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Abstract

We present an approach to detect the main product in
fashion images by exploiting the textual metadata associ-
ated with each image. Our approach is based on a Con-
volutional Neural Network and learns a joint embedding of
object proposals and textual metadata to predict the main
product in the image. We additionally use several comple-
mentary classification and overlap losses in order to im-
prove training stability and performance. Our tests on a
large-scale dataset taken from eight e-commerce sites show
that our approach outperforms strong baselines and is able
to accurately detect the main product in a wide diversity of
challenging fashion images.

1. Introduction

Most of current commercial transactions occur online.
Every modern shop with growing expectations presents to
their potential customers the option of buying some or part
of the products in their online catalogs. For instance, 92%
of the U.S. Christmas shoppers went online on holidays
2016, a 16.6% more than the same period in 2015 [1].

The way the products are presented to the customer is
a key factor to increase online sales. In the case of fash-
ion e-commerce, a specific item being sold is normally
depicted worn by a model and tastefully combined with
other garments to make it look more attractive. Existing
approaches for recommendation or retrieval focus on im-
ages only, and normally require hard-to-obtain datasets for
training [7], omitting the metadata associated with the e-
commerce products such as titles, colors, series of tags, de-
scriptions, etc. that can be used to improve the information
obtained from the images.

In this work, we propose to leverage this metadata in-
formation to select the most relevant region in an image,
or more specifically, to detect the main product in a fash-
ion image that might contain several garments. This allows
us to subsequently train specific product classifiers, which
do not need to be fed with the whole image. Additionally,
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Figure 1: Overview of our proposed method: from a fashion
e-commerce image and its associated textual metadata, we
extract several bounding box proposals and select the one
that represents the main product being described in the text.

this process can also be used as a first step in tasks like vi-
sual question answering or, together with customer behav-
ior data, to extract useful information relating the type of
images in an e-commerce and its sales.

Our approach consists of a first step to extract descriptors
of object proposals, that are then used to train joint textual
and image embedding. The distances between descriptors
in this common latent space are then used to retrieve the
main product of each specific image as the closest object
proposal to the textual information.

We train our method with images of individual garments
and evaluate it in a different dataset of images of models
wearing the clothes, and it is able to detect a region with
an exigent 70% overlap with the ground truth in more than
80% of the cases among the top-3 bounding box proposals.

2. State of the Art

Our work focuses on the combination of textual and vi-
sual information applied to the task of specific object detec-
tion (fashion items for our specific case), therefore it lies in
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Figure 2: The three different network architectures used in the paper. Gray layers remain constant for all the architectures
(i.e., the text branch (D) and a few layers before each loss function). Blue parts correspond to architectures using images as
input (both full image (A) and cropped bounding boxes (B) flow through the same layers), and green parts correspond to the
architecture using bounding box descriptors as input. These descriptors are the output of the frozen first layers of the AlexNet

architecture, so in case (C) the image branch of the network is only trained from the first green layer.

between the fields of multi-modal embedding, object detec-
tion and phrase localization.

Fashion is a predominantly visual world, which has
led many researchers in the past years to apply Computer
Vision techniques to solve specific fashion tasks. Com-
mon examples are clothing classification or retrieval [3,
2, 23], clothing parsing (i.e., semantically label each im-
age pixel) [29, 21, 4, 15] or higher level tasks such as
evaluating style or deducting people’s occupation or social
tribe [24, 11, 28,22, 17].

Many recent works focus on generic (not fashion-
specific) multi-modal embeddings for images and text, most
of them oriented to automatic multi-labelling of images.
DeViSe [5] or ConSE [19], for instance, are text and im-
age embeddings created by using labels from ImageNet and
devoted to this task. In MIE [20] the authors use geodesic
object proposals [12] to automatically generate multiple la-
bels for images based on meaningful subregions. This ap-
proach is similar to our approach in the fact that they find
the minimum distance between proposed image regions and
texts. Nevertheless, their text data consists of simple Ima-
geNet labels, and they retrieve those labels that are closest
to a specific image region, while we find the image region
closest to a rich textual description. Furthermore, we base
oun approach on a much faster algorithm in [31] to generate
the proposals.

