
An Accurate System for Fashion Hand-drawn Sketches Vectorization

Luca Donati⋆ Simone Cesano† Andrea Prati⋆

⋆ IMP Lab - Department of Engineering and Architecture - University of Parma, Italy
† Adidas AG - Herzogenaurach, Germany

(a) Input sketch (b) AITM Live Trace (c) Simo-Serra et al. [12] (d) Our method

Figure 1: Visual comparison of three line extraction algorithms tested over a portion of a hand-drawn sketch (a). Our proposed method

(d) grants optimal “recall” performance compared to state of the art (Simo-Serra et al. [12] (c)), without bargaining its “precision”.

Traditional approaches like Adobe IllustratorTM Live Trace (b) fail greatly in both “precision” and “recall” performance, and need to be

manually fine tuned.

Abstract

Automatic vectorization of fashion hand-drawn sketches

is a crucial task performed by fashion industries to speed up

their workflows. Performing vectorization on hand-drawn

sketches is not an easy task, and it requires a first crucial

step that consists in extracting precise and thin lines from

sketches that are potentially very diverse (depending on the

tool used and on the designer capabilities and preferences).

This paper proposes a system for automatic vectorization

of fashion hand-drawn sketches based on Pearson’s Corre-

lation Coefficient with multiple Gaussian kernels in order

to enhance and extract curvilinear structures in a sketch.

The use of correlation grants invariance to image contrast

and lighting, making the extracted lines more reliable for

vectorization. Moreover, the proposed algorithm has been

designed to equally extract both thin and wide lines with

changing stroke hardness, which are common in fashion

hand-drawn sketches. It also works for crossing lines, ad-

jacent parallel lines and needs very few parameters (if any)

to run.

The efficacy of the proposal has been demonstrated on

both hand-drawn sketches and images with added artificial

noise, showing in both cases excellent performance w.r.t.

the state of the art.

1. Introduction

Hand-drawn sketches on raw paper are often the starting

point of many creative and fashion workflows. Later, the

prototype idea from the sketch needs to be converted in a

real world product, and at this point, converting the sketch

in a full-fledged vectorial image is a requisite. The first cru-

cial step of the vectorization process is to extract line posi-

tions and shapes, trying to be as much as possible precise

and invariant to image noise and contrast. Algorithms for

finding lines provided in the literature are either based on

a “straight-lines” assumption, that does not always hold in

the case of hand-drawn sketches, or they work for curvi-

linear lines but are fragile against noisy, real-world images.

After performing an accurate line extraction, vectorization

can be straightforwardly done using Bezier curves, result-

ing in a vectorized version of the sketch, suitable for further

steps (post-processing, fabric cutting, rendering for market-

ing, etc.).

Line extraction is an universal task that can be found in a

plethora of applications. It must often be both robust and

precise in extracting lines from 2D data. Unfortunately,

2280



in many real-world applications the 2D data available are

noisy and line extraction can be quite challenging. For this

reason, several methods in the literature have addressed this

problem. The most immediate approach to line extraction

is to work under a straight-lines assumption. Lines are ex-

pected to be straight, and models using that assumption are

created. They typically work in a parameter space, in which

they try to isolate and extract the most probable line loca-

tions in an image (e.g., the Hough transform [2]).

If the problem is more general, with curvilinear lines to

be found, creating parametric models may become harder.

Some proposals on this approach use derivative-based esti-

mations (Steger [13]). Other algorithms focus on obtaining

perfect results from clean images, using metrics like sub-

pixel Centerline Error (Noris et al. [6]). While these meth-

ods are very accurate with clear lines, such as those gen-

erated from a PC drawing table, or a very neat pen/pencil,

they cannot consistently operate with noisier data. Exam-

ples of noisy data are rough/dirty hand-drawn sketches or

ancient book’s text and drawings, corrupted by the time and

humidity and having rough background and faint lines. No-

tably, noisy, corrupted and missing data are common in real-

world applications. Other approaches have been proposed

to tackle this challenging problem. Most of the less recent

approaches proposed ad-hoc solutions, based, for instance,

on high-frequency filtering with computer vision operators,

adaptive thresholding, and many others. More recent ap-

proaches suggested solutions like Gabor filtering (Bartolo

et al. [1]), and other more sophisticated approaches based

on theories in the field of missing information and uncer-

tainty, such as [3, 12].

