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Abstract

Reading text in the wild is gaining attention in the com-

puter vision community. Images captured in the wild are

almost always compressed to varying degrees, depending

on application context, and this compression introduces ar-

tifacts that distort image content into the captured images.

In this paper we investigate the impact these compression

artifacts have on text localization and recognition in the

wild. We also propose a deep Convolutional Neural Net-

work (CNN) that can eliminate text-specific compression

artifacts and which leads to an improvement in text recog-

nition. Experimental results on the ICDAR-Challenge4

dataset demonstrate that compression artifacts have a sig-

nificant impact on text localization and recognition and that

our approach yields an improvement in both – especially at

high compression rates.

1. Introduction

An extremely desirable feature of wearable vision sys-

tems is the ability to interpret text present in the observed

scene. Reading text in the wild is of paramount importance

to help visually impaired people navigating complex areas,

such as streets, shopping malls and airports. An interest-

ing scenario is multi-lingual visual reading, which enables

real-time text translation. Reading text is a challenging task

which is usually composed of two steps. Similarly to object

detection, text reading consists of localizing text patches

and then recognizing their content. Accurately perform-

ing both tasks is usually possible using computationally

∗These authors contributed equally to this work.

demanding deep Convolutional Neural Networks (CNNs).

This demand in computation power conflicts with real-

time wearable system requirements, unless images can be

processed remotely. Unfortunately streaming images may

present difficulties in narrow bandwidth situations. More-

over, wireless cameras systems, especially in the case of

battery operated ones, may need to limit power consump-

tion reducing the energy cost of image transmission apply-

ing strong compression.

Since user experience is also affected by image quality,

compression algorithms are designed to reduce perceptual

quality loss, according to some model of the human vi-

sual system. In fact, when compressing images several ar-

tifacts appear. These artifacts are due to the different types

of lossy compressions used. Considering JPEG, the most

common algorithm used nowadays, these artifacts are due to

the chroma subsampling (i.e. dropping some color informa-

tion of the original image) and the quantization of the DCT

coefficients; these effects can be observed also in MPEG

compressed videos, that is basically based the same schema

with the addition of motion compensation and coding. In-

deed, compression artifacts do reduce the performance of

text recognition algorithms, affecting both localization and

recognition.

Deep convolutional neural networks (DCNN) have

become the basic approach for many computer vision

tasks[21, 32, 25] and are of course the state-of-the art tech-

nique for text recognition [1, 17]. However, imperceptible

pixel variations are known to alter image classification re-

sults, as shown by Goodfellow et al. [11]. The authors of

this work computed adversarial examples by adding a tensor

computed in a way to steer the classifier decision. These ad-

versarial images are perceptually identical to the human eye
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but the network they were made for will output a mistaken

classification result with high confidence. Therefore there is

compelling evidence that even small changes in images can

indeed impair DCNN recognition capability. These results

lead us to believe that compression artifacts will also have

a negative impact on recognition results.

In this paper, we analyze issues related to end-to-end text

recognition in the wild in the presence of compression ar-

tifacts. We show that both localization and recognition are

affected by image compression and we propose a solution

to improve text recognition performance in the presence of

compression artifacts. We show that it is possible to learn a

deep convolutional neural network that removes image arti-

facts and improves end-to-end text recognition in the wild.

Adding this network does not require to change the com-

pression pipeline, nor to re-train the text detection network.

In Figure 1 we illustrate the types of compression artifacts

our system is able to remove.

2. Related work

The problem of image enhancement in wearable vision

has not been addressed yet, therefore in the following we

review the current state of the art in text recognition in the

wild and image restoration.

2.1. Text detection and recognition

Detecting and recognizing text in natural images has re-

ceived considerable attention in the computer vision com-

munity. Comprehensive surveys for scene text detection

and recognition are given in [41, 47]. Classical text detec-

tion approaches based on connected components and slid-

ing windows [7, 4, 15, 27, 28, 29, 42] are fairly robust tech-

niques. However, CNN classifiers have recently led to sig-

nificant improvements [38, 13, 16, 17] with notable increase

in accuracy compared to previous techniques.

Despite the immense success of CNN models for tasks

such as character classification and word-spotting, once

text regions are localized the problem of unconstrained text

recognition still poses significant challenges. To this end,

Jaderberg et al. [17] proposed to use a CNN able to rec-

ognize words from an extensive lexicon and generic object

proposals. However employing generic object proposals is

not optimal when text is to be detected, as demonstrated

in [9]. Furthermore, the authors of [10] proposed instead

a text-specific object proposal method based on generat-

ing a hierarchy of word hypotheses computed with a region

grouping algorithm.