Other works try to acquire a deeper understanding of
the available textual information. The embedding in [9]
is created to explicitly enforce class-analogy preservation.
In [26], they deal with the task of image-sentence retrieval
using whole images and in the final experiments of the pa-
per they face the phrase localization task on the Flickr30K
Entities dataset. They use the same basic idea of two net-
work branches (one for images, one for texts) connected
with a margin loss, but we incorporate the classification in-
formation to the gradients of the network, while they only
enforce the ranking task with combined hinge loss func-
tions. In [14], they propose a two-step process where they
first train a network with multi-labeled images and then use
this trained network to mine top candidate image regions
for the labels. The work of [27] is devoted to the structured
matching problem, studying semantic relationships between
phrases and relating them to regions of images. Some other
works focus on Visual Question Answering [30], taking the
goal of image region importance according to text a step
further, using it to generate a proper answer to a ques-
tion. While these works focus on many-to-many correspon-
dences, i.e. relating parts of sentences to regions of images,
our work tries to associate all the available textual meta-
data to only one region of the image, simulating the poten-
tial problem we are dealing with: receiving images and text
from fashion e-commerces and detecting the product being
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sold among all the products on the images.

3. Method

Our goal is to detect the main product corresponding to
the product being sold in a fashion image. We consider
the case where the image contains several other garments
and has additional metadata associated to it. We will solve
this problem creating a common embedding for images and
texts, and then finding the bounding box whose embedded
representation is closest to the representation of the text. In
order to do so, we explore different architectures and combi-
nations of artificial neural networks. Next, we describe the
different approaches that we incrementally propose, stating
the pros and cons of each one of them.

3.1. Common parts

Three elements of our method remain unchanged
through all the following architectures: the contrastive loss,
the classification losses, and the branch that transforms the
textual information into an embedded vector.

Contrastive loss: we use the loss function described by
Hadsell et al. [8] in order to embed the image and text de-
scriptors in the same space so we can compute distances
between them. This is the keystone of our method, which
makes both types of input data comparable. This loss is
expressed as:

Le(vr,vr,y) = (1—y)5 (lor — vrll2)?

N =

+ () (max (0,m — flor — vrl2)* - (1)
where y is the label indicating whether the two vectors vy
and v, corresponding to image and text descriptors respec-
tively, are similar (y = 0) or dissimilar (y = 1). The value
m is the margin value for negative samples. Therefore, both
positive and negative pairs image-text must be used in order
for the network to learn a good embedding.

Classification loss: the classification loss (for both text
and image branches) is just a cross entropy loss compar-
ing the predicted vector (composed of 19 category proba-
bilities) and the ground truth category label (a binary vec-
tor of the same size with only one activation) that can be:
vest, skirt, swimwear, suits, shorts, jumpsuits, shoes, pants,
tops, hats, accessories, belts, glasses/sunglasses, backpack,
bags, outerwear, dress, sweatshirt/sweaters or background.

In all our trainings, the global loss function L¢ is the
weighted sum of the contrastive loss (L) and the cross en-
tropy loss (L x) for image and text:

Lo =Lc+aLlx(Cr, L)+ BLx(Cr,Lr)  (2)

where C;(v;) is the output of the image classification
branch, L; is the image label, C(vr) is the output of the
text classification branch, L is the text label, and « and (8
are two weighting hyperparameters.

Text network: the textual metadata is used in the same
way throughout all the architectures in the paper. We first
concatenate all the available string fields (depending on the
source of the data, these can be title, description, category,
subcategory, gender, etc.), then we remove numbers and
punctuation signs, and compute 100-dimensional word2vec
descriptors [ 18] for each word appearing more than 5 times
in the training dataset. We compute these descriptors us-
ing bi-grams and a context window of 3 words. Finally, we
average the descriptors in order to have a single vector rep-
resenting the metadata of the product. Averaging these dis-
tributed representations gave good results as a text descrip-
tor in [25]. The training corpus for the word2vec distributed
representation consists of over 400,000 fashion-only tex-
tual metadata.