This paper presents a novel system for automatic vector-

ization of hand-drawn sketches based on multiple correla-

tion filters which has the distinguishing following aspects:

• the combination of multiple correlation filters allows

us to handle variable-width lines, which are common

in hand-drawn sketches;

• the use of Pearson’s Correlation Coefficient allows us

to handle variable-strength strokes in the image;

• even though the proposed algorithm has been con-

ceived for hand-drawn sketches of shoes or dresses,

it exhibits good generalization properties, showing to

be capable of achieving good accuracy also with other

types of images.

The rest of the paper is structured as follows. The next

section will briefly introduce the background about cross

correlation used in our system for accurate line extraction.

Section 3 will describe the overall system for vectorization,

with emphasis on the different steps of the system. Section

4 will present the experimental results, performed on both

fashion hand-drawn sketches and a specifically created new

dataset for comparison purposes. The last section will draw

the conclusions about our work.

2. Background about Cross Correlation

The key idea behind the proposed algorithm is to exploit

Pearson’s Correlation Coefficient (PCC, hereinafter) and its

properties to identify the parts of the image which resemble

a “line”, no matter the line width or strength. This section

will briefly introduce the background about PCC.

The näive Cross Correlation is known for expressing the

similarity between two signals (or images in the discrete 2D

space), but it suffers of several problems, i.e. dependency

on the sample average, the scale and the vector’s sizes. In

order to address all these limitations of Cross Correlation,

Pearson’s Correlation Coefficient (PCC) [8] can be used:

pcc(a, b) =
cov(a, b)

σaσb

(1)

where cov(a, b) is the covariance between a and b, and σa

and σb are their standard deviations. From the definition of

covariance and standard deviation, this can be re-written as

follows:

pcc(a, b) = pcc(m0a+ q0,m1b+ q1) (2)

∀q0,1 ∧ ∀m0,1 : m0m1 > 0. Eq. 2 implies invariance to

most affine transformations. Another strong point in favor

of PCC is that its output value is of immediate interpreta-

tion. In fact, −1 ≤ pcc(a, b) ≤ 1. pcc ≈ 1 means that

a and b are very correlated, whereas pcc ≈ 0 means that

they are not correlated at all. On the other hand, pcc ≈ −1
means that a and b are strongly inversely correlated (i.e.,

raising a will decrease b accordingly).

PCC has been used in image processing literature and in

some commercial machine vision applications, but mainly

as an algorithm for object detection and tracking. Its ro-

bustness derives from the properties of illumination and re-

flectance, that apply to many real-case scenarios involving

cameras. Since the main lighting contribution from objects

is linear, pcc will give very consistent results for varying

light conditions, because of its affine transformations invari-

ance (eq. 2), showing independence from several real-world

lighting issues.

Stepping back to our application domain, at the best of

our knowledge, this is the first paper proposing to use PCC

for accurate line extraction from hand-drawn sketches. In-

deed, PCC can grant us the robustness in detecting lines

also under severe changes in the illumination conditions, for

instance when images can potentially be taken from very

diverse devices, such as a smartphone, a satellite, a scan-

ner, an x-ray machine, etc.. Additionally, the “source” of

the lines can be very diverse: from hand-drawn sketches, to

fingerprints, to paintings, to corrupted textbook characters,

2281



etc.. In other words, the use of PCC makes our algorithm

generalized and applicable to many different scenarios.

3. Description of the System

3.1. Pearson’s Correlation Coefficient applied to im­
ages

In order to obtain the punctual PCC between an image

I and a (usually smaller) template T , for a given point

p = (x, y), the following equation can be used:

pcc(I, T, x, y) =

∑

j,k

(

Ixy(j, k)− uIxy

)

(T (j, k)− uT )
√

∑

j,k

(

Ixy(j, k)− uIxy

)

2 ∑

j,k (T (j, k)− uT )2

(3)

∀j ∈ [−Tw/2;Tw/2] and ∀k ∈ [−Th/2;Th/2], and where

Tw and Th are the width and the height of the template,

respectively. Ixy is a portion of image I with the same size

of T and centered around p = (x, y). uIxy
and uT are

the average values of Ixy and T , respectively. T (j, k) (and,

therefore, Ixy(j, k)) is the pixel value of that image at the

coordinates j, k computed from the center of that image.

