This ICCV workshop paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the version available on IEEE Xplore.

An Accurate System for Fashion Hand-drawn Sketches Vectorization

Luca Donati*

Simone Cesanof

Andrea Prati*

* IMP Lab - Department of Engineering and Architecture - University of Parma, Italy
T Adidas AG - Herzogenaurach, Germany

(b) AI™ Live Trace

(a) Input sketch

ﬁ

=
=

:

=

(c) Simo-Serraetal. [12] (d) Our method

Figure 1: Visual comparison of three line extraction algorithms tested over a portion of a hand-drawn sketch (a). Our proposed method
(d) grants optimal “recall” performance compared to state of the art (Simo-Serra et al. [12] (c)), without bargaining its “precision”.
Traditional approaches like Adobe Illustrator™ Live Trace (b) fail greatly in both “precision” and “recall” performance, and need to be

manually fine tuned.

Abstract

Automatic vectorization of fashion hand-drawn sketches
is a crucial task performed by fashion industries to speed up
their workflows. Performing vectorization on hand-drawn
sketches is not an easy task, and it requires a first crucial
step that consists in extracting precise and thin lines from
sketches that are potentially very diverse (depending on the
tool used and on the designer capabilities and preferences).
This paper proposes a system for automatic vectorization
of fashion hand-drawn sketches based on Pearson’s Corre-
lation Coefficient with multiple Gaussian kernels in order
to enhance and extract curvilinear structures in a sketch.
The use of correlation grants invariance to image contrast
and lighting, making the extracted lines more reliable for
vectorization. Moreover, the proposed algorithm has been
designed to equally extract both thin and wide lines with
changing stroke hardness, which are common in fashion
hand-drawn sketches. It also works for crossing lines, ad-
Jjacent parallel lines and needs very few parameters (if any)
to run.

The efficacy of the proposal has been demonstrated on
both hand-drawn sketches and images with added artificial
noise, showing in both cases excellent performance w.r.t.

the state of the art.

1. Introduction

Hand-drawn sketches on raw paper are often the starting
point of many creative and fashion workflows. Later, the
prototype idea from the sketch needs to be converted in a
real world product, and at this point, converting the sketch
in a full-fledged vectorial image is a requisite. The first cru-
cial step of the vectorization process is to extract line posi-
tions and shapes, trying to be as much as possible precise
and invariant to image noise and contrast. Algorithms for
finding lines provided in the literature are either based on
a “straight-lines” assumption, that does not always hold in
the case of hand-drawn sketches, or they work for curvi-
linear lines but are fragile against noisy, real-world images.
After performing an accurate line extraction, vectorization
can be straightforwardly done using Bezier curves, result-
ing in a vectorized version of the sketch, suitable for further
steps (post-processing, fabric cutting, rendering for market-
ing, etc.).

Line extraction is an universal task that can be found in a
plethora of applications. It must often be both robust and
precise in extracting lines from 2D data. Unfortunately,

2280

in many real-world applications the 2D data available are
noisy and line extraction can be quite challenging. For this
reason, several methods in the literature have addressed this
problem. The most immediate approach to line extraction
is to work under a straight-lines assumption. Lines are ex-
pected to be straight, and models using that assumption are
created. They typically work in a parameter space, in which
they try to isolate and extract the most probable line loca-
tions in an image (e.g., the Hough transform [2]).

If the problem is more general, with curvilinear lines to
be found, creating parametric models may become harder.
Some proposals on this approach use derivative-based esti-
mations (Steger [13]). Other algorithms focus on obtaining
perfect results from clean images, using metrics like sub-
pixel Centerline Error (Noris et al. [6]). While these meth-
ods are very accurate with clear lines, such as those gen-
erated from a PC drawing table, or a very neat pen/pencil,
they cannot consistently operate with noisier data. Exam-
ples of noisy data are rough/dirty hand-drawn sketches or
ancient book’s text and drawings, corrupted by the time and
humidity and having rough background and faint lines. No-
tably, noisy, corrupted and missing data are common in real-
world applications. Other approaches have been proposed
to tackle this challenging problem. Most of the less recent
approaches proposed ad-hoc solutions, based, for instance,
on high-frequency filtering with computer vision operators,
adaptive thresholding, and many others. More recent ap-
proaches suggested solutions like Gabor filtering (Bartolo
et al. [1]), and other more sophisticated approaches based
on theories in the field of missing information and uncer-
tainty, such as [3, 12].