These descriptors are then fed into a 3-layer neu-
ral network formed by Fully-Connected (FC) layers with
Batch Normalization (BatchNorm) [10] and Rectified Lin-
ear Units (ReLU) that finally produce a 1024-dimensional
vector, that is later split into two branches as shown in
branch D of Fig. 2:

e a FC + BatchNorm + ReL.U block that reduces the di-
mension of the vectors to 128 followed by a final FC
layer and a SoftMax layer that reduce it to 19 elements
corresponding to category probabilities for classifica-
tion.

e a FC + BatchNorm + ReLU block followed by a FC
layer, both with 128-dimensional outputs. The output
of the last layer is the descriptor of the text in the com-
mon embedding.

3.2. First Approach: Full Image

We firstly train as a baseline the method using the whole
images with their associated textual information. These im-
ages present a huge variability: for shoes, for instance, they
usually consist of a frontal and superior view of one shoe,
for pants they show in many cases a model’s legs (including
feet with shoes) but some shorts appear individually, shirts
usually appear also individually, etcetera. We use these im-
ages with their associated metadata to train the network.
This is the baseline against which we compare. We con-
struct the positive pairs as an image with its corresponding
metadata, and the negative pairs as an image with textual
metadata of a product from a different category.

The network architecture is shown in Fig. 2. It con-
sists of the previously explained text network joint with the
image network in branch A, whose architecture adopts the
shape of the well-known AlexNet [13] network followed
by a few FC + BatchNorm + ReLU layers. Outputs from
both branches of the network converge in the contrastive
loss. Text and image gradients are also influenced by cate-
gory classification losses. This approach is a fast, straight-
forward and not very accurate way of solving this specific
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Table 1: Results of the architectures detailed in Section 3, including precision@top-K and classification accuracies.

precision @top-K Classification Accuracy
STRUCTURE 1 3 5 20 50 100 Text Image
1. Full image 21,87% 44,74% 58,48% 76,06% 79,58% 82,47% | 98.08 % 90.06 %
2. Bounding boxes  53,52% 70,42% 77,46% 90,07% 92,11% 92,96% | 94.22% 88.63%
3. 2 with overlap 52,11% 7887% 81,69% 90,24% 91,30% 91,58% | 97.24% 84.74%
4. Rol pooling 56,34% 80,01% 84,51% 90,14% 92,96% 95,77% | 96.91% 80.33%
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Figure 3: Two-dimensional t-SNE visualization of training set images computed with their projections in our embedding.

problem, and depending on the available data, it might be
the only way.

3.3. Second Approach: Bounding Boxes

Since our final goal is to detect the most relevant region
of the image according to the text, it makes sense to train
the network with smaller parts of the image instead of the
whole image itself. In order to do that, we use the Ground
Truth bounding boxes (GT) of each image, along with 300
bounding boxes per image, computed with [3 1] (proposals)
as the input for our network. Now, we define the possible
combinations for positive and negative pairs as follows:

e Positive pairs: text; and:
a) GT bounding boxes of image,
b) proposal bounding boxes of image, with overlap
of over 70% with GT.
o Negative pairs: text; and:

a) proposal bounding boxes of image, whose over-
lap with GT is between 30% and 50%.

b) proposal bounding boxes of image, (from a dif-
ferent category) with overlap of over 70% with
their GT

For this approach, the network is the same as before (see
branch B of Fig. 2), but the input pairs are the resized pro-
posal bounding boxes with their corresponding positive or
negative texts. The quality of the results is considerably in-
creased, but since the number of pairs that we can construct
per product is now much higher, it will take more time to
reach a good minima when training.

3.4. Third Approach: Region of Interest Pooling

After shifting from whole images to bounding boxes, the
number of positive and negative pairs that can be fed into
the network is highly increased. Therefore, the training
process takes more time. For this reason, our next step is
to train a smaller network with compact representations of
these images, reducing the computational cost of training all
the convolutional layers of the previous architecture. Posi-
tive and negative pairs are constructed in the same way, but
in this case the input to the image part of the network are
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the 6 x 6 x 256 Region of Interest (Rol) pooling regions of
the corresponding proposal bounding boxes extracted from
the last convolutional layer of AlexNet as in [0].

Now the training of the visual part of the network con-
sists only of a first convolutional layer (coupled with a
ReLU) that reduces the third dimension of the data from
256 to 128 elements, followed by two FC + BatchNorm +
ReLU blocks that progressively transform these descriptors
into 512-dimensional vectors. Layers previous to this first
convolutional layer are frozen and only used to extract the
Rol pooling features (see branch C of Fig. 2).