It is possible to apply the punctual PCC from eq. 3 to

all the pixels of the input image I (except for border pix-

els). This process will produce a new image which repre-

sents how well each pixel of image I resembles the tem-

plate T . In the remainder of the paper, we will call it PCC.

It is worth remembering that PCC(x, y) ∈ [−1, 1], ∀x, y.

To perform just this computation, the input grayscale im-

age has been inverted; in sketches usually lines are darker

than white background, so inverting the colors gives us a

more “natural” representation to be matched with a positive

template/kernel.

3.2. Template/Kernel for extracting lines

Our purpose is to extract lines from the input image.

To achieve this, we apply PCC with a suitable template,

or kernel. Intuitively, the best kernel to be used to find

lines would be a sample approximating a “generic” line. A

good generalization of a line might be a 1D Gaussian ker-

nel replicated over the y coordinate, i.e. KLine(x, y, σ) =
gauss(x, σ).

This kernel achieves good detection results for sim-

ple lines, which are composed of clear (i.e., well separa-

ble from the background) and separated (from other lines)

points. Unfortunately, this approach can give poor re-

sults in the case of multiple overlapping or perpendicularly-

crossing lines. In particular, when lines are crossing, just the

“stronger” would be detected around the intersection point.

If both lines have about the same intensity, both lines would

be detected, but with an incorrect width (extracted thinner

than they should be).

Considering these limitations, a full symmetric

2D Gaussian kernel might be more appropriate, also

considering the additional benefit of being isotropic:

KDot(x, y, σ) = gauss(x, σ) · gauss(y, σ).
This kernel has proven to solve the concerns raised with

KLine. In fact, it resembles a dot, and considering a line

as a continuous stroke of dots, it will approximate our prob-

lem just as well as the previous kernel. Moreover, it be-

haves better in line intersections, where intersecting lines

become (locally) T-like or plus-like junctions, rather than

simple straight lines. Unfortunately, this kernel will also be

more sensitive to noise (e.g. paper roughness, “dirt”, erased

traits), so the system will need a better post-processing

phase to filter out unwanted background.

3.3. Achieving size invariance

One of the major objectives of this method is to detect

lines without requiring finely-tuned parameters or custom

“image-dependent” techniques. We also aim at detecting

both small and large lines that might be mixed together as

happens in many real drawings. In order to achieve invari-

ance to variable line widths, we will be using kernels of

different size.

We will generate N Gaussian kernels, each with its σi.

In order to find lines of width w, a sigma of σi = w/3
would work, since a Gaussian kernel gives a contribution of

about 84% of samples at 3 · σ.

We follow an approach similar to the scale-space pyra-

mid used in SIFT detector [5]. Given wmin and wmax

as, respectively, the minimum and maximum line width

we want to detect, we can set σ0 = wmin/3 and

σi = C · σi−1 = Ci · σ0, ∀i ∈ [1, N − 1], where N =
logC(wmax/wmin), and C is a constant factor or base (e.g.,

C = 2). Choosing a different base C (smaller than 2) for

the exponential and the logarithm will give a finer granular-

ity.

The numerical formulation for the kernel will then be:

KDoti(x, y) = gauss(x−Si/2, σi) · gauss(y−Si/2, σi)
(4)

where Si is the kernel size and can be set as

Si = next_odd(7 · σi).
This generates a set of kernels that we will call KDots.

We can compute the correlation image PCC for each

of these kernels, obtaining a set of images PCCdots,

where PCCdotsi = pcc(Image,KDotsi) with pcc com-

puted using eq. 3.

3.4. Merging results

Once the set of images PCCdots is obtained, we need to

merge the results in a single image that can uniquely express

the probability of line presence for a given pixel of the input

image. This merging is obtained as follows:

MPCC(x, y) =

{

maxPCCxy , if |maxPCCxy | > |minPCCxy |

minPCCxy , otherwise

(5)

2282



where

minPCCxy = min
∀i∈[0,N−1]

PCCdotsi(x, y),

maxPCCxy = max
∀i∈[0,N−1]

PCCdotsi(x, y).

Given that −1 ≤ pcc ≤ 1 for each pixel, where ≈ 1
means strong correlation and ≈ −1 means strong inverse

correlation, eq. 5 tries to retain the most confident decision:

“it is definitely a line” or “it is definitely NOT a line”.

