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Abstract

Time-varying, smooth trajectory estimation is of great inter-

est to the vision community for accurate and well behaving

3D systems. In this paper, we propose a novel principal

component local regression filter acting directly on the Rie-

mannian manifold of unit dual quaternions DH1. We use

a numerically stable Lie algebra of the dual quaternions

together with exp and log operators to locally linearize the

6D pose space. Unlike state of the art path smoothing meth-

ods which either operate on SO (3) of rotation matrices or

the hypersphere H1 of quaternions, we treat the orientation

and translation jointly on the dual quaternion quadric in

the 7-dimensional real projective space RP
7. We provide

an outlier-robust IRLS algorithm for generic pose filtering

exploiting this manifold structure. Besides our theoretical

analysis, our experiments on synthetic and real data show

the practical advantages of the manifold aware filtering on

pose tracking and smoothing.

1. Introduction

Many 3D computer vision tasks require a robust and re-

liable understanding of position and orientation in space

and a outlier-free localization of the camera with respect

to its surroundings is a fundamental requirement in ma-

chine vision tasks such as registration, reconstruction or

tele-robotics. Independent on the given data modality, the

natural underlying structure of the input is a temporally or-

dered set which can be analyzed sequentially. In an exam-

ple scenario such as SLAM, egocentric vision or marker

tracking, a single camera provides a stream of consecutive

images generating a pose path. In this paper, we address

motion smoothing, where - given the per frame motion es-

timates - the goal is to synthesize a new camera trajectory,

which is smooth and closer to the underlying movement or

intended trajectory.

1.1. Pose Parametrization

Different parametrizations are prominent to accurately

and efficiently describe spatial displacements. Most

widely used representations include homogeneous matrices,

quaternions or twist-coordinates. While many of these are

sufficient to handle orientation, the translational component

is usually treated separately [10, 15]. Moreover, the algo-

rithms which use the semi-direct product of SO (3) and R
3

to describe elements of the group SE (3) suffer from the

structural embedding of the rotational part in an higher di-

mensional space. One solution to circumvent this problem

emerges with the dual quaternion (DQ) parametrization, in

which all pose components form a common space. Besides

a smaller memory footprint the representation has the ad-

vantage of being cheaper in case of consecutive transforma-

tions while it is numerically more stable to calculate due to

the fact that the matrix space is higher dimensional and a

re-orthogonalization [3] is computationally much more ex-

pensive than a re-normalization. The DQ formulation has

already been successful in applications of interpolation [5],

skinning [17] or rigid body dynamics [37]. Unfortunately,

the applications are still not numerous. This is partially due

to the fact that the manifold is more complex than the one

of the quaternions and immediate geometric intuitions are

lacking. With this paper, we devise a general picture on

how to operate on the quadric shaped Riemannian mani-

folds of dual quaternions by studying the exponential and

logarithm maps and use them to construct an outlier aware,

robust pose smoothing algorithm.
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1.2. Manifold Filter

In practice, acquired camera poses follow complex noise

models as partially interdependent factors such as sensor

noise, hand-shake, wrong pose estimates and velocity ap-

pear. The behaviour is highly non-linear and tedious to

model directly. Thus, the requirement of tuning the model

parameters for Kalman filter methods is not suited for cer-

tain applications. We employ a non-parametric smoother

without explicit distribution assumptions on the overall data

which we embed in a framework on the DQ-manifold. At

this point, the local regression (LR) reveals itself to be the

method of choice. In the simplest form of LR, one of the

points is treated as the center and a linear relationship be-

tween the independent and response variables in its local

neighbourhood are sought. This point is then projected onto

the line, gaining a new, smoothed position. This procedure

iterates over the sequence, while iteratively denoising the

points. While this procedure is fairly easy for Euclidean

spaces, many of these operations do not generalize to non-

Euclidean manifolds. We make use of the fact that a point

on the pose path is selected and the regression considers

only the immediate neighbourhood. Hence, we utilize the

exponential and logarithm maps in the quaternion notation

to operate on the local tangent space, alleviating the tedious

non-Euclidean geometry. We contribute a PCA based re-

vised LR formulation on the local linearized space, making

effective use of the Riemannian DQ-manifold.

Our experiments show that, while a weighted manifold-

PC regression is mostly satisfactory, for pose sequences

with outliers, IRLS smoothing on DQ outperforms in terms

of fidelity. The advantage of manifold smoothing also re-

veals as the noise level increases.