3.5. Overlap Loss

Since our goal is to maximize the overlap between the
selected bounding box (the one whose descriptor is closest
to the text descriptor) and the ground truth bounding box,
we try to add this overlap information to the embedded de-
scriptors. We do it learning to predict the overlap of each
bounding box with the corresponding ground truth of its im-
age using a L1 regression loss.

In this case, the full training loss Lgo consists of the
previous loss summed with the weighted overlap loss:

Lco = Lg + vLo(ov, ov) 3)

where Lo is the L1 regression loss for overlap, ov is the
predicted overlap of the bounding box with the correspond-
ing ground truth bounding box and owv is the actual overlap
with the ground truth, computed as their intersection. This
case is omitted from Fig. 2 for clarity.

All the design choices for the network layers were taken
after meticulous ablation studies.

4. Dataset

Our training and validation dataset consists of 458, 700
products from eight different e-commerces. Our testing
dataset consists of 3,000 products coming from a different
e-commerce, and will be made publicly available'. Each
product from the dataset is formed by an image with the
annotated GT bounding box and its associated metadata.
Some examples of the images and their associated textual
information can be seen in Fig. 4.

5. Results

The performance of our method was evaluated using a
dataset different from the training dataset in order to test
its ability to generalize. In all the cases, the networks were
trained with batches of 64 pairs, with « = 5 [= 7] = 1, us-
ing stochastic gradient descent with an initial learning rate
of 10~3 that decreases every 10,000 iterations by 5 - 10~*
with momentum 0.95. The margin for the contrastive loss

ITest dataset including images, main product bounding boxes and tex-
tual metadata will be public on the author’s website.

was set to 1 after several tests with different values. During
training, classical data augmentation techniques were ap-
plied to the images (random horizontal flip, small rotations,
etc.). For the bounding boxes, we added random noise to
their size and position of up to 5% of the bounding box di-
mensions. Also, instead of directly resizing every bounding
box to the size required by the network (227 x 227 x 3),
they were padded to be as square as the original image di-
mensions allow to prior to the resizing step, thus taking into
account image context and avoiding heavy deformations.

All the results shown in this section come from the fol-
lowing evaluation procedure:

1. Extract the descriptors of the text and the image pro-
posals.

2. Compute the distance between the image and text de-
scriptors, and select the bounding box with the small-
est distance to the text.

3. Check the overlap between this bounding box and the
ground truth bounding box of the correct product. If
the overlap is greater than 70%, the result is considered
as a positive main product prediction for this image.
Otherwise, as negative. Overlap between bounding
boxes A and B is computed as (AN B) /(AU B).

The numerical results we give in this section are the
percentage of test images with positive predictions (over-
lap with ground truth greater than 70%) from the test set.
Evaluations were carried out for different positive overlap
percentages, but we consider 70% as a good value. The ten-
dencies for the rest of overlap percentages evaluated were
similar.

The first dataset is homogeneously distributed into train
and validation pairs of images and metadata (70% for train-
ing, 30% for validation). For each network architecture,
we use for testing the weights values of the iteration with
best performance in the validation subset. The test dataset
(from which we present results) comes from a different im-
age source to prove the generalization ability of the method.

5.1. Quantitative results

In Table 1 we show results of the four architectures ex-
plained in Section 3. As expected, every architecture using
bounding boxes surpasses the basic architecture using the
whole image in terms of percentage of test images with any
of the top-K retrieved bounding boxes overlapping more
than 70% with the ground truth. We see that incorporat-
ing the overlap information increases the performance of
the method. Also, in general, the approach using Rol pool-
ing descriptors yields better results than the approach using
bounding boxes through the whole image architecture. For
the architecture predicting the overlap percentage between
each proposal and the GT bounding box, the average er-
ror in the percentage prediction is 5,81%. Even though our
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Coats & Jackets - 64.75