In addition, Fully Convolutional Networks (FCNs) [25]

have recently attracted considerable attention from the ro-

bust reading community [46, 14, 12]. FCN-based meth-

ods replace fully-connected layers with convolutional layers

which allows them to preserve coarse spatial information

which is essential for text localization tasks. The authors

Figure 1: Examples of compression artifact removal. Odd

rows: compressed images with compression artifacts; even

rows: results of the proposed system. Best viewed in color

and zoomed in.

of [44] integrated semantic labeling by FCN with MSER

to provide a natural solution for handling text at arbitrary

orientations. In parallel work [46] designed a character pro-

posal network based on an FCN which simultaneously pre-

dicts “characterness” scores and refines the corresponding

locations. The “characterness” score is used for proposal

ranking. Moreover, in [1] the authors improved the text pro-

posal pipeline by fusing FCN outputs and the TextProposals

of [10] in order to achieve higher recall with a less time con-

sumed.

Inspired by Fully-Convolutional Networks [25]

and [30], [12] propose a text localization network as an

extreme variant of Hough voting. Moreover, [34] and [46]

employed an FCN model in order to detect text orien-

tation in natural scene images. Despite the significant
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achievements of recent research on general object detec-

tion [30, 31, 32, 24], these methods are not appropriate for

localizing text regions for several reasons. Typically the

bounding box of a word/text line has much larger aspect

ratio than common objects. TextBoxes [23] re-purposes

the SSD detector [24] for word-wise text localization.

Furthermore [37] follows the idea of Region Proposal

Networks [32] and proposes a Connectionist Text Proposal

Network which improves accuracy for text localization

tasks and also is compatible with multiple scales, aspects,

and languages.

In this paper we exploit the efficient, high recall text lo-

calization pipeline from [1]. We concentrate on analyzing

the effect image compression artifacts have on localization

and end-to-end scene text recognition in the wild.

2.2. Image restoration

Removing compression artifacts has been addressed in

the past. The vast majority of previous works can be classi-

fied as processing-based [8, 39, 40, 45, 22, 3, 43, 5], while a

few recent works are learning-based [6, 36, 26]. Processing-

based methods rely only on the information of the image to

be improved. They typically address artifacts introduced by

JPEG compression, and thus usually work in the DCT do-

main.

Learning-based methods have recently been proposed

following the successful application of deep Convolutional

Neural Networks (DCNNs) to many multimedia and vision

tasks. DCNNs are used to learn an image transformation

function that, given an input image, will output a restored

version. Starting from a set of original images, used either

as ground truth or target, sets of degraded images are gen-

erated and used as a training set. Since it is possible to feed

these learning-based methods with a large amount of data,

they have the advantage that they can accurately estimate an

image manifold, allowing an approximate inversion of the

compression function. This manifold is also aware of im-

age semantics and does not rely solely on DCT coefficient

values or other statistical image properties – and thus can be

applied to any compression algorithm.

Dong et al. [6] proposed an artifact reduction CNN

(AR-CNN) based on their super-resolution CNN (SRCNN);

both models share a common structure: a feature extrac-

tion layer, a feature enhancement layer, a non-linear map-

ping, and a reconstruction layer. The structure closely fol-

lows a sparse coding pipeline. Svoboda et al. [36] re-

ported improved results by learning a feed-forward CNN;

the CNN layers combine residual learning, skip architec-

ture, and symmetric weight initialization for better recon-

struction quality. Differently from [6], they do not have any

specific function. Cavigelli et al. [2] proposed a 12-layer

convolutional network with hierarchical skip connections

and a multi-scale loss function, obtaining some improve-

ment in objective perceptual quality metrics over AR-CNN.

In this paper we consider the specific case of compres-

sion artifact removal using CNNs for text recognition in nat-

ural scene images. We believe we are the first to explore the

use of Deep CNNs for image restoration specifically in the

context of text recognition and text localization. In the next

section we describe the methodology of our text recognition

and compressed image restoration pipelines.

3. Methodology

In this section we describe the general problem of com-

pression artifacts in images of text, the problem of reading

text in the wild, and our approach to removing compression

artifacts from text images.

