
 

 
Abstract 

 
We present a novel method for recovering 6D object 

pose in RGB-D images. By contrast with recent holistic or 

local patch-based method, we combine holistic patches and 

local patches together to fulfil this task. Our method has 

three stages, including holistic patch classification, local 

patch regression and fine 6D pose estimation. In the first 

stage, we apply a simple Convolutional Neural Network 

(CNN) to classify all the sampled holistic patches from the 

scene image. After that, the candidate region of target 

object can be segmented. In the second stage, as proposed 

in Doumanoglou et al. [16] and Kehl et al. [17], a 

Convolutional Autoencoder (CAE) is employed to extract 

condensed local patch feature, and coarse 6D object pose 

can be estimated by the regression of feature voting. 

Finally, we apply Particle Swarm Optimization (PSO) to 

refine 6D object pose. Our method is evaluated on the 

LINEMOD dataset [5] and the Occlusion dataset [10, 5], 

and compared with the state-of-the-art on the same 

sequences. Experimental results show that our method has 

high precision and good performance under foreground 

occlusion and background clutter conditions. 

 

1. Introduction 

The task of recovering 6D object pose has gained much 
more focus, because of its application in augmented reality 
and robotic intelligent manipulation to name but a few. 
Although it is a well-studied problem in computer vision, 
there are still remain many challenges such as foreground 
occlusions, background clutter, multi-instance objects and 
large scale and pose changes. As for sufficiently textured 
object, several methods based on sparse feature key-point 
matching [1, 2, 3, 4] demonstrate good results. Otherwise, 
objects have little texture and common local appearance 
descriptors are not discriminative enough to provide 
reliable correspondences for key-point matching. Recently, 
Hinterstoisser et al. [5, 6, 7] and related [8, 9] presented 
holistic template-based methods which can deal with 6D  

 
Figure 1. Some results (zoomed view) of recovering 6D object 
pose on (a) the LINEMOD dataset [5], (b) the Occlusion dataset. 
Each detected object is augmented with its 3D model and its 
coordinate system. The background is kept in gray for better 
visibility. 

pose estimation of texture-less objects in a heavily cluttered 
scene. But, these methods suffer in the condition of 
foreground occlusions. In order to deal with above issues, 
several dense local feature-based methods like Brachmann 
et al. [10, 11] and Tejani et al. [12] employed a generalized 
Random Forest classifier and some simple pixel-based 
features. Although these methods has been proven to robust 
towards foreground occlusion, manually designed features 
are difficult to make discriminative for various objects. In 
recent years, much impressive performance boost in 
computer vision has been brought by convolutional neural 
networks (CNNs), which can automatically learn 
discriminating features from raw image. For instance, [13, 
14, 15] mainly utilized CNNs to extract features and [15] 
trained CNNs to directly regress 6D object pose. These 
methods have moderate accuracy and cannot be directly 
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applied to recovering 6D object pose without fine 6D pose 
estimation. Meanwhile, these holistic methods don’t have 
enough robustness for occlusions. Next, Doumanoglou et 
al. [16] and Kehl et al. [17] presented local patches-based 
methods which trained autoencoder (AE) or convolutional 
autoencoder (CAE) to extract discriminating features from 
local patches and used these features to create 6D pose 
hypotheses. Although features of local patches can perform 
reliable 6D object detection and pose estimation under 
foreground occlusions, 2D-3D correspondences from local 
patches would still have much more noise. 

In this paper, we propose a novel method which 
combines holistic patches classification, local patches 
regression framework and fine 6D pose estimation. As 
shown in Figure 1, the proposed method performs well on 
the public dataset. The input of proposed method is RGB-D 
image provided by a consumer-level RGB-D sensor. The 
main contribution of our work consists of three parts: 
Firstly, we generate normalized holistic RGB patches, 
apply a CNN to classify these patches and roughly locate 
object in 2D image. In this way, candidate region can be 
segmented from the scene image. Secondly, we apply local 
RGB-D patches regression framework to recover 6D object 
pose roughly after candidate region segmentation. Features 
of local patches are extracted by CAE. Thirdly, we employ 
iterative optimization algorithm for fine 6D pose estimation 
after roughly 6D object pose regression. Experiments show 
that the proposed method has good performance for objects 
in some public datasets. 