Skirts - 72.18

Sweaters & Cardigans - 69.47

T-Shirts - 81.48

Coats & Jackets - 81.30

(a) Category: Coats & Jack-
ets. Description: Women
>Coats Canada Goose - Tril-
lium parka. Canada Goose at
Simons. Designed to with-
stand extreme conditions, the
Trillium parka keeps you snug
and warm, even in the depths
of winter. Specially styled
for women, it features a sleek
fit, slightly cinched waist,
and slimmer lines through-
out. Dual-adjusting removable
hood with removable coy-
ote fur ruff Interior shoulder
straps to carry the parka like
a backpack Heavy-duty lock-
ing zipper with snap-button
storm flap. Upper fleece-lined
pockets, lower flap pockets
with snaps. Made in Canada.
The model is wearing size
small. Title: Canada Goose -

(b) Category: Coats & Jack-
ets. Description: Women
>Coats. Vero Moda - Long
baseball jacket Vero Moda.
Vero Moda at Icdne A preppy,
chic and sporty piece for a
trendy fall look. Blended wool
with an ultra soft brushed
finish and fine satiny lining.
Ribbed knit collar and cuffs
Snap closure. Zip pock-
ets.  The model is wear-
ing size small. Title: Vero
Moda - Long baseball jacket
(Women, Black, X-SMALL).
Color: Black.

).

(c) Category: Skirts. De-
scription: Women > SKkirts.
Contemporaine -  Straight
belted  skirt ~ Contempo-
raine. Exclusively from
Contemporaine. Versatile
straight ~ fit accented by
chic, decorative metallic
zippers. Thin faux-leather belt
included. Invisible zip closure
behind.  Structured stretch
cotton-blend weave with a
flawless fit, fine and silky
built-in ~ full-length  lining.
Matching items also available.
The model is wearing size
4. Title: Contemporaine -
Straight belted skirt (Women,
Blue, 8). Color: Black.

Sweaters
Description:
>Sweaters &
Cardigans Icone - Zipped
polo-collar  sweater Icone
Exclusively from Icone. An
essential updated with a
contrasting collar and ring
zipper for a graphic techno
look. Fine stretch knit in a
cotton-modal blend. Ribbed
edging. The model is wearing
size small. Title: Icone -
Zipped polo-collar sweater
(Women, White, X-SMALL).
Color: White.

(d) Category:
& Cardigans

‘Women

(e) Category: T-Shirts. De-
scription: Women >T-Shirts.
Twik - Boyfriend tee Twik.
Exclusively from Twik. An
ultra practical must-have neu-
tral basic. Ultra comfortable
100% cotton weave. Sewn
rolled sleeves. The model
is wearing size small. Ti-
tle: Twik - Boyfriend tee
(Women, Green, X-SMALL).
Color: Mossy Green.

Trillium parka (Women, Pink,
XX-SMALL). Color: Khaki.

Figure 4: Some results of our method. Ground truth is shown in green, and the proposal closest to the text in blue. On top of
each figure there is its category and the overlap percentage between the result and the GT. Caption of each figure is its textual

metadata.

main purpose is not classification, we use it as a help to
incorporate to our embedded descriptors the ability to sepa-
rate better the clothes from different categories. Percentages
of classification accuracy for the different architectures are
shown in Table 1.

5.2. Qualitative Results

A two-dimensional t-SNE [16] visualization of our em-
bedding is shown in Fig. 3. The images depicted in the em-
bedding come from the training set, and we can see how our
method, helped by the category classification losses, learns
how to group these images into category clusters. Training
set images normally present an individual garment over a
white background.

Then, results of using this embedding to perform the
task of main product detection in the test set can be seen
in Fig. 4. There, some images with their associated meta-
data and GT bounding box are shown along with the nearest
proposal detected by our method. Note how these pictures
are different from the training set: they normally show the
products worn by models, who also wear other clothes that
might partially or completely appear on the images. Some-
times the background is textured (Fig. 4 (a) (d)).

6. Conclusions

We present a method that uses textual metadata to detect
the interest product in fashion e-commerce images. We rep-
resent the text using a distributed representation and for our
best approach we use compact representations of bounding
boxes extracted from frozen layers of a pre-trained network.
We compare several network architectures combining dif-
ferent loss types (contrastive, cross-entropy and L1 regres-
sion). In our test dataset, with images and texts coming
from a different e-commerce than those used for training,
our method is able to rank the main product bounding box in
the top-3 most probable candidate bounding boxes among
300 candidates in an 80% of the cases. At the same time,
the network learns to classify these products into the corre-
sponding clothing category with high accuracy.
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