3.1. Compression artifacts and text

To understand the compression artifacts that may affect

text elements in an image, we first review basic techniques

used for image compression (e.g. in JPEG). Typically, in

the first step the image is converted to the Y CrCb color

space in order to separately handle luminance information

(encoded in the Y component) and color information (en-

coded by Cr and Cb components). This is motivated by the

fact that the human visual system discriminates brightness

better than color; the separation enables spatial subsampling

of Cr-Cb using different schemes like 4:2:0 (i.e. Y is never

subsampled, Cb and Cr are subsampled every two pixels

on alternating rows). Then finer details are eliminated; this

is typically performed on image blocks composed by a few

pixels. For example, in JPEG the downsampled pixels are

split into 8 × 8 pixel blocks that are transformed using a

Discrete Cosine Transform (DCT), to enable separate han-

dling of low and high frequencies. The DCT coefficients

are quantized, reducing the high frequency values, to obtain

a vector of values that can be more easily compressed.

Considering these operations, the most common artifacts

and distortions that affect text, that is characterized by a

color and brightness contrast, and by having a sharp transi-

tion with respect to the background, are:

• blurring: this results from loss of high frequency sig-

nal components.

• ringing, i.e. introduction of spurious signal: this hap-

pens near sharp transitions in the image regions. It

is due to the loss of high frequency components due

to coarse quantization of high frequency components

(e.g. DCT coefficients). This occurs also in wavelet-

based JPEG-2000 compression and in MPEG com-

pression. It is more annoying for human viewers than

blurring [33].

• color deviation: due to the loss of color information

due to subsampling. Since in videos several different
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Figure 2: Examples of compression artifacts in text images.

Top row: high quality image; bottom row: low quality com-

pressed image. Ringing artifacts are visible on all letters,

color deviation and blurring are more visible on the borders

of the vertical strokes of P, I, N and T. Artifacts affect both

versions of the image. Best viewed in color and zoomed in.

subsampling color schemes are used, e.g. in MPEG,

DV and MJPEG, it is a common practice that superim-

posed captions use a 1 pixel border with high Y con-

trast, to reduce this effect.

Examples of these compression artifacts are shown in Fig-

ure 2, where details of high quality images are compared to

those of low quality high compression images.

3.2. Reading text in the wild

In this work we use the pipeline of [1] to generate the

text proposals as a prerequisite for text recognition. After-

wards, we apply the DictNet word classifier [17] to recog-

nize the content of text regions. The pipeline of [1] is based

on a Fully Convolutional Network for text detection and the

TextProposals algorithm from [10].

3.2.1 Fully Convolutional Networks for text detection

We trained a Fully Convolutional Network (FCN) inspired

by [25] for the task of text detection by fine-tuning a

VGG16 network pre-trained on ImageNet [35]. Fine-tuning

was performed for 1000 iterations using Caffe [18] on

the ICDAR-Challenge4 training-set. Afterwards, we used

the FCN to generate heatmaps indicating the degree of

“textness” at each pixel in the original, compressed and re-

constructed images of the ICDAR-Challenge4 test set. At

this stage it was evident that the FCN was sensitive to de-

tails lost (and artifacts introduced) during the compression

process. In Figure 3 we demonstrate the improvement of

detecting text regions after reconstructing the compressed

images.

3.2.2 The TextProposal algorithm

To generate candidate text regions we use the TextProposal

algorithm of [10]. which generates the proposals based on

clustering process over individual regions. In this approach

the first phase over-segments the input image in order to

obtain a set of connected components. Afterwards, it per-

forms several bottom-up agglomeration processes. In the

end, there is a ranking strategy for prioritizing each text pro-

posal. We used the original TextProposals implementation

of [10].1

Once we have the ranked list of TextProposals, we fuse

the TextProposals with the FCN heatmaps described in the

previous section in order to suppress false positive text pro-

posals. As in [1], we sum the FCN probabilities in each

TextProposal box and use a threshold of 0.14 to suppress

boxes containing a sum total “textness” of less than this.

3.2.3 Text recognition

The main purpose of text recognition in this work is to

demonstrate its sensitivity to compression artifacts and

quantify how our CNN reconstruction approach helps com-

pensate for them. For recognition, we use the state-of-the-

art CNN DictNet word classifier of [17] to read the cropped

words. The word classifier net [17] consists of five convolu-

tional and three fully connected layers. The first two fully-

connected layers have 4k units and the final fully-connected

layer has the same number of units as number of words in

the dictionary (90k words).

To evaluate text recognition independently of text local-

ization, we perform a series of experiments on cropped text

words from the ICDAR-Challenge4 test set. We feed the

cropped original, compressed (at varying quality factors),

and reconstructed images to the DictNet word classifier. To

evaluate end-to-end text recognition performance, and thus

to measure localization and recognition performance, we

use FCN+TextProposals pipeline described above and feed

all TextProposal boxes passing the threshold to the DictNet

classifier.