This paper presents a novel system for automatic vector-
ization of hand-drawn sketches based on multiple correla-
tion filters which has the distinguishing following aspects:

e the combination of multiple correlation filters allows
us to handle variable-width lines, which are common
in hand-drawn sketches;

o the use of Pearson’s Correlation Coefficient allows us
to handle variable-strength strokes in the image;

e even though the proposed algorithm has been con-
ceived for hand-drawn sketches of shoes or dresses,
it exhibits good generalization properties, showing to
be capable of achieving good accuracy also with other
types of images.

The rest of the paper is structured as follows. The next
section will briefly introduce the background about cross
correlation used in our system for accurate line extraction.
Section 3 will describe the overall system for vectorization,
with emphasis on the different steps of the system. Section
4 will present the experimental results, performed on both
fashion hand-drawn sketches and a specifically created new

dataset for comparison purposes. The last section will draw
the conclusions about our work.

2. Background about Cross Correlation

The key idea behind the proposed algorithm is to exploit
Pearson’s Correlation Coefficient (PCC, hereinafter) and its
properties to identify the parts of the image which resemble
a “line”, no matter the line width or strength. This section
will briefly introduce the background about PCC.

The ndive Cross Correlation is known for expressing the
similarity between two signals (or images in the discrete 2D
space), but it suffers of several problems, i.e. dependency
on the sample average, the scale and the vector’s sizes. In
order to address all these limitations of Cross Correlation,
Pearson’s Correlation Coefficient (PCC) [8] can be used:

cov(a, b)

pece(a, b) = (1

04a0p
where cov(a, b) is the covariance between a and b, and o,
and oy, are their standard deviations. From the definition of
covariance and standard deviation, this can be re-written as
follows:

pee(a, b) = pee(moa + qo, m1b + q1) 2

Vgo,1 A Vmo,1 : momq > 0. Eq. 2 implies invariance to
most affine transformations. Another strong point in favor
of PCC is that its output value is of immediate interpreta-
tion. In fact, —1 < pec(a,b) < 1. pcec =~ 1 means that
a and b are very correlated, whereas pcc =~ 0 means that
they are not correlated at all. On the other hand, pcc ~ —1
means that a and b are strongly inversely correlated (i.e.,
raising a will decrease b accordingly).

PCC has been used in image processing literature and in
some commercial machine vision applications, but mainly
as an algorithm for object detection and tracking. Its ro-
bustness derives from the properties of illumination and re-
flectance, that apply to many real-case scenarios involving
cameras. Since the main lighting contribution from objects
is linear, pcc will give very consistent results for varying
light conditions, because of its affine transformations invari-
ance (eq. 2), showing independence from several real-world
lighting issues.

Stepping back to our application domain, at the best of
our knowledge, this is the first paper proposing to use PCC
for accurate line extraction from hand-drawn sketches. In-
deed, PCC can grant us the robustness in detecting lines
also under severe changes in the illumination conditions, for
instance when images can potentially be taken from very
diverse devices, such as a smartphone, a satellite, a scan-
ner, an x-ray machine, etc.. Additionally, the “source” of
the lines can be very diverse: from hand-drawn sketches, to
fingerprints, to paintings, to corrupted textbook characters,

2281

etc.. In other words, the use of PCC makes our algorithm
generalized and applicable to many different scenarios.

3. Description of the System

3.1. Pearson’s Correlation Coefficient applied to im-
ages

In order to obtain the punctual PCC between an image
I and a (usually smaller) template 7', for a given point
p = (x,y), the following equation can be used:

pee(1, T, y) = ik Tey(G k) —ug,,) (TG k) — ur)

Vi Ty (k) — g,)? 55 (TG k) — ur)?
3
Vj € [-Tw/2;Ty/2) and Yk € [T}, /2; T}, /2], and where
T, and T} are the width and the height of the template,
respectively. I, is a portion of image / with the same size
of T" and centered around p = (z,y). uz,, and ur are
the average values of I, and T', respectively. T'(j, k) (and,
therefore, I,,(j, k)) is the pixel value of that image at the
coordinates j, k computed from the center of that image.

