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Abstract

Focused interaction occurs when co-present individuals,

having mutual focus of attention, interact by establishing

face-to-face engagement and direct conversation. Face-to-

face engagement is often not maintained throughout the en-

tirety of a focused interaction. In this paper, we present an

online method for automatic classification of unconstrained

egocentric (first-person perspective) videos into segments

having no focused interaction, focused interaction when the

camera wearer is stationary and focused interaction when

the camera wearer is moving. We extract features from both

audio and video data streams and perform temporal seg-

mentation by using support vector machines with linear and

non-linear kernels. We provide empirical evidence that fu-

sion of visual face track scores, camera motion profile and

audio voice activity scores is an effective combination for

focused interaction classification.

1. Introduction

Recording of daily life experiences from a first-person

perspective has become more prevalent with the increas-

ing availability of wearable cameras used in applications

such as life-logging, security, sports, ambient assisted liv-

ing and driving assistance. In recent years, analysis of ego-

centric video has therefore gained the attention of the com-

puter vision community. Whereas social interaction de-

tection from a third-person perspective has been a well-

researched area for some time [4, 10, 25], ego-centric

vision-based methods are increasingly addressing the de-

tection and analysis of social interaction from a first-person

perspective; methods have been proposed to detect groups

of individuals interacting with each other or with the camera

wearer [2, 5, 13]. These methods perform off-line process-

ing of short video clips or photo streams mostly captured

from constrained perspectives and always containing inter-

acting or non-interacting individuals. However, in reality

egocentric videos are unconstrained when used for captur-

ing daily living in long, continuous sequences.

Audio-visual feature fusion has been used for applica-

tions such as speaker localisation and event detection in so-

cial gatherings using videos captured in highly controlled

indoor settings [3, 14], social interaction detection in nurs-

ing homes using surveillance-type camera videos [9], and

scene change detection in life-logging videos [23]. Al-

though audio signals provide information about social inter-

actions, the fusion of visual and audio cues for detection of

social interactions in egocentric video was rarely explored.

Furthermore, the effect of integrating global camera motion

analysis methods, nowadays used for human activity recog-

nition in egocentric videos [30], with other visual and audio

features for social interaction analysis still needs to be re-

searched.

Social interaction occurs when two or more individu-

als, having mutual focus of attention but not necessarily

physically co-present, communicate and interact with one

another [27]. Examples include face-to-face verbal con-

versations, email conversations, and non-verbal (sign lan-

guage) conversations. Goffman [15] distinguishes between

focused and unfocused interactions. Focused interaction

occurs when two or more co-present individuals, having

mutual focus of attention, interact by establishing face-to-

face engagement and direct conversation. Note that face-

to-face engagement is often not maintained throughout the

entirety of a focused interaction. Unfocused interaction, on

the other hand, occurs when individuals, though co-present,

do not establish a direct engagement and conversation [15].

We use the term conversational partner for a person who is

involved in a focused interaction with the camera wearer. In

light of Goffman’s theory [15], it is important to highlight

that papers describing current egocentric video-based meth-

ods [2, 5, 13] that use the term social interaction are actually

addressing focused interaction; social interaction is a much

broader term.

Figure 1 shows sample frames from three videos in our
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Figure 1: Examples of focused interactions from our Fo-

cused Interaction Dataset. The frames displayed were sam-

pled at 1 fps from the videos. (a) An interaction in which

conversational partners are in the field of view of the cam-

era. (b), (c) Interactions in which the conversational partner

is not in the field of view as the interactions occurred while

walking. (c) An outdoor night-time scenario where the vi-

sual cues are weak due to low illumination.

Focused Interaction Dataset1. These examples highlight

both the variability in egocentric video data in terms of

viewpoint, location, and illumination, and the fact that con-

versational partners are not always in the field of view (e.g.,

focused interaction while walking). Voice activity and cam-

era motion cues will be especially important in such cases.

Voice Activity Detection (VAD) is widely researched in

audio signal processing and used for audio conferencing,

speech encoding, speech recognition, and speaker recog-

nition [17, 26]. VAD methods detect voice activity (pri-

marily speech) from a noisy audio signal [16, 24, 29].