3.3. Restoring images with CNNs

The general problem of image restoration, i.e. computing

a recovered image IRQ from a low quality image ILQ, that

1http://github.com/lluisgomez/TextProposals
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Figure 3: Improvement in text detection after reconstructing compressed images. In this figure we illustrate the original

images and their corresponding heatmaps for the original, compressed, and reconstructed (in order, from left to right).

in turn can be produced processing a high quality original

image IHQ so that ILQ = P (IHQ), can be divided in sev-

eral different problems. If P is a “lossy” image compression

algorithm, then the problem is to eliminate the compression

artifacts introduced by the compression.

An image IHQ ∈ [0, 255]W×H×C is processed by a

compression algorithm A:

IC = A
(

IHQ, QF
)

∈ [0, 255]W×H×C (1)

using some quality factor QF in the compression process.

Image transformation can be used to attempt to recover

from image artifacts. To transform a compressed image into

a version in which artifacts are removed or reduced, a func-

tion is applied pixelwise. Recent advances suggest that this

task should be tackled by training a convolutional neural

network from compressed and uncompressed image pairs.

3.3.1 Architecture

The full pipeline of the approach, both in training and test-

ing phases is depicted in Figure 4 In this work we use a

deep residual network composed of convolutional layers

and ReLU non-linearities as activation function. Since the

network performs a pixelwise transformation, the input and

the output images have the same dimensions W × H × C

where W , H and C represent, respectively, width, height

and the number of channels of the images. We use 5 resid-

ual blocks consisting of 2 convolutional layers, which have

3× 3 kernels and 64 feature maps and padding of 1 pixel to

maintain the same image size. The last part of the network

is a convolutional layer with a tanh activation function.

Table 1: Our fully convolutional network architecture. In

all our experiments we have used 5 residual blocks.

Layer Feature Map Size

Input IC W ×H × C

Convolution 3× 3, ReLU W ×H × 64
Convolution 3× 3, ReLU W ×H × 64

Element-Wise Sum W ×H × 64
... ...

Convolution 3× 3, ReLU W ×H × 64
Convolution 3× 3, ReLU W ×H × 64

Element-Wise Sum W ×H × 64
Convolution 3× 3, ReLU W ×H × C

Output IRQ W ×H × C

3.3.2 Training

Training is performed with direct supervision. The loss is

computed as a function of the reconstructed image IRQ and
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Figure 4: Diagram of our approach. Training is performed

by minimizing MSE between reconstructed
(

IRQ
)

and high

quality
(

IHQ
)

images. At test time we first remove artifacts

from compressed images
(

IC
)

and then apply the two step

process of localization and recognition.

the original image IHQ. Learning the transformation from

compressed images to high quality ones requires training

the weights and biases of the convolutional kernels. We

minimize the Mean Squared Error (MSE) loss between the

original uncompressed image and the network output:

LMSE =
∥

∥IHQ
x,y − IRQ

x,y

∥

∥

2
. (2)

This loss is widely used in image restoration tasks and has

been shown to be effective at reconstructing low-level de-

tails, such as edges and contours, that are very prominent in

text patches.

The networks were trained on an NVIDIA Titan X GPU

using patches from the ICDAR-Challenge 4 training set. All

images were compressed with MATLAB JPEG compressor

at 10, 20 and 30 QF. For the optimization process we used

Adam [20] with momentum 0.9 and a learning rate of 10−4.

Training was performed for 50, 000 iterations.

For each mini-batch we sampled 8 random 48 × 48
patches without any data augmentation, using two different

sampling strategies. In the first case, the network was fed

with patches randomly selected from anywhere in the whole

training image. In the second strategy we selected just the

patches belonging to the text regions in order to specialize

the network to reconstruct text degraded by the compression

process.

4. Experiments

We used the ICDAR-Challenge 4 [19] as the benchmark

dataset in our experiments2. This challenge focuses on inci-

dental scene text, referring to scene text that appears in the

scene without the user having taken any specific prior action

to cause its appearance or to improve its positioning or qual-

ity in the frame. While focused scene text (explicitly pho-

tographed by the user) is the expected input for applications

2https://www.rrc.cvc.uab.es
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Figure 5: Detection rate (recall) at IoU 0.5 on the ICDAR-

Challenge4 test images.

such as translation on demand, incidental scene text repre-

sents another wide range of applications linked to wearable

cameras or massive urban captures where the acquisition

process is difficult or undesirable to control. This challenge

for the task of localization and end-to-end has 1000 images

for training and a 500 images for testing that can be used

for evaluation of specific tasks through submitting results

online to the Robust Reading Competition portal. For the

task of text recognition, which considers only the cropped

words of scene images, there are 4468 images for training

and 2077 images testing.