It is possible to apply the punctual PCC from eq. 3 to
all the pixels of the input image I (except for border pix-
els). This process will produce a new image which repre-
sents how well each pixel of image I resembles the tem-
plate T'. In the remainder of the paper, we will call it PCC.
It is worth remembering that PCC(x,y) € [-1,1],Vx,y.
To perform just this computation, the input grayscale im-
age has been inverted; in sketches usually lines are darker
than white background, so inverting the colors gives us a
more “natural” representation to be matched with a positive
template/kernel.

3.2. Template/Kernel for extracting lines

Our purpose is to extract lines from the input image.
To achieve this, we apply PC'C' with a suitable template,
or kernel. Intuitively, the best kernel to be used to find
lines would be a sample approximating a “generic” line. A
good generalization of a line might be a 1D Gaussian ker-
nel replicated over the y coordinate, i.e. K Line(x,y,0) =
gauss(z, o).

This kernel achieves good detection results for sim-
ple lines, which are composed of clear (i.e., well separa-
ble from the background) and separated (from other lines)
points. Unfortunately, this approach can give poor re-
sults in the case of multiple overlapping or perpendicularly-
crossing lines. In particular, when lines are crossing, just the
“stronger” would be detected around the intersection point.
If both lines have about the same intensity, both lines would
be detected, but with an incorrect width (extracted thinner
than they should be).

Considering these limitations, a full symmetric
2D Gaussian kernel might be more appropriate, also

considering the additional benefit of being isotropic:
KDot(x,y,0) = gauss(x,0) - gauss(y, o).

This kernel has proven to solve the concerns raised with
K Line. In fact, it resembles a dot, and considering a line
as a continuous stroke of dots, it will approximate our prob-
lem just as well as the previous kernel. Moreover, it be-
haves better in line intersections, where intersecting lines
become (locally) T-like or plus-like junctions, rather than
simple straight lines. Unfortunately, this kernel will also be
more sensitive to noise (e.g. paper roughness, “dirt”, erased
traits), so the system will need a better post-processing
phase to filter out unwanted background.

3.3. Achieving size invariance

One of the major objectives of this method is to detect
lines without requiring finely-tuned parameters or custom
“image-dependent” techniques. We also aim at detecting
both small and large lines that might be mixed together as
happens in many real drawings. In order to achieve invari-
ance to variable line widths, we will be using kernels of
different size.

We will generate N Gaussian kernels, each with its o;.
In order to find lines of width w, a sigma of o; = w/3
would work, since a Gaussian kernel gives a contribution of
about 84% of samples at 3 - 0.

We follow an approach similar to the scale-space pyra-
mid used in SIFT detector [5]. Given w;,;, and W,qz
as, respectively, the minimum and maximum line width
we want to detect, we can set og = Wp,/3 and
0,=C-0;1=0C"00, Vi € [1,N — 1], where N =
loge (Wmaz /Wmin), and C is a constant factor or base (e.g.,
C = 2). Choosing a different base C' (smaller than 2) for
the exponential and the logarithm will give a finer granular-
ity.

The numerical formulation for the kernel will then be:

KDot;(x,y) = gauss(x — S; /2, 0;) - gauss(y — S; /2, 0;)

“)
where S; is the kernel size and can be set as
Si = next_odd(7 - 0;).

This generates a set of kernels that we will call K Dots.
We can compute the correlation image PCC' for each
of these kernels, obtaining a set of images PCCdots,
where PCCdots; = pcc(Image, K Dots;) with pcc com-
puted using eq. 3.

3.4. Merging results

Once the set of images PC'Cdots is obtained, we need to
merge the results in a single image that can uniquely express
the probability of line presence for a given pixel of the input
image. This merging is obtained as follows:

MPCC(z,y) = {m(%xPCCzy, if |ma9.UPCC$y\ > IminPCClqy|
minPCCyy, otherwise

(6]

2282

where

minPCCypy = min PCCdots;(x,y),
Vi€[0,N—1]

mazPCCyy = max PCCdots;(z,y).
vig[0,N —1]

Given that —1 < pcc < 1 for each pixel, where ~ 1
means strong correlation and ~ —1 means strong inverse
correlation, eq. 5 tries to retain the most confident decision:
“it is definitely a line” or “it is definitely NOT a line”.

By thresholding MPCC of eq. 5, we obtain a binary im-
age called LinesRegion. The threshold has been set to 0.1
in all our experiments.