Video content-based camera motion analysis methods make

use of template matching [1] and optical flow [6]. Meth-

ods derived from optical flow are widely used nowadays

for human activity and action recognition from third per-

son perspective [8, 20] (where a fixed and static camera

captures third person activities such that the optical flow

is strongly associated with their activity) and first person

perspective [30] (where camera wearer activities affect the

global camera motion).

Existing methods for social interaction detection in ego-

centric videos typically assume that people are already

present in the field-of-view of the camera and focus on

detecting sub-categories of social interaction [13], social

groups [5], and presence or absence of social interaction [2]

by utilizing visual data only. Fathi et al. [13] proposed one

of the first methods for detecting different types of social in-

teraction in egocentric video and evaluated it on clips from

videos captured at a theme park. They used a multi-label

1We plan to release the focused interaction dataset after publication

hidden conditional random field model to detect discussion,

monologue and dialogue based on estimates of faces’ lo-

cations and orientations. Alleto et al. [5] applied the con-

cept of F-formation [10] for detecting social groups in ego-

centric video. They designed a pairwise feature vector that

describes spatial relationships between two people present

based on distances and orientations. A correlation cluster-

ing algorithm was applied to merge people into socially re-

lated groups. A structural SVM-based method was then

used to learn the weight of each component of the corre-

lation clustering vector depending on the social situation.

More closely related to our work, Aghaei et al. [2] proposed

a method for detecting social interaction in low frame rate

photo streams. They trained an LSTM-RNN classifier to

detect social interaction based on estimates of the distance

of an individual from the camera wearer as well as their rel-

ative orientation. These social interaction detection meth-

ods [2, 5, 13] processed data offline and considered clips of

photo streams that always contained people. However, peo-

ple interacting with the camera wearer may not always be

in the field-of-view (e.g. when walking while having a con-

versation). Moreover, it should be noted that the existing fo-

cused interaction methods only consider constrained video

segments (clips), where each clip belongs to one specific

class, in which the camera wearer is stationary, hence video

cues such as face tracking and orientation alone are suffi-

cient [2]. However, a continuously recorded life-logging

video has multiple transitions from one class to another.

In this paper, we address the task of identifying tempo-

ral segments in continuous egocentric video that correspond

to periods of no-focused interaction (no-FI), focused inter-

action while the camera wearer is stationary (FI-NW) and

focused interaction while the camera wearer is walking (FI-

W). All such instances of focused interaction should be au-

tomatically detected. Often, FI-W is enclosed within FI-

NW (e.g., the camera wearer meets a conversational part-

ner, they go for a walk together, and conclude their interac-

tion with a farewell while facing each other). We propose

and evaluate a method based on audio and video features to

perform the tasks of detection and classification of focused

interaction. The main contributions of this paper are as fol-

lows.

• We formulate the task of automatic, online classifica-

tion of focused interactions in continuous, egocentric

audio-video data.

• We use spatio-temporal local and global video features

and voice-based audio features for classifying focused

interaction.

• We propose a temporal segmentation approach based

on frame classification and present several variants of

it that use Support Vector Machines (SVM) with either
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linear or non-linear kernels for classification using var-

ious audio-visual feature sets.

• We evaluate the proposed methods on our Focused In-

teraction dataset, providing empirical evidence that fu-

sion of visual face track scores, camera motion features

and voice activity detector scores, and learning using

SVMs with non-linear kernels, provides an effective

means for classifying focused interactions.

Note that existing face detection and tracking, voice activity

detection and global camera motion analysis techniques are

adopted in our proposed method as the aim of this work is

not to improve these individual techniques but to look into

the effect of integrating these techniques to form a robust

and online focused interaction system for unconstrained,

life-logging, egocentric videos.

The remainder of the paper is organised as follows. The

proposed method for focused interaction classification is

detailed in Section 2. Section 3 describes our focused in-

teraction dataset and the evaluation protocol. Results of ex-

periments comparing variants of the methods are presented

and analysed in Section 4. Finally, Section 5 draws some

conclusions.

2. The proposed method

We process audio and video streams independently to ex-

tract three distinct features, namely, face track score, cam-

era motion feature vector and voice activity detection score.

From the video stream, the face track score is obtained by

detecting and tracking faces, and the camera motion feature

vector is obtained by computing the histogram of oriented

optical flow. From the audio stream, the voice activity de-

tection score is computed by analysing discriminative au-

dio features. These features are fused to form the feature

set and SVMs are then trained for the online classification

of continuous data streams that contain instances of No-FI,

FI-NW and FI-W.

