be formulated as follows:

 (,) (,) (,) ,d d e eC cost S O C S O C S O    (2)

where S represents synthesized rendered depth image and
O represents observed depth image, and the component
Cd(S, O) will punish deviations of depth value between the
synthesized rendered depth image and the observed depth
image. The component Ce(S, O) punishes deviations of
depth edgelet. εd and εe are coefficients about the reliability
of different components. In practical, depth value is more
significant than the others. εd is set as 0.8 and εd is set as 0.2.
The depth value component is directly compared between S
and O at each pair of pixels and the depth edgelet
component is based on distance between the depth edgelet
in S and the closest depth edgelet in O. The definitions of
these components are the same with [21]. Then, in order to
find the optimal solution for this optimization problem,
several candidate poses {Rc, tc} will be generated for each
iteration, which are parameterized relative to the initial
pose {R0, t0} by using a series of relative rotations Rr and
translations tr. As shown in formula (3), the relative
rotation Rr is made up of primitive rotations about X, Y, and
Z axis. α, ȕ, and Ȗ are rotation angles around X, Y, Z axis
respectively.

 0 0

0 0 0 0

() () ()
,

(, ,)
c r x y z

T

c r

R R R R R R R

t R t t R x y z t

       
      

 (3)

 Compared to gradient-based optimization, PSO does not
require the derivatives of the cost function and has a wider
basin of convergence, exhibiting better robustness to local
minima [34]. As for fine 6D pose estimation problem, each
candidate poses can be seen as candidate particles, and the
search space is constrained in a 6D neighborhood of the
initial 6D object pose. The state of each particle (candidate
pose) will be updated after the completion of each iteration
until there is no particle with less score of cost function. In
the final stage, if one of particles (candidate poses) can get
minimum score of cost function than all other particles
(including updated particles and original particles) at
certain iteration, particles won’t be updated and the
optimization process will stop.

4. Experiments and Discussion

In this section, we evaluate our method to other
state-of-the-art methods for public datasets, including the
LINEMOD dataset [5] and the Occlusion dataset [10, 5].
Additionally, we will discuss about the influence of several
parameters in our methods. Owing to combine holistic and
local patches, the proposed method could be called as HLP.
The implementation of deep networks in HLP method is
based on Caffe [18].

2223

Figure 7. Some results of our method for the dataset of LINEMOD [5]. Each detection process has four parts in this image. From left to
right, the first part is candidate region segmentation by using holistic patches. The second part shows sampled scene points for local patch
regression, where threshold check for k-nearest neighbor search is adopted. The sampling step is fixed as 8 pixels in experiments. The third
part shows results of feature regression. For better visibility, we subdivide the image plane into several 2D grid (cell size is 8×8 pixels) and
cast each feature vote into cells. Each cell is colored according to the number of projected votes. The last part shows the results of
recovering 6D object pose, where the background is also kept in gray for better visibility.

4.1. LINEMOD Dataset

This dataset provides colored 3D mesh models of 15
texture-less objects. In our experiments, we employ
electrostatic-based rendered image creation method to
generate a series of rendered object RGB-D images, and the
detail can be found in [21]. In practical, each target object
has 3600 rendered RGB-D images which can cover much
more 6D poses.

As for the first stage of HLP, we need to build training
set for holistic patch classification. The training set has 16
categories (15 objects + 1 background) and consists of
numerous holistic RGB patches. As described in section
3.1, different object has different metric size of holistic
patch metric size, such as 8cm for “Ape”, 20cm for

“Driller”, and 18cm for “Bowl” and so on. In the stage of
local patch regression, we also employ different metric size
of patch for different object instead of the fixed one in [17].
It is suitable that small object has small metric size of local
patch and vice versa, such as 3cm for “Ape”, 8cm for
“Driller”, and 4cm for “Cam” and so on. In addition, the
dimension of local patch feature is fixed as 200. According
to several experiments, it has been proven that these
parameters are the optimum value for local patch regression.
After local patch feature extraction, features in the
codebook need to be trained and the codebook will be
converted into kd-tree structure. The number of trees is set
as 4 in our method. In the third stage, there are much more
parameters, including number of candidate poses N, the
range of rotation angle θ and displacement τ. Some details
will be described in section 4.3. In practical, the number of

2224

Seq.
Method

[5] [17] [20] [21] HLP
Ape 0.958 0.969 0.939 0.963 0.970

B. Vise 0.987 0.941 0.998 0.904 0.951
Bowl 0.999 0.999 0.988 - 0.999
Cam 0.975 0.977 0.955 0.913 0.953
Can 0.954 0.952 0.959 0.982 0.969
Cat 0.993 0.974 0.982 0.964 0.979
Cup 0.971 0.996 0.995 - 0.995

