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Abstract

In clothing and particularly in footwear, the variance in

the size and shape of people and of clothing poses a problem

of how to match items of clothing to a person. 3D scanning

can be used to determine detailed personalized shape infor-

mation, which can then be used to match against clothing

shape. In current implementations however, this process

is typically expensive and cumbersome. Ideally, in order

to reduce the cost and complexity of scanning systems as

much as possible, only a single image from a single cam-

era would be needed. To this end, we focus on simplifying

the process of scanning a person’s foot for use in virtual

footwear fitting. We use a deep learning approach to al-

low for whole foot shape reconstruction from a single input

depth map view by synthesizing a view containing the re-

maining information about the foot not seen from the input.

Our method directly adds information to the input view, and

does not require any additional steps for point cloud align-

ment. We show that our method is capable of synthesizing

the remainder of a point cloud with accuracies of 2.92±0.72

mm.

1. Introduction

In clothing and in particular in footwear, there are nu-

merous brands and models that come in all shapes and sizes.

Similarly, the shapes of individuals can be just as varied. In

footwear, the complex shapes involved make pairing a per-

son to a product challenging, something that is important as

fit largely determines performance and comfort. Currently

the primary and often only indicator used to specify fit is

shoe size, which is not sufficient to fully characterize the

profile of a shoe or a foot [8]. Additionally not every type

of shoe, regardless of size, will fit every person the same

way. In foot morphology, foot shape is complex and in-

cludes measures for various lengths, widths, girths and an-

gles [7]. Due to this, it is not straightforward to determine

Figure 1. Depth camera pose configuration.

how footwear will fit from the size alone, which for example

poses a particular challenge in online shopping. Fit estima-

tion could be improved by virtually fitting a precisely mea-

sured 3D foot shape model with a 3D shoe cavity. In this

way, a single foot model could be compared against whole

catalogues of footwear to find the best fit.

In order to achieve this, 3D scanning can be used to mea-

sure foot shape beyond a simple shoe size. Systems such as

the Vorum Yeti1 and the Volumental scanner2 already ex-

ist, however they are not very common and tend to be ex-

pensive or cumbersome to operate. In recent years, RGBD

cameras have generated a lot of interest in 3D scanning

as they are affordable and easy to operate while providing

sufficiently accurate depth maps. Various RGBD scanning

techniques have been developed such as using a single mov-

ing camera’s video [13], and using multiple stationary cam-

eras [2, 10]. In either case, multiple images of the subject

being scanned are required to be taken from various view-

points covering all surfaces. When using RGBD cameras

to scan a person however, artifacts from any movement, or

from overlapping projector patterns from multiple cameras

can complicate the process. Ideally, to maximize simplicity,

1vorum.com/footwear/yeti-3d-foot-scanner
2volumental.com
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only a single camera image from a single instance in time

would be needed. This would require that an overall object

shape be captured from a single RGBD image from a single

viewpoint.

Towards this goal, statistical models can be used to re-

duce the number of parameters needed to sufficiently recon-

struct the overall foot shape [11, 12]. Similarly, a number of

methods have been explored to create parameterized mod-

els of whole bodies [1, 16, 24]. These can be leveraged in

learning methods to determine a mapping from an image or

images to a set of parameters used to reconstruct a model

from a template [5, 6]. The disadvantage to these meth-

ods however is that they rely on accurate measurements

of predefined parameters that characterize the object being

scanned. Accurate measurements of anthropomorphic body

parts often require skill and patience, and are not as scal-

able as learning shape directly. In working with 3D struc-

ture directly, limited inputs can be used to build models in

voxel volume representations [3, 4, 17, 20]. This 3D infor-

mation can be operated on directly by deep neural networks

through 3D convolution, however the complexity of these

computations limits their resolutions, usually to 32x32x32

or less.

Another approach used to extrapolate information about

an object is known as view synthesis, where the goal is

to synthesize a novel view or views of an object or scene

when given a single or set of arbitrary views. In deep learn-

ing, view synthesis systems can operate on 2D images, al-

lowing for higher resolutions than voxel representations. A

number of implementations exist that focus on RGB views

[15, 22, 23], however it is difficult to extract 3D models us-

ing these techniques. In order to more easily work with 3D

structure in view synthesis, a depth map view such as those

provided by an RGBD camera can be used, as was done in

work by Tatarchenko et al. [19]. Using a depth map allows

for operations to take place on a point cloud, which can later

be used to extract object shape.

We follow a deep learning view synthesis approach to

capture full anthropomorphic body part shape from a sin-

gle depth map input viewpoint. We used mesh data from

MPII Human Shape [16] based on the CAESAR database

[18], and focus on the application of foot scanning for vir-

tual footwear fitting. In our approach we take advantage of

the shape of a foot to select specific views that maximize

our ability to reconstruct an overall foot point cloud from

as few synthesized views as possible. We also introduce a

way to synthesize a missing object view without the need to

align the new view to that of the input when reconstructing

the overall point cloud.