2.1. Face track score

A Histogram of Oriented Gradient (HOG)-based face de-

tector [11, 19] is applied to detect faces in each video frame.

Some false and missed face detections are inevitable due

to the relatively unconstrained nature of egocentric video.

Therefore, we apply a Kanade-Lucas-Tomasi (KLT) point

tracker [22, 28] to refine face detection results. Tracking is

initialized as soon as a face is detected and continues track-

ing points of the face in subsequent frames. Track points are

updated by taking input from the face detector every tenth

frame. The face track is terminated if no face is detected at

the same position as that of the tracker or if all points that

were tracked are eventually lost.

The KLT tracker returns confidence scores for the point

tracks. The neighborhood of the lth point at frame t consists

of those pixels in an image patch I lt centred on that point.

We compute a face tracker score st by summing scores of

all points tracked on a face, i.e.,

st =

L
∑

l=1

(1−
1

W
||I lt − I l(t−1)||

2) (1)

where W is the number of pixels in a neighbourhood patch.

The lower bound for st is zero when no faces are tracked

while the upper bound depends on the number of points

tracked per face (and is certainly no larger than the num-

ber of pixels in the face detection box). The track score is

high if lots of face points are tracked with confidence. We

compute the duration (life) of each track and, in frames in

which multiple faces are tracked, we select the one with the

longest duration for inclusion in the current feature set. The

rationale for this is that short duration tracks often corre-

spond to false detections or to short unfocused interactions

(e.g., walking past another person). Moreover, selecting the

track with longest duration allows online pruning of track-

lets generated through false face detection as these tracklets

have comparatively shorter life. Figure 2(a) shows tracker

scores obtained from an example video. Representative

frames from that video are shown and labelled (i) - (viii).

Correct face tracks occur at (ii) and (viii) whereas false face

tracks occur at (v) and (vi). As tends to be the case more

generally, the true face tracks have greater duration than the

false ones.

2.2. Camera motion feature extraction

In the case of first person perspective, the distribu-

tion of optical flow produces distinct profiles when the

camera is static (e.g., camera wearer standing/sitting) and

moving (e.g., camera wearer walking, turning around, go-

ing up/downstairs). Histogram of Oriented Optical Flow

(HOOF) [8] gives a representation of camera motion at each

frame.

Given an input video, we compute dense optical flow us-

ing Farneback’s method [12]. This results in the flow vec-

tors v = [x, y]T and their orientations θ = arctan
(

y

x

)

.

HOOF features [8] are computed by binning each flow vec-

tor based on its angle with the horizontal axis and weighting

it based on its magnitude. The range for the bth bin is de-

fined as

2π
b− 1

B
≤ θ < 2π

b

B
, (2)

where 1 ≤ b < B and B is the total number of

bins. As a result, we get the normalised histogram

ht = [ht,1, ht,,2, ..., ht,B ]
T of HOOF features at each time

instant t. ht is then fused with other features in order to

form the feature set.

Figure 2(b) shows HOOF features for a sample video

along with the activity description. A focused interaction
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Figure 2: Visualisation of (a) tracker score, (b) Histogram of Oriented Flow (HOOF) features along with activity description,

and (c) Voice Activity Detection (VAD) score. Frames (i) to (viii) correspond to the red dashed lines. A focused interaction

starts and ends at (i) and (iii), respectively. Another focused interaction starts at (vii). Best viewed in colour.

occurred between (i) and (iii), and another started at (vii).

These are both examples of interactions in the FI-NW

class. Note that although FI-NW occurs when the cam-

era wearer is stationary, in an active conversation body mo-

tion is present; hence variability in HOOF can be observed.

Before (i), the camera wearer was engaged in checking

emails on a computer; hence the pattern of HOOF features

remained consistent. Between (iii) and (vii), the camera

wearer searched for some documents and started walking.

2.3. Audio­based feature extraction

We utilize the method and implementation of Seg-

broeck et al. [29] for voice activity detection (VAD). This

method combines four types of discriminative audio fea-

tures in order to detect voice activity in noisy real-world

environments, specifically, spectral shape, spectro-temporal

modulations, harmonicity (presence of pitch harmonics)

and long-term spectral variability. The resulting VAD
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scores range from 0 to 1; a score close to 0 indicates no

voice activity while a score close to 1 indicates with high

confidence the occurrence of voice activity.