Driller 0.936 0.962 0.941 0.952 0.960
Duck 0.959 0.973 0.943 0.918 0.977

Egg B. 0.998 0.999 1.000 0.989 0.999
Glue 0.918 0.786 0.980 0.946 0.830

Hole P. 0.959 0.968 0.880 0.978 0.972
Iron 0.975 0.987 0.970 0.988 0.989

Lamp 0.977 0.962 0.888 0.914 0.949
Phone 0.933 0.928 0.894 - 0.903
Mean 0.966 0.958 0.954 0.951 0.960
std. 0.023 0.050 0.039 0.105 0.042

Table 1. Recognition rate of each target object (sequence) by
using our method and the other state-of-the-art methods.

candidate poses N is set as 25, and θ, τ are set as 5° and 5
mm respectively. Finally, in order to compare our method
with the state-of-the-art, we need to employ consistent
evaluation metric. Up to now, there are three basic types of
evaluation metric for recovering 6D object pose, including
average distance of model points, translational and
rotational error, and complement over union. These
evaluation metrics have different application scenarios,
such as robotic manipulation and augmented reality. In our
experiments, we take average distance of model points as
standard 6D pose evaluation metric, which is the same with
[5, 17, 20, 21]. The recognition rates for different methods
are shown in Table 1. Figure 7 shows results of our method
for the dataset of LINEMOD [5].

4.2. Occlusion Dataset

The dataset was created by Brachmann et al. [10], which
is also standard public dataset in ICCV2015 Occluded
Object Challenge. Target objects in this dataset are the
same with LINEMOD dataset [5], and testing images are
also selected from LINEMOD dataset [5]. The partial
occlusions in these testing images make it significantly
more difficult to recover 6D object pose.

We still use pre-trained network to accomplish holistic
patch classification and local patch regression, because of
the same target objects. In this dataset, there are eight target

Figure 8. Some results of our method for the Occlusion dataset.

Method AD 5cm, 5deg IOU
[10] 56.6% 22.7% 62.0%
[5] 54.4% - -

[29] 70.3% - -
[36] 76.2% - -
[37] 76.7% - -
HLP 63.2% 36.2% 79.9%

Table 2. Overall recognition rate comparison.

objects, including “Ape”, “Can”, “Cat”, “Driller”, “Duck”,
“Eggbox”, “Glue”, and “Holepuncher”. Brachmann et al.
[10] employed three different evaluation metrics to test
their method and provided related recognition rate. These
evaluation metrics are “AD”, “5cm, 5deg”, and “IOU”.
“AD” is the average distance between all vertices in the 3D
model of the part in the estimated pose and the ground truth
pose. An estimated pose is considered correct, when the
average distance is below 10% of the object diameter. “5cm,
5deg” is presented by Shotton et al. [35]. It denotes that an
estimated pose is considered correct when the translational
error is below 5cm and the rotational error is below 5deg.
“IOU” is to calculate the intersection over union of the
bounding boxes between estimated pose and ground truth.
An estimated pose is considered correct when the IOU
value is above a threshold of 0.5. Recently, there is also
some amazing work about recovering 6D object pose for
the Occlusion Dataset, such as [36] and [37]. Table 2 shows
recognition rate comparison among these methods and our
method (HLP). Some qualitative results of HLP method in
this dataset are also shown in Figure 8.

2225

(a) (b) (c)
Figure 9. Evaluation of parameter influence on the LINEMOD dataset. (a) The dimension of local patch feature, (b) number of candidate
poses N in PSO, and (c) configure group {θ, τ} in PSO.