2. Proposed Method

We frame the problem of completing a limited foot scan

point cloud as a depth map view synthesis problem. We

Figure 2. Depth map input/output configuration. Red: points from

the input depth map, Blue: points from the synthesized output

depth map.

leverage the power of deep learning to implicitly learn foot

shape and the relationships in how it can appear between

views. Our depth map view configuration is shown in Fig-

ure 1. A foot is placed at the origin, such that depth map

images can be taken from camera poses at various azimuth,

elevation and roll angles, as well as at varying radii.

Unlike general view synthesis problems, we restrict our

input views to be only profile views of the foot rather than

any arbitrary view. The profile of a foot contains a signifi-

cant amount of information about overall shape [12], which

a learning system can take advantage of. Additionally, our

synthesized output views are always of the surface on the

direct opposite side of the foot from the camera, produced

as if it could be seen through the near side of the foot as

shown in Figure 2. Due to how feet are shaped, these two

opposite profile views of the foot contain the vast majority

of points on the object’s surface, as the foot has minimal self

occlusions along this direction. In framing the problem in

this way, the synthesized depth map can also be re-projected

to the same coordinate system as the input view to produce

a near complete point cloud of the foot surface without the

need for any extrinsic parameters or alignment.

2.1. Dataset

Our network was trained using the meshed models from

MPII Human Shape [16]. These meshes were created by

fitting a statistical model of 3D human shape to full body

scans from the CAESAR database [18]. We use the 4301

models that were fit using the posture normalization algo-

rithm from Wuhrer et al. [21]. Each model consists of 6449

vertex points, with about 800 in each foot up to the knee.

The MPII Human Shape models are technically a parame-

terized representation of shape, however these parameters

were not used anywhere in our method, such that our net-
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Figure 3. Meshed foot objects from MPII Human Shape [16].

Pose Parameter Value Range Step

Radius (mm) 640 to 700 15

Azimuth (deg) 70 to 110 or 250 to 290 1

Elevation (deg) -20 to 20 1

Roll (deg) -5 to 5 1

Table 1. Camera pose parameters for the network input.

work would learn its own representations of shape.

For each body model in the dataset, the points associated

with the left and right feet up to the knee were separated.

We then moved the origin to the center of the second toe

and the heel. Following this process provided 8602 meshed

foot objects for use in training our network, foot object sam-

ples are shown in Figure 3. We used Panda3D3 to render

depth map images of the foot objects at a size of 128x128,

from the camera poses described in Table 1. The variations

in camera poses used were intended to teach the network to

handle cases of imperfect camera mounting rather than only

dealing with perfect profile views. We additionally add ran-

dom noise to the input depth maps using the Kinect noise

model by Nguyen et al. [14].

2.2. Implementation Details

Our basic network architecture is similar to that by

Tatarchenko et al. [19]. We use a deep convolutional de-

convolutional neural network with fully connected layers in

the middle to process an input depth map and synthesize an

output depth map as shown in Figure 4. We train directly

on a one channel depth map input, to produce a one chan-

nel depth map output. In this implementation, we do not

incorporate any color information that would be present in

a typical RGBD image.

When reconstructing the complete point cloud, we re-

project the input depth map and the synthesized output

depth map using the same camera parameters, as they are

3panda3d.org

Figure 4. Network architecture.

already aligned. We also remove outliers and clean the point

clouds using 3D cropping and MATLAB’s pcdenoise func-

tion. Merging the points from the input and synthesized

output produces a near complete foot point cloud.

Our dataset of 8602 feet was split into 80% train and

20% test, and was separated by individuals such that both

of a persons feet would stay within the same set. We im-

plemented our network in Tensorflow4 on a Linux machine

running an Nvidia K80 GPU. Training was done using a

mini batch size of 64 and the Adam optimizer [9] with a

learning rate of 5e-5. Our loss function was the mean L1

distance between the output depth map pixel values and the

ground truth pixel values.

3. Results

Our test set is comprised of 1720 foot objects that were

not used in training. For each of the test objects, we gener-

ated 64 input-output pairs using the same camera pose pa-

rameters used in training. After 1,300,000 training itera-

tions, our loss on the test set was 0.00541. Samples of syn-

thesized depth map results are shown in Figure 5, along with

the distribution of error within the depth maps. Looking at

the error distributions, it can be seen that a large portion

of the error is due to pixels on the foot outline. It appears

that the network is uncertain whether pixels in these regions

would be a part of the background or of the foot.

3.1. Point Cloud Results

We separately evaluate our network’s synthesized depth

maps in the context of generating a complete point clouds of

entire feet. Each depth map from the test set is re-projected

4tensorflow.org
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Figure 5. Sample depth map results. First row: input depth map,

Second row: ground truth, Third row: synthesized output depth

map, Fourth row: output depth map error.

to a point cloud in mm units. Sample point clouds are shown

in Figure 6, compared with the ground truths.