Figure 2(c) shows the estimated VAD scores for a sam-

ple video. At (i) a focused interaction begins; although there

is no face present in the field-of-view of the camera at this

point, voice activity is detected as can be observed in (c).

Another focused interaction begins at (vii) but due to mo-

tion blur and distance of the participant from the camera,

no face is detected until (viii). However, voice activity is

detected from the start of this focused interaction. At other

times ((iv), (v), (vi)), voice activity is falsely detected albeit

with relatively low scores.

2.4. Audio­visual feature fusion

Video and audio features are obtained at different sam-

pling rates; visual features are updated once every video

frame, i.e. at 25Hz, whereas VAD scores are computed

every 10 ms, i.e. at 100Hz, given an input audio stream

with sampling rate of 8000Hz (the default setting proposed

by [29]). In order to fuse these features we resample the au-

dio features, specifically we average four consecutive VAD

scores, with a step size of four, to get the score at the same

rate as that of the video features.

The tracker score st, HOOF ht and VAD score vt are

normalised to have zero-mean and unit variance based on

estimates of their mean and variance obtained from training

data, resulting in ŝt, ĥt and v̂t. In each frame, the three ex-

tracted features are concatenated to form the feature vector

ft = [ŝt, ĥt, v̂t]
T .

2.5. Focused interaction classification

The task to be performed is to sequentially process the

input audio-visual data stream in order to identify temporal

segments corresponding to periods of No-FI, FI-NW and

FI-W. One way to formulate a solution is to classify each

frame as belonging to one of the three classes. We train

Support Vector Machines (SVM) for classification by using

the features extracted from a fixed-length temporal window

and the ground-truth label for each window.

We trained SVMs on feature vectors which were the con-

catenation of the audio and video features extracted from

each of M consecutive frames. The goal was to assign to

each temporal window of M frames, the classification label

for the frame at the middle of the window. Windows were

extracted with a shift of H frames so that a classification

was obtained every Hth frame. LIBSVM [7] was used for

training the SVM using either linear or RBF kernel.

3. Experimental Setup

3.1. Dataset

The number of annotated datasets publicly available for

research that capture social interactions using ego-centric

cameras is limited, in part due to privacy concerns. Some

datasets [21] are only partially available, without audio and

with anonymized (blurred) faces of people in the field-

of-view of the camera. Others captured photostreams at

2 frames per minute of social interaction (without audio) [2]

(not yet publicly available) or of multiple people interact-

ing as social groups at 4 different locations [5]. Another

dataset captured in a theme park is labelled for three dif-

ferent types of social interaction (dialogue, discussion and

monologue) as well as for activities (e.g., walking, waiting,

gathering, sitting). However, our everyday scenarios are

significantly different from activities performed in a theme

park. Therefore, we recorded a Focused Interaction dataset

that captured various focused and unfocused interactions in-

terspersed naturally with periods of no interaction, in real-

world unconstrained scenarios and in varying environmen-

tal conditions (e.g. indoor/outdoor, daylight/night).

Our Focused Interaction Dataset contains 19 egocentric

continuous videos captured, at high resolution (1080p) and

at a frame rate of 25fps, using a shoulder-mounted GoPro

Hero4 camera and a smartphone (for inertial and GPS data),

at 18 different locations and with 16 different conversational

partners. This makes our dataset useful for other egocentric

applications such as scene categorization and person associ-

ation. A shoulder-mounted camera is preferred over a head-

mounted one as it is less obstructive and provides relatively

stable video because the camera does not move with the

user’s head. Our dataset contains 378 minutes of recordings

(approximately 560k video frames) annotated into periods

of No-FI, FI-NW and FI-W. The dataset is unconstrained

in nature as neither the camera wearer nor the conversa-

tional partners were given any specific instructions that may

restrict their movement and it was captured at several in-

door and outdoor locations at different times of the day and

night, and in different environmental conditions (e.g. sunny

or cloudy, with background noise from nearby people and

cars). In total, 240 mins (64%) of data contain focused in-

teraction in which conversational partners are in the field-

of-view of the camera most of the time and are not walk-

ing; their positions and face orientations vary significantly.