3.5. Post-processing Filtering

The binary image LinesRegion will unfortunately still
contain incorrect lines due to the random image noise.
Some post-processing filtering techniques can be used, for
instance, to remove too small connected components, or to
delete those components for which the input image is too
“white” (no strokes present, just background noise).

For post-processing hand-drawn sketches, we first apply
a high-pass filter to the original image, computing the me-
dian filter with window size s > 2 - wW;,4, and subtracting
the result from the original image value. Then, by using the
well-known Otsu method [7], the threshold that minimizes
black-white intra class variance can be estimated and then
used to keep only the connected components for which the
corresponding gray values are lower (darker stroke color)
than this threshold.

3.6. Thinning

The filtered binary image LinesRegion now contains
only accurate and cleaned line shapes. In order to pro-
ceed towards the final vectorization step, an intermediate
phase is necessary: thinning. Thinning is an algorithm that
transforms a generic binary image (shape) in a set of one-
pixel-wide lines. This is highly desirable for the final vec-
torization step. We decided to stick with the rather stan-
dard thinning implementation from Zhang and Suen [4].
Their algorithm is fast enough for our purpose, and it pro-
duces thinned lines that can be 1 pixel or 2 pixels wide. An
erosion-like mask is then applied to obtain the desired sin-
gle pixel wide skeleton, called LinesSkeleton.

Zhang-Suen’s thinning algorithm (like many other thin-
ning algorithms) produces somewhat biased skeletons when
reducing steep angles. If the application needs high preci-
sion over strong angles an unbiased thinning algorithm (see
Saeed et al. review of thinning methods [9]) could improve
the extraction. Further enhancements to the skeleton (such
as pruning and edge linking) are possible but not treated
here.

3.7. Vectorization

The final step is vectorization, that involves transform-
ing the obtained LinesSkeleton in a full-fledged vectorial
image representation. The simplest and most standard vec-
torial representation exploits Bezier curves. A cubic Bezier
curve can be described by four points (Py, Pi, P, P3) as
follows:

B(t) = (1-t)3Py+3(1—t)*tP,+3(1—t)t* P, +t>P5 (6)

where the curve coordinates can be obtained varying ¢ from
0 to 1. If the curve to be approximated is simple, a sin-
gle Bezier curve may be enough, otherwise it is possible to
concatenate many Bezier curves to represent any curvilinear
line with arbitrary precision.

To approximate our LinesSkeleton we decided to use
an adapted version of the fitting algorithm from Schneider
[11]. Schneider’s algorithm will accept a curve at a time,
not the whole sketch, therefore LineSkeleton must be split
in single curve segments, called paths. A path is simply
defined as a consecutive array of 2D coordinates:

path : (x07y0)7<x17y1)a"'(:Enayn> (7)

These coordinates will be obtained taking each “white”
pixel coordinates from the input ‘“thinned” image
LineSkeleton. A path can be further grouped in two
classes: closed paths (e.g., circles) and open paths (paths
for which the first and last point do not coincide). Paths can
be stand-alone paths, or connected with other paths via a
“junction”. In this case, each one is considered separately.
Schneider’s algorithm works only for open paths, but it is
easy to extend and use it for closed paths.

The algorithm will approximate an input path, producing
as its output one or more Bezier curves. Each Bezier curve
will be described by the four points Py, Py, P», Ps. This al-
gorithm uses an iterative approximation method, so it can
be parametrized to obtain more precision or more smooth-
ing (and different time complexity).

By doing this Bezier approximation for each path in
LinesSkeleton we obtain the final complete image vec-
torization. Some example outputs can be seen in Fig. 2.

4. Experimental Results

In order to assess the accuracy of the proposed method,
we performed an extensive evaluation on different types of
images. First of all, we have used a large dataset of hand-
drawn shoe sketches (courtesy of Adidas AG™). These
sketches have been drawn from expert designers using dif-
ferent pens/pencils/tools, different styles and different back-
grounds (thin paper, rough paper, poster board, etc.). Each
image has its peculiar size and resolution, and has been
taken from scanners or phone cameras.

2283

(@) (b)

(VY

t ;jh\‘ /\\j\

(@)

Figure 2: Examples of full vectorizations perfromed by our system. An Adidas AG™final shoe sketch (a), (b), and a much dirtier, low

resolution, preparatory fashion sketch (c), (d).