4.3. Discussion

There are several parameters in our method. As for local
patch regression, the dimension of local patch feature is
very important. Different feature dimensions will lead to
different performance. In experiments, we varied the
dimension of local patch feature to be 100, 200, 400, and
600. The change in average recognition rate of LINEMOD
dataset [5] and running time is shown in Figure 9. It is
found that larger dimension of feature has higher average
recognition rate, but the overall running time increases
drastically. In practical, we use the CAE with 200 feature
vectors. It has enough recognition rate with acceptable
running time.
 In addition, the impact of PSO parameters needs to be
considered, including the number of candidate poses, the
range of rotation angle θ and the range of displacement τ.
As shown in Figure 9, a set of decreasing number of
candidate poses is used to examine the performance of our
method. It is found that the number of candidate poses
represents a tradeoff between accuracy and running time. A
small number will lead to rapid convergence and low
accuracy in fine 6D pose estimation, while a large one will
prolong running time without any not noticeable
improvements in accuracy. In practical, the number of
candidate poses is fixed as 25 in our method. Given a fixed
N, the range of rotation angle and displacement for each
iteration in PSO are also need to be taken into account. In
experiments, we set up some different configuration groups
as shown in Figure 9. A large range will lead to less running
time but low accuracy, while too small range won’t have
any improvement on the accuracy. From those figures, the
number of candidate poses 25 and configure group {5°, 5
mm} undoubtedly constitute a good tradeoff between
average recognition rate and running time of our method.
And the average running time is around 800 ms per frame.
The implementation of our method is based on a modern

laptop PC with Inter Core i7 CPU, 8 GB memory and
NVIDIA GTX 970m graphics card.
 Moreover, we don’t employ ICP algorithm to the stage
of fine 6D pose estimation. It is well-known that ICP is
sensitive to initialization, converging correctly only when
sufficient overlap exists between two point sets and no
gross outliers are present. In practical, the scene point cloud
is always incomplete, and model point cloud is complete. If
we employ ICP to refine 6D pose, we need segment scene
point cloud based on rough 6D pose at first, and we need
match incomplete scene point cloud with complete model
point cloud. ICP often gets stuck in local minima,
especially the target object has lower geometry complexity
or scene point cloud has less points. In practical,
incomplete scene point cloud will lead to much more error
point correspondences. We found that Zabulis et al. [34]
compared the performance of ICP with PSO, and it showed
that PSO could get smaller 6D pose error than ICP.
Because the cost function of PSO is only related with depth
image and rendered depth image, the result won’t be
effected by incomplete scene point cloud.

5. Conclusion

Our method combines holistic patches and local patches
together to fulfil the task of recovering 6D object pose. And
it also achieves high precision and good performance under
various conditions including foreground occlusion and
background clutter, even on the challenging Occlusion
dataset.

Acknowledgment

 This work was funded by National Natural Science
Foundation of China (Grant No. 61673261) and
YASKAWA Electric Corporation.

2226

References

[1] D. Lowe. Distinctive Image Features from Scale-Invariant
Keypoints. IJCV, 20(2), 2004.

[2] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and D.
Schmalstieg. Pose Tracking from Natural Features on
Mobile Phones. In ISMAR, 2008.

[3] M. Martinez Torres, A. Collet Romea, and S. Srinivasa.
Moped: A scalable and low latency object recognition and
pose estimation system. In ICRA, 2010.

[4] J. Tang, S. Miller, A. Singh, and P. Abbeel. A textured object
recognition pipeline for color and depth image data. In ICRA,
2012.

[5] S. Hinterstoisser, S. Holzer, C. Cagniart, S. Ilic, K. Konolige,
N. Navab, and V. Lepetit. Multimodal templates for
real-time detection of texture-less objects in heavily
cluttered scenes. In ICCV, 2011.

[6] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K.
Konolige, and N. Navab. Model Based Training, Detection
and Pose Estimation of Texture-Less 3D Objects in Heavily
Cluttered Scenes. In ACCV, 2012.

[7] S. Hinterstoisser, C. Cagniart, S. Ilic, P. Sturm, N. Navab, P.
Fua, and V. Lepetit. Gradient Response Maps for Real-Time
Detection of Textureless Objects. PAMI, 2012.

[8] R. Rios-Cabrera and T. Tuytelaars, Discriminatively trained
templates for 3d object detection: A real time scalable
approach. In ICCV, 2013.

[9] W. Kehl, F. Tombari, N. Navab, S. Ilic, and V. Lepetit.
Hashmod: A Hashing Method for Scalable 3D Object
Detection. In BMVC, 2015.

[10] E. Brachmann, A. Krull, F. Michel, S. Gumhold, J. Shotton,
and C. Rother. Learning 6D Object Pose Estimation using
3D Object Coordinates. In ECCV, 2014.

[11] E. Brachmann, F. Michel, A. Krull, M. Yang, S. Gumhold,
and C. Rother. Uncertainty-Driven 6D Pose Estimation of
Objects and Scenes from a Single RGB Image. In CVPR,
2016.

[12] A. Tejani, D. Tang, R. Kouskouridas, and T. Kim. Latent-
Class Hough Forests for 3D Object Detection and Pose
Estimation. In ECCV, 2014.