4.1. Text localization results

In this experiment we compare the ranked list of pro-

posals from [1] on compressed, reconstructed and origi-

nal images in order to demonstrate the improvement from

our reconstruction CNN (with both sampling strategies).

The comparison of text proposal on compressed and recon-

structed images is shown in Figure 5. This plot shows the

recall of text regions (at IoU 0.5) over a range of considered

proposals.

These results show that compression has a significant ef-

fect on text box recall. We also see that both CNNs (cropped

and whole image sampling) are able to improve recall per-

formance – especially when about 1000 or more proposals

are considered. We also see that cropped image sampling

performs slightly better than whole image sampling. In all

subsequent experiments we use the CNN trained with the

cropped patch sampling strategy.

4.2. Text recognition results

In this experiment we consider cropped words from

scene images. We compare the results of text recognition

using the CNN word classifier of [17]. The main purpose of

this experiment is to explore how compressed images affect

2404
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Table 2: Text recognition results on the ICDAR-Challenge4

dataset. We report the Correctly Recognized Words (CRW)

and the Average Normalized Edit Distance (AED). All per-

formance is measured case insensitive, and images were re-

constructed using the CNN trained with the cropped patch

sampling strategy.

QF CRW AED

Original - 49.16% 25.09%

JPEG 10 31.05% 38.50%

Reconstructed 10 32.07% 37.61%

JPEG 20 39.58% 31.28%

Reconstructed 20 39.96% 31.14%

JPEG 30 43.43% 28.35%

Reconstructed 30 43.96% 28.30%

Table 3: End-to-end results measured in Precision, Recall,

and Hmean on the ICDAR-Challenge4 dataset. Images

were reconstructed using the CNN trained with the cropped

patch sampling strategy.

QF Precision Recall Hmean

Original - 37.60 % 87.85 % 52.66 %

JPEG 10 25.57 % 87.19 % 39.54 %

Reconstructed 10 28.74 % 87.54 % 43.28 %

JPEG 20 33.12 % 88.32 % 48.18 %

Reconstructed 20 33.61 % 88.69 % 48.74 %

JPEG 30 36.64 % 87.88 % 51.72 %

Reconstructed 30 36.59 % 87.76 % 51.65 %

text recognition independently of localization. The results

of text recognition experiment are demonstrated in Table 2.

From these results we see that JPEG compression has a

significant effect on word recognition. At high compression

rates, our CNN improves both CRW and AED by about 1%.

At lower compression rates the improvement is less signif-

icant, but our CNN for reconstruction still has a positive

impact on performance.

4.3. End-to-end results

To perform a comprehensive experiment on compressed

and reconstructed images we have also considered the end-

to-end recognition task. This measures the overall improve-

ment in localization and recognition for reconstructed im-

ages. For this experiment we only considered the top 2,000

proposals in the ranking list of each image set in order to

accelerate the evaluation process. The results of our end-to-

end experiment are given in Table 3.

Again, at high compression rates our network leads to

significant improvement in all three metrics. We see that the

combination of improved localization and improved recog-

nition leads to much better end-to-end recognition results.

However, at lower compression rates the improvement is

less evident. The test images in the ICDAR-Challenge4

dataset are compressed to about QF 30, and this is why

the improvement of our CNN saturates at this point as the

performance of both JPEG and Reconstructed images ap-

proaches that on the Original images.

4.4. Qualitative results

In figure 6 we show some examples of compressed, re-

constructed, and original images containing text. We see

that compression does have a significant impact on text

quality. Both CNNs (with cropped and whole image sam-

pling) significantly improve the visual quality of text in the

image.

5. Conclusion and future work

In this paper we explored the effect JPEG compression

artifacts can have on text localization and recognition in

the wild. Our experimental results demonstrate that JPEG

compression has a significant effect on text localization and

recognition. We also described a simple CNN architecture

that is able to reconstruct compressed images and, espe-

cially at high compression rates, is able to improve text

localization, cropped text recognition, and end-to-end text

recognition results.

For future work we are interested in training our net-

work using high-quality original images, since the ICDAR-

Challenge4 images are already significantly compressed.

We are also interested in training our CNN network for

compressed image restoration on significantly more im-

ages than whose available in ICDAR-Challenge4. We ex-

pect both of these to significantly improve the impact our

restoration has on text recognition.
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