The paper is organized as follows. Section 2 provides an 
overview of related work, and the proposed method is 
described in section 3. In section 4, we present evaluation 
of our method compared to the state-of-the-art on three 
public datasets. Finally, we conclude the paper in section 5. 

2. Related Work 

Recovering 6D object pose has been a long-standing and 
intensely researched activity in the field of computer vision 
and intelligent robotic application. Sparse feature key-point 
matching methods [1, 2, 3, 4] perform well on very textured 
objects. However, when applied to texture-less objects, 
common local feature descriptors are no longer 
discriminative enough to provide reliable correspondences. 
Therefore, many recent methods are presented, which don’t 
employ any sparse feature key-points, including 
template-based methods [6, 8, 19, 20, 21], shape-based 
methods [22, 23, 24, 25, 26], dense feature-based methods 
[27, 28, 10, 11, 12, 13, 29], sparse feature-based methods 
[30, 16, 17] and direct regression methods [14, 15]. In 
consideration of the type of feature, these methods can also 
be divided into two main categories which are holistic 
methods and local methods. 

 
Figure 2. The brief pipeline of holistic patch classification. 

As for holistic methods, 6D pose of the target object is 
predicted from its holistic appearance. Template-based 
methods mainly detect objects in the scene by employing 
holistic templates extracted from rendered views of 3D 
models. In Hinterstoisser et al. [5, 6, 7], each template is 
presented as one 6D pose of object and it consists of several 
quantized color gradient and surface normal. This method 
performed robust object detection in the clutter background. 
Recently, Cai et al. [19], Hodaň et al. [20], Zhang and Cao 
[21] employed cascade-type and hash-coded voting 
framework to optimize template matching and improved 
the accuracy of 6D pose estimation. In addition, Rusu et al. 
[23, 24] presented FPFH and VFH descriptors which are 
extracted from holistic point cloud model of the target 
object. Wohlhart et al. [15] applied deep network to 
directly regress 6D object pose from holistic patches, and it 
does hint towards replacing hand-crafted features with 
auto-learned ones for this task. Although these methods 
have high recognition rate in the clutter background, their 
recall drops quickly with partial foreground occlusions. 

On the other hand, local methods mainly employ various 
discriminating local feature to regress 6D object pose. 
Brachmann et al. [10, 11] use a random forest to obtain 
pixelwise dense predictions. The split function in random 
forest is based on some simple pixel comparisons. Each 
decision tree in forest is trained to jointly predict where it is 
located in object coordinate system, which object the pixel 
belongs to. Each pixel in the scene can make a 3D 
continuous prediction about only its local correspondence 
to a 3D model. Then, the 6D object pose can be estimated 
using a PnP algorithm from these 2D-3D correspondences. 
Drost et al. [25] and Choi et al. [26] proposed oriented point 
pair feature which is also a kind of local feature. In these 
methods, several pairs of points is sampled from the scene 
and they are used to vote for 6D pose hypotheses of 
corresponding object. Doumanoglou et al. [16] and Kehl et 
al. [17] used local patch feature which can be extracted by 
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AE or CAE. After feature generation, Doumanoglou et al. 
[16] trained a Hough Forest by utilizing learnt features, and 
determined object classes and poses by utilizing 6D Hough 
voting. In Kehl et al. [17], local patch features of scene 
were matched against a codebook of synthetic model view 
patches and cast 6D object votes. Although these local 
patch-based methods are robust to occlusions, clutter 
background will lead to much noise for 6D object voting. 

In summary, to the best of our knowledge, we are among 
the first to focus on the approach of combining holistic 
patch classification with local patch regression. The 
accuracy of the proposed method will be compared with the 
state-of-the-art, as shown in experiments. 

3. Proposed Method 

In this section, we will give a detailed description of the 
proposed method. Firstly, we will describe how to generate 
normalized holistic RGB patches. The model of holistic 
patches classifier is a CNN, which will be discussed 
subsequently. After that, candidate region segmentation 
will be described. Secondly, we will give a description of 
local patch feature regression in the segmentation image. 
Finally, we will describe how to recovering optimal 6D  
object pose and present our iterative optimization algorithm 
for fine 6D pose estimation. 