(b) (© (d)

Figure 3: Examples of the “inverse dataset” sketches created from
SHRECI3 [4].

In addition to that dataset, we also created our own
dataset. The motivation relies in the need for a quantita-
tive (together with a qualitative or visual) evaluation of the
results. Manually segmenting complex hand-drawn images
such as that reported in Fig. 4, last row, to obtain the ground
truth to compare with, is not only tedious, but also very
prone to subjectivity. With these premises, we searched for
large and public datasets (possibly with an available ground
truth) to be used in this evaluation. One possible solution is
the use of the SHREC13 - “Testing Sketches” dataset [4], al-
ternatives are Google Quick Draw and Sketchy dataset [10].
SHREC13 contains very clean, single-stroke “hand-drawn”
sketches (created using a touch pad or mouse), such as those
reported in Figs. 3a and 3c. It is a big, representative
database: it contains 2700 sketches divided in 90 classes
and drawn by several different authors. Unfortunately, these
images are too clean to really challenge our algorithm, re-
sulting in almost perfect results. The same can be said for
Quick Draw and Sketchy datasets. To fairly evaluate the
ability of our algorithm to extract lines in more realistic sit-
uations, we have created a “simulated” dataset, called in-
verse dataset. We used the original SHREC13 images as
ground truth and processed them with a specifically-created
algorithm (not described here) with the aim of “corrupting”
them and recreating as closely as possible different draw-

ing styles, pencils and paper sheets. More specifically, this
algorithm randomly selects portions of each ground truth
image, and moves/alters them to generate simulated strokes
of different strength, width, length, orientation, as well as
multiple superimposed strokes, crossing and broken lines,
background and stroke noise. The resulting database has
the same size as the original SHREC13 (2700 images), and
each picture has been enlarged to 1 MegaPixel to better sim-
ulate real world pencil sketches. Example results (used as
inputs for the experiments) are reported in Figs. 3b and 3d.

At this point we performed visual/qualitative compar-
isons of our system with the state-of-the-art algorithm [12]
using various input images. Results are reported in Figs. 1
and 4. It is rather evident that our method performs better
than the above method in complex and corrupted areas.

To obtain quantitative evaluations we used the “inverse
dataset” and compared our extraction results on it with two
other algorithms: the one presented by Simo-Serra et al.
in [12] and the Adobe Illustrator™’s tool “Live Trace”.
As performance metrics, we used precision and recall in
line extraction and the mean Centerline Distance, similar
to the notion of Centerline Error used in [6]. The results
are shown in Table 1. Our method outperforms Live Trace
and strongly beats Simo-Serra ef al. [12] in terms of recall,
while nearly matching its precision. This can be explained
by the focus we put in designing a true image color/contrast
invariant algorithm, also designed to work at multiple res-
olutions and stroke widths. Simo-Serra et al. bad “re-
call” performance is probably influenced by the selection
of training data (somewhat specific) and the data augmenta-
tion they performed with Adobe Illustrator™ (less general
than ours). This results in a global F-measure of 97.8% for
our method wrt 87.0% of [12]. It is worth saying that Simo-
Serra et al. algorithm provides better results when applied
to clean images; unfortunately, it shows sub-optimal results
applied to real shoes sketches (as shown in Fig. 4, last row).

2284

(a) Input sketch

(f) AI™ Live Trace

(j) AI™ Live Trace

(i) Input sketch

a N

e

/=

=g TE
B e ,(7, \\‘ (\‘
RN

\— 7 /ARSI

£ / { &
(¢) Simo-Serra et al. [12]

. ’<f"//5§\
(NG

N

(g) Simo-Serra et al. [12]

(k) Simo-Serra et al. [12] (1) Our method

Figure 4: Examples of line extractions from a commercial tool (b), (f), (j), the state of the art algorithm (c), (g), (k), and our method (d),
(h), (). In detail: an image from our inverse dataset (a); a man’s portrait art (¢), author: Michael Bencik - Creative Commons 4, a real

Adidas AG™ hand drawn design (i)

Finally, we compared the running times of these algo-
rithms. We run our algorithm and “Live Trace” using an
Intel Core i7-6700 @ 3.40Ghz, while the performance from
[12] has been extracted from that paper. The proposed al-
gorithm is much faster than Simo-Serra et al. method (0.64
sec on single thread instead of 19.46 sec on Intel Core i7-
5960X @ 3.00Ghz using 8 cores), and offers performance
within the same order of magnitude as Adobe Illustrator™
Live Trace’s one (which on average took 0.5 sec).