[13] S. Gupta, R. Girshick, P. Arbelaez, and J. Malik. Learning
Rich Features from RGB-D Images for Object Detection and
Segmentation. In ECCV, 2014.

[14] S. Gupta, P. Arbelaez, R. Girshick, and J. Malik. Aligning
3D Models to RGB-D Images of Cluttered Scenes. In CVPR,
2015.

[15] P. Wohlhart and V. Lepetic. Learning Descriptors for Object
Recognition and 3D Pose Estimation. In CVPR, 2015.

[16] A. Doumanoglou, R. Kouskouridas, S. Malassiotis, and T.
Kim. Recovering 6D Object Pose and Predicting Next-
Best-View in the Crowd. In CVPR, 2016.

[17] W. Kehl, F. Milletari, F. Tombari, S. Ilic, and N. Navab.
Deep Learning of Local RGB-D Patches for 3D Object
Detection and 6D Pose Estimation. In ECCV, 2016.

[18] Y. Jia, E. Shelhamer, J.Donahue, S. Karayev, J. Long, R.
Girshick, S. Guadarrama, and T. Darrell. Caffe:
Convolutional Architecture for Fast Feature Embedding.
Tech. rep. (2014), http://arxiv.org/abs/1408.5093

[19] H. Cai, T. Werner, and J. Matas. Fast Detection of Multiple
Textureless 3-D Objects. In ICCV, 2013.

[20] T. Hodan, X. Zabulis, M. Lourakis, S. Obdrzalek, and J.
Matas. Detection and Fine 3D Pose Estimation of
Texture-less Objects in RGB-D Images. In IROS, 2015.

[21] H. Zhang and Q. Cao. Texture-less object detection and 6D
pose estimation in RGB-D images. Robotics and
Autonomous Systems, 95 (2017): 64–79.

[22] D. Damen, P. Bunnun, A. Calway, and W. Mayol-Cuevas.
Real-time Learning and Detection of 3D Texture-less
Objects: A Scalable Approach. In BMVC, 2012.

[23] R. Rusu, N. Blodow, and M. Beetz. Fast point feature
histograms (FPFH) for 3D registration. In ICRA, 2009.

[24] R. Rusu, G. Bradski, R. Thibaux, and J. Hsu. Fast 3d
recognition and pose using the viewpoint feature histogram.
In IROS, 2010.

[25] B. Drost, M. Ulrich, N. Navab, and S. Ilic. Model globally,
match locally: Efficient and robust 3D object recognition. In
CVPR, 2010.

[26] C. Choi and H. Christensen. 3D pose estimation of daily
objects using an RGB-D camera. In IROS, 2012.

[27] M. Sun, B. Xu, G. Bradski, and S. Savarese. Depth-encoded
hough voting for joint object detection and shape recovery.
In ECCV, 2010.

[28] J. Gall, A. Yao, N. Razavi, L. Gool, and V. Lempitsky.
Hough forests for object detection, tracking, and action
recognition. IEEE transactions on pattern analysis and
machine intelligence 33.11 (2011): 2188-2202.

[29] A. Krull, E. Brachmann, F. Michel, M. Yang, S. Gumhold,
and C. Rother. Learning analysis-by-synthesis for 6D pose
estimation in RGB-D images. In ICCV, 2015.

[30] A. Crivellaro, M. Rad, Y. Verdie. K. Yi, P. Fua, and V.
Lepetit. A novel representation of parts for accurate 3D
object detection and tracking in monocular images. In ICCV,
2015.

[31] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014.

[32] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D.
Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going Deeper with Convolutions. In CVPR, 2015.

[33] M. Everingham, L.V. Gool, C. Williams, J. Winn, and A.
Zisserman. The pascal visual object classes (voc) challenge.
International journal of computer vision 88.2 (2010):
303-338.

[34] X. Zabulis, M. Lourakis, and P. Koutlemanis. 3D Object
Pose Refinement in Range Images. In ICVS, 2015.

[35] J. Shotton, B. Glocker, C. Zach, S. Izadi, A.Criminisi, and A.
Fitzgibbon. Scene Coordinate Regression Forests for
Camera Delocalization in RGB-D Images, In CVPR, 2013.

[36] S. Hinterstoisser, V. Lepetit, N. Rajkumar, and K. Konolige.
Going Further with Point Pair Features. In ECCV, 2016.

[37] F. Michel, A. Kirillov, E. Brachmann, A. Krull, S.
Gumhold, B. Savchynskyy, and C. Rother. Global
Hypothesis Generation for 6D Object Pose Estimation.
In CVPR, 2017.

2227