3.1. Holistic Patch Classification 

In our method, the aim of holistic patch classification is 
to roughly localize the target object in 2D image. It has 
three parts, including normalized holistic RGB patch 
generation, patch classification and candidate region 
segmentation. The brief pipeline is shown in Figure 2. 

Recently, Zhang and Cao [21] generated normalized 
RGB-D patch, in order to reduce the number of template. In 
this method, these patches are all scale-independent and 
normalized by depth value check. Due to the input shape of 
classification network is fixed, the proposed method also 
employed scale-independent patches. As shown in Fig. 2, a 
list of candidate windows is extracted from a RGB-D scene 
image by using sliding window. In the proposed method, 
the holistic patch consists of three color channels. The 
number of windows is related by step size (e.g. 8 pixels). In 
order to ensure that candidate windows have the same scale, 
we take depth value at the window’s center point and the 
patch pixel size is computed by the relation as follows: 

  ( / ) ,wL f s z    (1) 

where Lw is the pixel size of candidate window. All holistic 
patches have the same metric size s, which is related with 
the bounding box size of target object. Therefore, different 
object has different metric size, some details about it will be  

 
Figure 3. The architecture of holistic patch classification network. 

 
Figure 4. The training set generation for the classification task. 

discussed in the section 4. In addition, f denotes the focal 
length of the camera, and z is the depth value at the 
window’s center point. In this way, each holistic patch has 
the same scale but different pixel size. We normalize these 
patches with the same resolution ratio (e.g. 64×64), which 
is related to the input shape of classification network. 

Instead of utilizing complex classification network like 
VGG [31] and GoogLeNet [32], we employ a much simpler 
architecture to classify holistic patches since these patches 
has low resolution. Beyond that, simple architecture has 
low computational cost and memory footprint. The 
architecture of classification network is shown in Figure 3. 
Because the number of target objects in some public 
datasets is about 10 (e.g. the LINEMOD dataset [5] is 15, 
the Occlusion dataset [10, 5] is 8), this kind of simple 
network can also work for classification.  
 As for network training, we need to generate several 
rendered images with different orientation poses to build 
training set at first, which is the same with Zhang and Cao 
[21]. In this section, we will describe the process of 
building training set for objects in the dataset of 
Hinterstoisser et al. [5]. Due to this dataset has 15 objects, 
the node number of softmax layer in the network is set as 16 
(15 objects + 1 background). In order to improve the 
generalization of classification network, we need to 
augment the training set by using general background, as 
shown in Figure 4. As for background images, we 
randomly sample 64×64 patch from images in PASCAL 
VOC dataset [33]. Meanwhile, we combine random 
background patch with normalized rendered object image 
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to generate final training image. This effort can make the 
result of classification not be influenced by the scene. As 
shown in Figure 4, the foreground of final training image is 
the appearance of object, and the background is random 
patch in PASCAL VOC dataset. 
 In the testing phase, all the normalized holistic RGB 
patches will be fed into the classification network. The 
softmax layer of classification network can give us the 
probability distribution of categories. In this way, each 
patch can obtain the category label which has the maximum 
of probability. In this paper, we mainly focus on recovering 
6D pose of a single object in the scene. Therefore, we will 
segment the candidate region of one target object from the 
scene image next. As shown in Figure 2, candidate region 
consists of holistic patches associated with target label, and 
we will use the segmentation image to regress the 6D pose 
of target object as described below. 