Precision | Recall | Center. Dist.
Our method 97.3% 98.4% 3.58 px
Simo-Serra et al. [12] 98.6% 77.9% 4.23 px
Live Trace 85.0% 83.8% 3.73 px

Table 1: Accuracy of the three implementations over the inverse
dataset generated from SHREC13 [4] (2000+ images).

5. Conclusions

Within the complete system for automatic sketch vec-
torization, the proposed algorithm for line extraction has
proven its high accuracy by an extensive evaluation on both
“real-world” sketches and a challenging, generated large
dataset. It showed the nice property to reconstruct noisy and
missing data from images with very different stroke styles,
crossing lines, different line strengths and widths, and var-
ious noise. In the quantitative comparison, the proposed
approach shows the highest recall, confirming its ability to
handle complex, missing or corrupted data. Finally, the pro-
posed approach showed to be much faster than other ap-
proaches. Possible future directions include to further speed
up the approach (exploiting the highly parallelizable algo-
rithms) and to extend and improve it by changing the kernel
and/or the merging strategy. This research has been fully
funded by Adidas AG™to which we are very grateful.

2285

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

A. Bartolo, K. P. Camilleri, S. G. Fabri, J. C. Borg,
and P. J. Farrugia. Scribbles to vectors: preparation
of scribble drawings for cad interpretation. In Pro-
ceedings of the 4th Eurographics workshop on Sketch-
based interfaces and modeling, pages 123—-130. ACM,
2007. 2

R. O. Duda and P. E. Hart. Use of the hough transfor-
mation to detect lines and curves in pictures. Commu-
nications of the ACM, 15(1):11-15, 1972. 2

M. Ghorai and B. Chanda. A robust faint line de-
tection and enhancement algorithm for mural images.
In Computer Vision, Pattern Recognition, Image Pro-
cessing and Graphics (NCVPRIPG), 2013 Fourth Na-
tional Conference on, pages 1-4. IEEE, 2013. 2

B. Li, Y. Lu, A. Godil, T. Schreck, M. Aono, H. Jo-
han, J. M. Saavedra, and S. Tashiro. SHREC’13 track:
large scale sketch-based 3D shape retrieval. 2013. 5,
6

D. G. Lowe. Object recognition from local scale-
invariant features. In International Conference on
Computer Vision, 1999, pages 1150-1157. IEEE,
1999. 3

G. Noris, A. Hornung, R. W. Sumner, M. Simmons,
and M. Gross. Topology-driven vectorization of clean
line drawings. ACM Transactions on Graphics (TOG),
32(1):4,2013. 2,5

N. Otsu. A threshold selection method from gray-level
histograms. Automatica, 11(285-296):23-27, 1975. 4

(8]

(9]

[11]

[14]

K. Pearson. Note on regression and inheritance in the
case of two parents. Proceedings of the Royal Society
of London, 58:240-242, 1895. 2

K. Saeed, M. Tabgdzki, M. Rybnik, and M. Adamski.
K3m: a universal algorithm for image skeletonization
and a review of thinning techniques. International
Journal of Applied Mathematics and Computer Sci-
ence, 20(2):317-335, 2010. 4

P. Sangkloy, N. Burnell, C. Ham, and J. Hays. The
sketchy database: Learning to retrieve badly drawn
bunnies. ACM Trans. Graph., 35(4):119:1-119:12,
July 2016. 5

P. J. Schneider. Graphics gems. chapter An Al-
gorithm for Automatically Fitting Digitized Curves,
pages 612-626. Academic Press Professional, Inc.,
San Diego, CA, USA, 1990. 4

E. Simo-Serra, S. lizuka, K. Sasaki, and H. Ishikawa.
Learning to Simplify: Fully Convolutional Networks
for Rough Sketch Cleanup. ACM Transactions on
Graphics (SIGGRAPH), 35(4), 2016. 1,2,5,6

C. Steger. An unbiased detector of curvilinear struc-
tures. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 20(2):113-125, 1998. 2

T. Zhang and C. Y. Suen. A fast parallel algorithm
for thinning digital patterns. Communications of the

ACM, 27(3):236-239, 1984. 4

2286