By thresholding MPCC of eq. 5, we obtain a binary im-

age called LinesRegion. The threshold has been set to 0.1

in all our experiments.

3.5. Post­processing Filtering

The binary image LinesRegion will unfortunately still

contain incorrect lines due to the random image noise.

Some post-processing filtering techniques can be used, for

instance, to remove too small connected components, or to

delete those components for which the input image is too

“white” (no strokes present, just background noise).

For post-processing hand-drawn sketches, we first apply

a high-pass filter to the original image, computing the me-

dian filter with window size s > 2 · wmax and subtracting

the result from the original image value. Then, by using the

well-known Otsu method [7], the threshold that minimizes

black-white intra class variance can be estimated and then

used to keep only the connected components for which the

corresponding gray values are lower (darker stroke color)

than this threshold.

3.6. Thinning

The filtered binary image LinesRegion now contains

only accurate and cleaned line shapes. In order to pro-

ceed towards the final vectorization step, an intermediate

phase is necessary: thinning. Thinning is an algorithm that

transforms a generic binary image (shape) in a set of one-

pixel-wide lines. This is highly desirable for the final vec-

torization step. We decided to stick with the rather stan-

dard thinning implementation from Zhang and Suen [14].

Their algorithm is fast enough for our purpose, and it pro-

duces thinned lines that can be 1 pixel or 2 pixels wide. An

erosion-like mask is then applied to obtain the desired sin-

gle pixel wide skeleton, called LinesSkeleton.

Zhang-Suen’s thinning algorithm (like many other thin-

ning algorithms) produces somewhat biased skeletons when

reducing steep angles. If the application needs high preci-

sion over strong angles an unbiased thinning algorithm (see

Saeed et al. review of thinning methods [9]) could improve

the extraction. Further enhancements to the skeleton (such

as pruning and edge linking) are possible but not treated

here.

3.7. Vectorization

The final step is vectorization, that involves transform-

ing the obtained LinesSkeleton in a full-fledged vectorial

image representation. The simplest and most standard vec-

torial representation exploits Bezier curves. A cubic Bezier

curve can be described by four points (P0, P1, P2, P3) as

follows:

B(t) = (1−t)3P0+3(1−t)2tP1+3(1−t)t2P2+t3P3 (6)

where the curve coordinates can be obtained varying t from

0 to 1. If the curve to be approximated is simple, a sin-

gle Bezier curve may be enough, otherwise it is possible to

concatenate many Bezier curves to represent any curvilinear

line with arbitrary precision.

To approximate our LinesSkeleton we decided to use

an adapted version of the fitting algorithm from Schneider

[11]. Schneider’s algorithm will accept a curve at a time,

not the whole sketch, therefore LineSkeleton must be split

in single curve segments, called paths. A path is simply

defined as a consecutive array of 2D coordinates:

path : (x0, y0), (x1, y1), . . . (xn, yn) (7)

These coordinates will be obtained taking each “white”

pixel coordinates from the input “thinned” image

LineSkeleton. A path can be further grouped in two

classes: closed paths (e.g., circles) and open paths (paths

for which the first and last point do not coincide). Paths can

be stand-alone paths, or connected with other paths via a

“junction”. In this case, each one is considered separately.

Schneider’s algorithm works only for open paths, but it is

easy to extend and use it for closed paths.

The algorithm will approximate an input path, producing

as its output one or more Bezier curves. Each Bezier curve

will be described by the four points P0, P1, P2, P3. This al-

gorithm uses an iterative approximation method, so it can

be parametrized to obtain more precision or more smooth-

ing (and different time complexity).

By doing this Bezier approximation for each path in

LinesSkeleton we obtain the final complete image vec-

torization. Some example outputs can be seen in Fig. 2.

4. Experimental Results

In order to assess the accuracy of the proposed method,

we performed an extensive evaluation on different types of

images. First of all, we have used a large dataset of hand-

drawn shoe sketches (courtesy of Adidas AGTM). These

sketches have been drawn from expert designers using dif-

ferent pens/pencils/tools, different styles and different back-

grounds (thin paper, rough paper, poster board, etc.). Each

image has its peculiar size and resolution, and has been

taken from scanners or phone cameras.

2283



(a) (b) (c) (d)

Figure 2: Examples of full vectorizations perfromed by our system. An Adidas AGTMfinal shoe sketch (a), (b), and a much dirtier, low

resolution, preparatory fashion sketch (c), (d).