3.2. Local Patch Regression 

Recently, there are some methods which can directly 
predict 6D object pose in the scene, such as [14, 15]. 
However, these methods all have a moderate accuracy and 
low robustness to occlusions. Besides, local methods can 
keep the high robustness to foreground occlusions 
inherently. As inspired by [30, 16, 17], we apply local patch 
regression framework to recover the 6D pose of target 
object in the segmentation image. In the proposed method, 
local patch regression can be divided into three parts, 
including local patch feature representation, feature voting, 
and 6D pose regression. Figure 5 shows the overview of 
this framework. 
 Above all, we need to train the network to produce 
discriminative local patch features. The aim of our network 
is to learn a mapping from high-dimensional local patch 
space to a much lower feature space, and we employ a 
convolutional autoencoder (CAE) to extract local patch 
features. The cost function of this network is a 
reconstruction error between the input local patch p and 
output po while the inner-most layer condenses the data into 
f(p) values. The network architecture is shown in Figure 6. 
In order to keep excellent abilities of learning and 
generalization, we teach the network regression on a great 
number of input local patches by randomly sampling in the 
dataset of Doumanoglou at el. [16] instead of Hinterstoisser 
et al. [5] (Our method is evaluated in the LINEMOD 
dataset [5] and the Occlusion dataset [10, 5]). As shown in 
Figure 6, each sampling local patch is normalized by depth 
value check which is the same with the part of holistic patch 
classification. As for local patch normalization, we 
de-mean the depth value and clamp them to a fixed metric 
size (e.g. 0.05 m) along x, y, and z axis. Then, we normalize 
color and depth value to [-1, 1] and resize local patched to 
32×32×4. After network training, we need to build the  

 
Figure 5. The general framework of local patch regression. 

 
Figure 6. The architecture of convolutional autoencoder in our 
method. We use sampled RGB-D patches from the dataset of 
Doumanoglou at el. [16] to train this network and minimize a 
reconstruction error between input and output patches. 

codebook of target object. As shown in Figure 5, we sample 
normalized local RGB-D patches from each synthetic view 
of target object and feed them into the network. Each patch 
p will be associated with a condensed feature vector f(p). 
Meanwhile, each patch p has its label vector l(p) which 
consists of patch category c, the rotational transformation 
(rx, ry, rz) from camera coordinate frame to object 
coordinate frame, and the patch 3D center point offset to 
the object centroid (x, y, z) under object coordinate frame. 
The codebook is made up of these feature vectors and 
associated label vectors. 
 As for feature voting, each sampled scene local patch p is 
associated with scene patch vector ls(p) = (xs, ys, zs). These 
scene local patches will be fed into the network and 
condensed features f(p) will be computed. Then, we can get 
k nearest neighbors (e.g. k = 3) from the codebook by 
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comparing scene patch features with original patch features, 
and Euclidean Distance is employed as feature distance. 
Each neighbor casts a global vote with the voting label 
vector lv(p) = ls(p) – l(p), where l(p) is one of k nearest 
neighbors and the rotational transformation is invariant. In 
our method, we firstly train features in the codebook and 
employ kd-tree structure to rebuild the codebook. In this 
way, nearest neighbor search can be very fast. Additionally, 
we define a threshold Th on the nearest neighbor distance, 
so that k nearest neighbors will only cast vote if they have 
an enough confidence. It can decrease a great number of 
incorrect vote and reduce the noise sensitivity. 
 After feature voting, 6D pose regression need to be used 
and it will lead to a coarse 6D pose estimation of target 
object. In this stage, a series of crowded votes lv(p) = (xv, yv, 

zv, rx, ry, rz) will be divided into two parts. One part 
represents translational transformation (xv, yv, zv) and the 
other one represents rotational transformation (rx, ry, rz). In 
our method, we employ mean shift algorithm with a flat 
kernel to regress centers of translation and rotation 
respectively. In practical, the kernel size for translation 
regression is set as 1 cm and the other one is set as 5 degree. 
Additionally, rotational transformation need to be 
converted into quaternion space because of its 
differentiability. Mean shift algorithm can generate one 
center point for each cluster. In our method, we will remain 
the center point which has the most votes. Then, 
translational regression center and rotational regression 
center can make up for the coarse 6D pose estimation. 
Because there still remain some noise in feature voting, the 
6D pose regression is not precise enough. Therefore, a 
stage of fine 6D pose estimation is needed. 