50 mins (13%) of data contain focused interactions in which

the conversational partners are not in the field-of-view of

the camera and 88 mins (23%) of data do not contain any

focused interaction.

3.2. Evaluation protocol

We used seven different feature sets for evaluation,

namely, TVM, TV, TM, VM, T, V and M, where T de-
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Table 1: Evaluation of various feature sets and SVM kernels when using one-versus-all SVM classification. Values given are

pooled over the 6 validation folds. Key: P - precision; R - recall; F - F1-score; AUC - area under curve; T - track score; V:

VAD score; M - motion vector; FI - focused interaction; NW - non-walk; W - walk.

Linear kernel Non-linear (RBF) kernel

Feature set Class C P R F AUC C γ P R F AUC

No-FI 93.54 93.84 93.69 92.99 94.05 94.89 94.46 94.65

TVM FI-NW 2−9 85.16 91.59 88.25 94.31 22 2−9 90.20 87.86 89.01 96.46

FI-W 91.30 97.04 94.08 89.78 93.70 97.62 95.62 94.53

No-FI 93.65 93.62 93.63 93.46 93.33 95.06 94.19 92.19

TV FI-NW 2−6 83.79 93.39 88.33 95.00 22 2−7 87.61 92.20 89.85 94.63

FI-W 89.59 98.02 93.62 87.42 92.76 96.17 94.44 88.63

No-FI 83.23 88.47 85.77 82.65 90.23 89.74 89.98 90.32

TM FI-NW 2−9 83.28 92.90 87.82 93.10 22 2−9 86.96 89.06 87.99 95.58

FI-W 86.94 98.30 92.28 79.31 91.81 97.20 94.43 91.08

No-FI 90.82 92.00 91.41 88.17 91.96 94.38 93.16 91.75

VM FI-NW 2−9 69.79 59.51 64.24 77.96 22 2−9 86.39 76.742 81.28 91.96

FI-W 86.81 99.99 92.93 47.56 92.29 97.81 94.97 90.22

No-FI 79.19 81.93 80.54 78.05 87.53 80.27 83.74 81.02

T FI-NW 20 82.33 93.11 87.39 93.68 21 2−9 87.97 90.35 89.15 92.28

FI-W 86.81 99.90 92.90 35.27 86.81 99.36 92.66 55.43

No-FI 91.08 91.31 91.19 89.22 89.07 94.36 91.64 83.19

V FI-NW 2−10 67.53 59.65 63.35 76.37 2−6 2−5 76.96 50.99 61.34 71.82

FI-W 86.81 100.0 92.94 26.48 86.81 100.0 92.94 28.25

No-FI 76.82 99.98 86.88 48.69 84.58 91.96 88.12 80.46

M FI-NW 2−9 62.20 28.99 39.54 65.58 22 2−9 82.49 66.86 73.86 86.64

FI-W 86.81 100.0 92.94 44.98 90.93 97.43 94.07 86.55

notes the face track score, V denotes the VAD score and

M denotes the camera motion feature vector. SVM with ei-

ther linear or RBF kernel in one-versus-all setting was used

for the classification using different feature sets. For each

feature set, the best performing SVM parameters, C and

γ, for linear and RBF kernels were computed using grid

search [18] (reported in Table 1) and were then used for the

validation. A temporal window size of 50 frames (selected

empirically) with a shift of 25 frames was used for obtain-

ing the training samples, while testing was performed with

a shift of 1 frame.

Evaluation was performed using six-fold division of our

focused interaction dataset. Since the duration of each

recording varied, it was not possible to have exactly equal

numbers of frames in each fold without arbitrarily breaking

videos into smaller parts. Instead the folds were generated

to roughly contain 60 mins of data.

We use framewise evaluation measures to assess the per-

formance by comparing the predicted labels against the

ground-truth labels. For each class, we plot the Receiver

Operating Characteristic (ROC) curve using the one-versus-

all strategy and compute the Area Under the Curve (AUC).

The Precision, P , Recall, R, and F1-score, F , are then re-

ported. For the three-class confusion matrix, the predicted

class labels are obtained by assigning a positive label to the

class with maximum score among the three classes.

4. Results and Discussion

Table 1 summarises the one-versus-all evaluation results

for the different feature sets using either linear or RBF ker-

nel for SVM. The corresponding ROC curves are shown in

Fig. 3.