(a) (b) (c) (d)

Figure 3: Examples of the “inverse dataset” sketches created from

SHREC13 [4].

In addition to that dataset, we also created our own

dataset. The motivation relies in the need for a quantita-

tive (together with a qualitative or visual) evaluation of the

results. Manually segmenting complex hand-drawn images

such as that reported in Fig. 4, last row, to obtain the ground

truth to compare with, is not only tedious, but also very

prone to subjectivity. With these premises, we searched for

large and public datasets (possibly with an available ground

truth) to be used in this evaluation. One possible solution is

the use of the SHREC13 - “Testing Sketches” dataset [4], al-

ternatives are Google Quick Draw and Sketchy dataset [10].

SHREC13 contains very clean, single-stroke “hand-drawn”

sketches (created using a touch pad or mouse), such as those

reported in Figs. 3a and 3c. It is a big, representative

database: it contains 2700 sketches divided in 90 classes

and drawn by several different authors. Unfortunately, these

images are too clean to really challenge our algorithm, re-

sulting in almost perfect results. The same can be said for

Quick Draw and Sketchy datasets. To fairly evaluate the

ability of our algorithm to extract lines in more realistic sit-

uations, we have created a “simulated” dataset, called in-

verse dataset. We used the original SHREC13 images as

ground truth and processed them with a specifically-created

algorithm (not described here) with the aim of “corrupting”

them and recreating as closely as possible different draw-

ing styles, pencils and paper sheets. More specifically, this

algorithm randomly selects portions of each ground truth

image, and moves/alters them to generate simulated strokes

of different strength, width, length, orientation, as well as

multiple superimposed strokes, crossing and broken lines,

background and stroke noise. The resulting database has

the same size as the original SHREC13 (2700 images), and

each picture has been enlarged to 1 MegaPixel to better sim-

ulate real world pencil sketches. Example results (used as

inputs for the experiments) are reported in Figs. 3b and 3d.

At this point we performed visual/qualitative compar-

isons of our system with the state-of-the-art algorithm [12]

using various input images. Results are reported in Figs. 1

and 4. It is rather evident that our method performs better

than the above method in complex and corrupted areas.

To obtain quantitative evaluations we used the “inverse

dataset” and compared our extraction results on it with two

other algorithms: the one presented by Simo-Serra et al.

in [12] and the Adobe IllustratorTM’s tool “Live Trace”.

As performance metrics, we used precision and recall in

line extraction and the mean Centerline Distance, similar

to the notion of Centerline Error used in [6]. The results

are shown in Table 1. Our method outperforms Live Trace

and strongly beats Simo-Serra et al. [12] in terms of recall,

while nearly matching its precision. This can be explained

by the focus we put in designing a true image color/contrast

invariant algorithm, also designed to work at multiple res-

olutions and stroke widths. Simo-Serra et al. bad “re-

call” performance is probably influenced by the selection

of training data (somewhat specific) and the data augmenta-

tion they performed with Adobe IllustratorTM (less general

than ours). This results in a global F-measure of 97.8% for

our method wrt 87.0% of [12]. It is worth saying that Simo-

Serra et al. algorithm provides better results when applied

to clean images; unfortunately, it shows sub-optimal results

applied to real shoes sketches (as shown in Fig. 4, last row).

2284



(a) Input sketch (b) AITM Live Trace (c) Simo-Serra et al. [12] (d) Our method

(e) Input sketch (f) AITM Live Trace (g) Simo-Serra et al. [12] (h) Our method

(i) Input sketch (j) AITM Live Trace (k) Simo-Serra et al. [12] (l) Our method

Figure 4: Examples of line extractions from a commercial tool (b), (f), (j), the state of the art algorithm (c), (g), (k), and our method (d),

(h), (l). In detail: an image from our inverse dataset (a); a man’s portrait art (e), author: Michael Bencik - Creative Commons 4; a real

Adidas AGTMhand drawn design (i)

Finally, we compared the running times of these algo-

rithms. We run our algorithm and “Live Trace” using an

Intel Core i7-6700 @ 3.40Ghz, while the performance from

[12] has been extracted from that paper. The proposed al-

gorithm is much faster than Simo-Serra et al. method (0.64

sec on single thread instead of 19.46 sec on Intel Core i7-

5960X @ 3.00Ghz using 8 cores), and offers performance

within the same order of magnitude as Adobe IllustratorTM

Live Trace’s one (which on average took 0.5 sec).