3.3. Fine 6D Pose Estimation 

In the proposed method, our final goal is to recover 
accuracy 6D pose of target object in the scene. In this stage, 
the input is a coarse 6D pose estimation, a point cloud 
model of the target object. As inspired by [20, 21, 34], we 
formulate the fine 6D pose estimation as an optimization 
problem. During the process of optimization, many 
candidate poses will be produced and each pose can 
generate a synthesized rendered depth image. Then, a cost 
function is needed to express the error of 6D pose 
estimation, and we define the cost by comparing 
synthesized rendered depth image with the observed depth 
image. In our method, Particle Swarm Optimization (PSO) 
is employed to refine 6D object pose, which is proven to be 
an efficient approach to optimize the cost function and find 
the pose whose rendered depth image is the most similar to 
the observed one. 

The cost function is made up of two components, 
including depth value cost and depth edgelet cost, which 
can be formulated as follows: 

  ( , ) ( , ) ( , ) ,d d e eC cost S O C S O C S O      (2) 

where S represents synthesized rendered depth image and 
O represents observed depth image, and the component 
Cd(S, O) will punish deviations of depth value between the 
synthesized rendered depth image and the observed depth 
image. The component Ce(S, O) punishes deviations of 
depth edgelet. εd and εe are coefficients about the reliability 
of different components. In practical, depth value is more 
significant than the others. εd is set as 0.8 and εd is set as 0.2. 
The depth value component is directly compared between S 
and O at each pair of pixels and the depth edgelet 
component is based on distance between the depth edgelet 
in S and the closest depth edgelet in O. The definitions of 
these components are the same with [21]. Then, in order to 
find the optimal solution for this optimization problem, 
several candidate poses {Rc, tc} will be generated for each 
iteration, which are parameterized relative to the initial 
pose {R0, t0} by using a series of relative rotations Rr and 
translations tr. As shown in formula (3), the relative 
rotation Rr is made up of primitive rotations about X, Y, and 
Z axis. α, ȕ, and Ȗ are rotation angles around X, Y, Z axis 
respectively. 

  0 0

0 0 0 0

( ) ( ) ( )
,

( , , )
c r x y z

T
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R R R R R R R

t R t t R x y z t
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      

  (3) 

 Compared to gradient-based optimization, PSO does not 
require the derivatives of the cost function and has a wider 
basin of convergence, exhibiting better robustness to local 
minima [34]. As for fine 6D pose estimation problem, each 
candidate poses can be seen as candidate particles, and the 
search space is constrained in a 6D neighborhood of the 
initial 6D object pose. The state of each particle (candidate 
pose) will be updated after the completion of each iteration 
until there is no particle with less score of cost function. In 
the final stage, if one of particles (candidate poses) can get 
minimum score of cost function than all other particles 
(including updated particles and original particles) at 
certain iteration, particles won’t be updated and the 
optimization process will stop. 

4. Experiments and Discussion 

In this section, we evaluate our method to other 
state-of-the-art methods for public datasets, including the 
LINEMOD dataset [5] and the Occlusion dataset [10, 5]. 
Additionally, we will discuss about the influence of several 
parameters in our methods. Owing to combine holistic and 
local patches, the proposed method could be called as HLP. 
The implementation of deep networks in HLP method is 
based on Caffe [18].  
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Figure 7. Some results of our method for the dataset of LINEMOD [5]. Each detection process has four parts in this image. From left to 
right, the first part is candidate region segmentation by using holistic patches. The second part shows sampled scene points for local patch 
regression, where threshold check for k-nearest neighbor search is adopted. The sampling step is fixed as 8 pixels in experiments. The third 
part shows results of feature regression. For better visibility, we subdivide the image plane into several 2D grid (cell size is 8×8 pixels) and 
cast each feature vote into cells. Each cell is colored according to the number of projected votes. The last part shows the results of 
recovering 6D object pose, where the background is also kept in gray for better visibility.  

4.1. LINEMOD Dataset 

This dataset provides colored 3D mesh models of 15 
texture-less objects. In our experiments, we employ 
electrostatic-based rendered image creation method to 
generate a series of rendered object RGB-D images, and the 
detail can be found in [21]. In practical, each target object 
has 3600 rendered RGB-D images which can cover much 
more 6D poses. 