TVM-RBF outperformed other feature sets and linear

kernel giving an AUC of 94.65% for No-FI, 96.46% for FI-

NW and 94.53% for FI-W, respectively. TVM-RBF gave

F1-score of 94.46% for No-FI, 89.01% (slightly lower than

F1-score for TV-RBF) for FI-NW and 95.62% for FI-W,

respectively. In the case of No-FI, voice activity and face

tracks are not present most of the time but different types of

camera motion occur, e.g., camera wearer walking, sitting

or standing alone. Hence motion feature (M) alone cannot

reliably identify this class. Observe the low performance

of M in Fig. 3(a), (d). From these figures and Table 1, it

can be observed that the performance is comparable when

using TVM-Linear and TV-Linear for No-FI, while the use
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Figure 3: ROC for the various feature sets and SVM with linear (1st row) and RBF (2nd row) kernels. (a) and (d) report the

performance of No-FI, (b) and (e) show the results for FW-NW, and (c) and (f) show the results for FI-W, when using linear

and RBF kernels. Best viewed in colour.

of RBF kernel helped to improve the performance (AUC

increased by 2% for TVM). The instances of FI-NW con-

tain face-to-face interaction, where face tracks are present

most of the time. Hence TVM, TV and T with both linear

and RBF kernels performed equally well (Fig. 3(b), (e)).

M provides a strong cue for discriminating between FI-NW

and FI-W. Face tracks are not present in FI-W as the con-

versational partner is not in the field-of-view of the cam-

era. Moreover, FI-W occurred mostly in outdoor scenarios

where the audio signal might get corrupted by background

noise (from roadside and passing-by people). Hence, the

performance of FI-W is extremely low when using T or V

alone. It can be observed from Fig. 3 (comparing the 1st row

with the 2nd row) that M has a non-linear relation with the

focused interaction classes. This is evident from lower per-

formance of M when using a linear kernel but significantly

improved performance when using a non-linear kernel.

The confusion matrices for top performing feature sets

are shown in Fig. 4. A confusion matrix is computed by

selecting the class with maximum score at each frame in

the one-versus-all strategy. TVM-Linear gave accuracy of

62.3% for No-FI, 95.1% for FI-NW and 70.6% for FI-W

(Fig, 4(a)). TVM-RBF outperformed by giving accuracy of

73.3% for No-FI, 93.3% for FI-NW and 80.7% for FI-W

(Fig, 4(f)). RBF kernel with M, in particular, is useful for

classifying FI-W as this interaction occurred while walk-

ing. As observed from the ROC curves (Fig. 3), TVM and

TV gave comparable results for FI-NW as motion features

do not contribute much. It can be observed from the con-

fusion matrices that the overall accuracy when using TV

as feature set with linear kernel was 80.9% (Fig. 4(b)) and

with RBF kernel was 85.5% (Fig. 4(g)). Similar trend is

observed when using TVM as feature set giving an overall

accuracy of 82.6% (Fig. 4(a)) with linear kernel and 86.8%

(Fig. 4(f)) with RBF kernel, suggesting that the use of non-

linear SVM kernel helped in improving the performance.

5. Conclusion

We have presented a method for the automatic online

classification of focused interaction in continuous, egocen-

tric videos captured in unconstrained everyday scenarios.
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Figure 4: Confusion matrices obtained using different feature sets and SVMs with linear (upper row) and non-linear (lower

row) kernels.

We processed both audio and video data streams to obtain

audio-visual feature sets. In particular, fusion of face track

scores and camera motion profile extracted from visual data

with voice activity detection scores from audio data proved

to be effective. We performed temporal segmentation of

focused interactions via classification using SVMs with dif-

ferent kernels. We evaluated variants of the methods, in-

cluding single and multimodal feature sets. The use of cam-

era motion profile along with face track and voice activity

detection scores and SVM with non-linear kernel were in

particular useful for discriminating no focused interaction

and focused interaction while walking. Face track and voice

activity detection scores were significant for discriminating

face-to-face focused interaction for which SVM with non-

linear kernel and camera motion profile did not give any

further improvement.

In future, we plan to extend this work to identify conver-

sational partners even when they are not in the field-of-view

of the camera (e.g., focused interaction while walking) to

enhance assistive technology for non-speaking people wear-

ing an egocentric camera.
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