We measure point cloud error in a method similar to that

used by Luximon et al. [11], who parameterized a foot point

cloud using a statistical model. Our measure is a two direc-

tional nearest neighbor euclidean distance metric that spec-

ifies the overall similarity between point clouds.

We calculate esyn,i as the error of point psyn,i in the

synthesized point cloud to the ground truth, by calculating

its euclidean distance to the nearest point in the ground truth

point cloud using the following equation:

esyn,i = minj‖psyn,i − pgt,j‖2. (1)

Similarly we calculate egt,j as the error of point pgt,j

in the ground truth to the synthesized point cloud, by cal-

culating its euclidean distance to the nearest point in the

synthesized point cloud using the following equation:

egt,j = mini‖pgt,j − psyn,i‖2 (2)

We normalized these measures using the number of

points in each cloud, then averaged the normalized mea-

sures to form the overall error of our point cloud using the

following equation:

etotal =

1

N

∑
i esyn,i +

1

M

∑
j egt,j

2
(3)

Figure 6. Sample point cloud results. First row: ground truth, Sec-

ond row: synthesized point cloud. Red: input depth map points,

Blue: ground truth/synthesized output depth map points.

where N and M are the number of points in the synthesized

and ground truth point clouds respectively, and etotal is the

total error reported for a point cloud.

Using this measure, we found that across all the images

in our test set, our method produced points clouds with an

average error of 2.92 mm with a standard deviation of 0.72

mm. Looking more closely at Figure 6, it can be seen that

the synthesized point clouds perform accurately in areas

that are dense with points, such as along the side of the foot,

but has more difficulty producing points in sparse regions,

such as along the top and bottom of the foot. These sparse

regions corresponded to the high error points along the out-

lines of the depth maps and always occur in these areas as a

by-product of how we chose our camera poses. We can ad-

ditionally see the seam between the input and synthesized

point clouds. This seam occurs along the surface of the foot

that is at very high angles to the depth map camera, where

reliable depth measurements cannot be taken by the input

camera [14] and where the synthesis network becomes un-

certain.

4. Discussions and Conclusions

We have presented a novel method for leveraging deep

learning to perform 3D foot scanning from a single depth

map input view. Our network was successfully able to

learned 3D shape and determine the missing information
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required to accurately generate a near complete point cloud

representation of a foot from a single depth map. Our

method was found to have a reconstruction accuracy of

2.92±0.72 mm, which is more precise than the 4.23 mm

half size increment used in the English and American shoe

sizing systems, however it may not be accurate to the half

sizes of 3.33 mm in the European sizing system [7].

Our method allows for foot scanners to avoid many of the

complications associated with multi-camera and moving-

camera systems such as extrinsic calibration, point cloud

alignment, slow opperation, mechanical complexity and

high cost. Due to its ability to require only a single input

view, scanners can be made significantly cheaper and faster

at capturing shape. The simplicity of our scanning method

could make scanners far more accessible than current prod-

ucts on the market, and allow for more widespread use of

scanning for footwear matching. This method also has po-

tential in applications such as analysis of foot dynamics and

loading from video, which can be useful in determining fit

during motion and in footwear design.

When comparing with other forms of deep learning view

synthesis for object reconstruction, our method is signifi-

cantly simpler. We focused on how our network can sup-

plement the existing data from the input depth map. By

taking advantage of the general shape of a foot, we found

that only a single additional view would be sufficient to re-

construct overall shape, requiring only a single forward pass

of our network. Additionally, due to how we synthesize the

additional view’s depth map pixels from the same camera

pose as the input, no additional steps to align the synthe-

sized view with the original input are required to reconstruct

the foot.

Despite our methods potential, there are limitations that

make it less practical than traditional RGBD scanning meth-

ods in some aspects. The synthesized depth map is only an

estimate and is not as accurate as a true scan taken from

the same view, which would contain true information about

shape. Our method will also not correctly reconstruct a foot

in cases where for example there is for whatever reason

some unique features on the side not seen by the camera

with no indicating features on the surface that is seen by the

camera. Our method also takes advantage of foot shape to

select the two depth maps views used. For more complex

objects with more self occlusions, a different implementa-

tion would be required to capture the whole surface. For

these reasons, our method is not necessarily generally ap-

plicable and will not be practical as a replacement of tradi-

tional scanning techniques in all cases. In our application

however, for most feet this method is sufficient to capture

shape for use in virtual fitting.

In future works, we plan to investigate changes in net-

work architecture as well as additional methods of pre-

processing and post-processing the data to improve accu-

racy. We also plan to explore how color cameras could

be used in single view scanning, as they are significantly

cheaper, more readily available and often have higher reso-

lutions than RGBD depth maps.
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