As for the first stage of HLP, we need to build training 
set for holistic patch classification. The training set has 16 
categories (15 objects + 1 background) and consists of 
numerous holistic RGB patches. As described in section 
3.1, different object has different metric size of holistic 
patch metric size, such as 8cm for “Ape”, 20cm for 

“Driller”, and 18cm for “Bowl” and so on. In the stage of 
local patch regression, we also employ different metric size 
of patch for different object instead of the fixed one in [17]. 
It is suitable that small object has small metric size of local 
patch and vice versa, such as 3cm for “Ape”, 8cm for 
“Driller”, and 4cm for “Cam” and so on. In addition, the 
dimension of local patch feature is fixed as 200. According 
to several experiments, it has been proven that these 
parameters are the optimum value for local patch regression. 
After local patch feature extraction, features in the 
codebook need to be trained and the codebook will be 
converted into kd-tree structure. The number of trees is set 
as 4 in our method. In the third stage, there are much more 
parameters, including number of candidate poses N, the 
range of rotation angle θ and displacement τ. Some details 
will be described in section 4.3. In practical, the number of  
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Seq. 
Method 

[5] [17] [20] [21] HLP 
Ape 0.958 0.969 0.939 0.963 0.970 

B. Vise 0.987 0.941 0.998 0.904 0.951 
Bowl 0.999 0.999 0.988 - 0.999 
Cam 0.975 0.977 0.955 0.913 0.953 
Can 0.954 0.952 0.959 0.982 0.969 
Cat 0.993 0.974 0.982 0.964 0.979 
Cup 0.971 0.996 0.995 - 0.995 

Driller 0.936 0.962 0.941 0.952 0.960 
Duck 0.959 0.973 0.943 0.918 0.977 

Egg B. 0.998 0.999 1.000 0.989 0.999 
Glue 0.918 0.786 0.980 0.946 0.830 

Hole P. 0.959 0.968 0.880 0.978 0.972 
Iron 0.975 0.987 0.970 0.988 0.989 

Lamp 0.977 0.962 0.888 0.914 0.949 
Phone 0.933 0.928 0.894 - 0.903 
Mean 0.966 0.958 0.954 0.951 0.960 
std. 0.023 0.050 0.039 0.105 0.042 

Table 1. Recognition rate of each target object (sequence) by 
using our method and the other state-of-the-art methods. 

candidate poses N is set as 25, and θ, τ are set as 5° and 5 
mm respectively. Finally, in order to compare our method 
with the state-of-the-art, we need to employ consistent 
evaluation metric. Up to now, there are three basic types of 
evaluation metric for recovering 6D object pose, including 
average distance of model points, translational and 
rotational error, and complement over union. These 
evaluation metrics have different application scenarios, 
such as robotic manipulation and augmented reality. In our 
experiments, we take average distance of model points as 
standard 6D pose evaluation metric, which is the same with 
[5, 17, 20, 21]. The recognition rates for different methods 
are shown in Table 1. Figure 7 shows results of our method 
for the dataset of LINEMOD [5]. 

4.2. Occlusion Dataset 

The dataset was created by Brachmann et al. [10], which 
is also standard public dataset in ICCV2015 Occluded 
Object Challenge. Target objects in this dataset are the 
same with LINEMOD dataset [5], and testing images are 
also selected from LINEMOD dataset [5]. The partial 
occlusions in these testing images make it significantly 
more difficult to recover 6D object pose. 

We still use pre-trained network to accomplish holistic 
patch classification and local patch regression, because of 
the same target objects. In this dataset, there are eight target  

 
Figure 8. Some results of our method for the Occlusion dataset. 