Precision Recall Center. Dist.

Our method 97.3% 98.4% 3.58 px

Simo-Serra et al. [12] 98.6% 77.9% 4.23 px

Live Trace 85.0% 83.8% 3.73 px

Table 1: Accuracy of the three implementations over the inverse

dataset generated from SHREC13 [4] (2000+ images).

5. Conclusions

Within the complete system for automatic sketch vec-

torization, the proposed algorithm for line extraction has

proven its high accuracy by an extensive evaluation on both

“real-world” sketches and a challenging, generated large

dataset. It showed the nice property to reconstruct noisy and

missing data from images with very different stroke styles,

crossing lines, different line strengths and widths, and var-

ious noise. In the quantitative comparison, the proposed

approach shows the highest recall, confirming its ability to

handle complex, missing or corrupted data. Finally, the pro-

posed approach showed to be much faster than other ap-

proaches. Possible future directions include to further speed

up the approach (exploiting the highly parallelizable algo-

rithms) and to extend and improve it by changing the kernel

and/or the merging strategy. This research has been fully

funded by Adidas AGTMto which we are very grateful.

2285



References

[1] A. Bartolo, K. P. Camilleri, S. G. Fabri, J. C. Borg,

and P. J. Farrugia. Scribbles to vectors: preparation

of scribble drawings for cad interpretation. In Pro-

ceedings of the 4th Eurographics workshop on Sketch-

based interfaces and modeling, pages 123–130. ACM,

2007. 2

[2] R. O. Duda and P. E. Hart. Use of the hough transfor-

mation to detect lines and curves in pictures. Commu-

nications of the ACM, 15(1):11–15, 1972. 2

[3] M. Ghorai and B. Chanda. A robust faint line de-

tection and enhancement algorithm for mural images.

In Computer Vision, Pattern Recognition, Image Pro-

cessing and Graphics (NCVPRIPG), 2013 Fourth Na-

tional Conference on, pages 1–4. IEEE, 2013. 2

[4] B. Li, Y. Lu, A. Godil, T. Schreck, M. Aono, H. Jo-

han, J. M. Saavedra, and S. Tashiro. SHREC’13 track:

large scale sketch-based 3D shape retrieval. 2013. 5,

6

[5] D. G. Lowe. Object recognition from local scale-

invariant features. In International Conference on

Computer Vision, 1999, pages 1150–1157. IEEE,

1999. 3

[6] G. Noris, A. Hornung, R. W. Sumner, M. Simmons,

and M. Gross. Topology-driven vectorization of clean

line drawings. ACM Transactions on Graphics (TOG),

32(1):4, 2013. 2, 5

[7] N. Otsu. A threshold selection method from gray-level

histograms. Automatica, 11(285-296):23–27, 1975. 4

[8] K. Pearson. Note on regression and inheritance in the

case of two parents. Proceedings of the Royal Society

of London, 58:240–242, 1895. 2

[9] K. Saeed, M. Tabędzki, M. Rybnik, and M. Adamski.

K3m: a universal algorithm for image skeletonization

and a review of thinning techniques. International

Journal of Applied Mathematics and Computer Sci-

ence, 20(2):317–335, 2010. 4

[10] P. Sangkloy, N. Burnell, C. Ham, and J. Hays. The

sketchy database: Learning to retrieve badly drawn

bunnies. ACM Trans. Graph., 35(4):119:1–119:12,

July 2016. 5

[11] P. J. Schneider. Graphics gems. chapter An Al-

gorithm for Automatically Fitting Digitized Curves,

pages 612–626. Academic Press Professional, Inc.,

San Diego, CA, USA, 1990. 4

[12] E. Simo-Serra, S. Iizuka, K. Sasaki, and H. Ishikawa.

Learning to Simplify: Fully Convolutional Networks

for Rough Sketch Cleanup. ACM Transactions on

Graphics (SIGGRAPH), 35(4), 2016. 1, 2, 5, 6

[13] C. Steger. An unbiased detector of curvilinear struc-

tures. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 20(2):113–125, 1998. 2

[14] T. Zhang and C. Y. Suen. A fast parallel algorithm

for thinning digital patterns. Communications of the

ACM, 27(3):236–239, 1984. 4

2286