Method AD 5cm, 5deg IOU 
[10] 56.6% 22.7% 62.0% 
[5] 54.4% - - 

[29] 70.3% - - 
[36] 76.2% - - 
[37] 76.7% - - 
HLP 63.2% 36.2% 79.9% 

Table 2. Overall recognition rate comparison. 

objects, including “Ape”, “Can”, “Cat”, “Driller”, “Duck”, 
“Eggbox”, “Glue”, and “Holepuncher”. Brachmann et al. 
[10] employed three different evaluation metrics to test 
their method and provided related recognition rate. These 
evaluation metrics are “AD”, “5cm, 5deg”, and “IOU”. 
“AD” is the average distance between all vertices in the 3D 
model of the part in the estimated pose and the ground truth 
pose. An estimated pose is considered correct, when the 
average distance is below 10% of the object diameter. “5cm, 
5deg” is presented by Shotton et al. [35]. It denotes that an 
estimated pose is considered correct when the translational 
error is below 5cm and the rotational error is below 5deg. 
“IOU” is to calculate the intersection over union of the 
bounding boxes between estimated pose and ground truth. 
An estimated pose is considered correct when the IOU 
value is above a threshold of 0.5. Recently, there is also 
some amazing work about recovering 6D object pose for 
the Occlusion Dataset, such as [36] and [37]. Table 2 shows 
recognition rate comparison among these methods and our 
method (HLP). Some qualitative results of HLP method in 
this dataset are also shown in Figure 8. 
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(a) (b) (c)  
Figure 9. Evaluation of parameter influence on the LINEMOD dataset. (a) The dimension of local patch feature, (b) number of candidate 
poses N in PSO, and (c) configure group {θ, τ} in PSO. 

4.3. Discussion 

There are several parameters in our method. As for local 
patch regression, the dimension of local patch feature is 
very important. Different feature dimensions will lead to 
different performance. In experiments, we varied the 
dimension of local patch feature to be 100, 200, 400, and 
600. The change in average recognition rate of LINEMOD 
dataset [5] and running time is shown in Figure 9. It is 
found that larger dimension of feature has higher average 
recognition rate, but the overall running time increases 
drastically. In practical, we use the CAE with 200 feature 
vectors. It has enough recognition rate with acceptable 
running time. 
 In addition, the impact of PSO parameters needs to be 
considered, including the number of candidate poses, the 
range of rotation angle θ and the range of displacement τ. 
As shown in Figure 9, a set of decreasing number of 
candidate poses is used to examine the performance of our 
method. It is found that the number of candidate poses 
represents a tradeoff between accuracy and running time. A 
small number will lead to rapid convergence and low 
accuracy in fine 6D pose estimation, while a large one will 
prolong running time without any not noticeable 
improvements in accuracy. In practical, the number of 
candidate poses is fixed as 25 in our method. Given a fixed 
N, the range of rotation angle and displacement for each 
iteration in PSO are also need to be taken into account. In 
experiments, we set up some different configuration groups 
as shown in Figure 9. A large range will lead to less running 
time but low accuracy, while too small range won’t have 
any improvement on the accuracy. From those figures, the 
number of candidate poses 25 and configure group {5°, 5 
mm} undoubtedly constitute a good tradeoff between 
average recognition rate and running time of our method. 
And the average running time is around 800 ms per frame. 
The implementation of our method is based on a modern 

laptop PC with Inter Core i7 CPU, 8 GB memory and 
NVIDIA GTX 970m graphics card. 
 Moreover, we don’t employ ICP algorithm to the stage 
of fine 6D pose estimation. It is well-known that ICP is 
sensitive to initialization, converging correctly only when 
sufficient overlap exists between two point sets and no 
gross outliers are present. In practical, the scene point cloud 
is always incomplete, and model point cloud is complete. If 
we employ ICP to refine 6D pose, we need segment scene 
point cloud based on rough 6D pose at first, and we need 
match incomplete scene point cloud with complete model 
point cloud. ICP often gets stuck in local minima, 
especially the target object has lower geometry complexity 
or scene point cloud has less points. In practical, 
incomplete scene point cloud will lead to much more error 
point correspondences. We found that Zabulis et al. [34] 
compared the performance of ICP with PSO, and it showed 
that PSO could get smaller 6D pose error than ICP. 
Because the cost function of PSO is only related with depth 
image and rendered depth image, the result won’t be 
effected by incomplete scene point cloud. 

5. Conclusion 

Our method combines holistic patches and local patches 
together to fulfil the task of recovering 6D object pose. And 
it also achieves high precision and good performance under 
various conditions including foreground occlusion and 
background clutter, even on the challenging Occlusion 
dataset. 
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