2. Related Literature

The Clifford Algebra of dual quaternions [8] extends

the non-commutative division algebra of the quaternions

H [14]. Besides pure [2] and applied geometry [29], quater-

nions have a broad history in computer vision [28].

Rotations are more efficiently concatenated if a quater-

nion representation is chosen and effects such as gimbal

lock are avoided [21], which is why quaternions are applied

to various real-time 3D processing pipelines [23]. In par-

ticular the fact that H can be identified with points on a

3-dimensional hypersphere S3 makes it attractive for ani-

mation and rendering as SLERP [31] interpolation can be

calculated efficiently.

In spite of their usefulness for many real-time calcula-

tions, dual approaches did not receive the same attention.

A dual quaternion Q ∈ DH1 of unit length can be

used to represent a rigid body displacement of an object.

Kuang [20] uses this to show the advantages of dual quater-

nions for real-time motion animation for clothed body

movements and Kavan [17] applied DH1 for skinning. Dual

methods are also present in blending [27] and complex hi-

erarchical rigid body transforms [18] and more recently,

movement extrapolation [5] has been an application field

for DH1.

We represent rigid body movements as trajectories on

DH1 where we filter noisy paths. Regression models for

interpolation are essential for computer animation and re-

finement of pose data [26]. Kavan [16] approximates the

geodesic distance with an L2-norm in R
8 for real-time

transformation blending. However, the unit dual quaternion

space is non-Euclidean.

A diffusion approach in this regard has been proposed

by Torsello [33] where the Riemannian metric is minimized

for multiview registration. We also take the Riemannian

nature of DH1 into account and perform a differential cor-

rection by moving to the tangent space where we apply a

local smoothing method. Similar filtering approaches have

been studied extensively [10, 15] in the joint space H1×R
3,

where the pose is split into rotation and translation parts.

Ng [25] proposes a Gaussian smoothing on the non-dual

quaternion manifold [25] while Srivatsan [32] explicitly as-

sumes an underlying noise model and uses a Linear Kalman

filter on dual quaternions in SE (3) which is done with an

Extended Kalman Filter (EKF) for pose estimation by Fil-

ipe [12]. On the application side, smoothing techniques are

used for of Video Stabilization [15] and robotics [10].

3. Mathematical Formulation

A substantial part of the proposed framework uses ap-

proaches from differential geometry which are applied to

the space of poses. We first introduce the pose spaces H1

and DH1 of unit (dual) quaternions which we analyze there-

after locally and conclude by giving the exponential and

logarithm maps in quaternion representation such that these

can be implemented in the proposed algorithms afterwards.

The notation follows the convention of Busam [5] where the

algebraic structures are presented in more detail.

3.1. Quaternions

Quaternions extend the complex numbers with three imagi-

nary units i, j, k.

Definition 1

A quaternion q is an element of the algebra H in the form

q = q11 + q2i + q3j + q4k = (q1, q2, q3, q4)
T
, (1)

with (q1, q2, q3, q4)
T
∈ R

4 and i2 = j2 = k2 = ijk = −1.

We also write q := [a, v] with the scalar part a = q1 ∈ R

and the vector part v = (q2, q3, q4)
T
∈ R

3. The conjugate q̄

of the quaternion q is given by

q̄ := q1 − q2i − q3j − q4k. (2)
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Quaternions are of particular interest in computer vision

due to their connection with spatial rotations [11]. A unit

quaternion q ∈ H1 with

1
!
= ‖q‖ := q · q̄ (3)

gives a compact and numerically stable parametrization to

represent orientation and rotation of objects in R
3 which

avoids gimbal lock [21].

Rotations with Quaternions

The rotation around the unit axis v = (v1, v2, v3)
T
∈ R

3

with angle θ is thereby given by

r = [cos (θ/2) , sin (θ/2) v] . (4)

Identifying antipodal points q and −q with the same ele-

ment in SO (3), the unit quaternions form a double cover-

ing group of the 3D rotations and any pure quaternion

p = xi + yj + zk. (5)

of the point u = (x, y, z)
T

∈ R
3 is rotated by the unit

quaternion r via the sandwiching product map

p 7→ r · p · r̄. (6)

3.2. Dual Quaternions

Similar to the representation of rotations by quaternions, we

can use dual quaternions of unit length to represent spatial

displacements. We can define a dual quaternion as an or-

dered pair of quaternions with dual numbers as coefficients.

A dual number Z is an element of the algebra D that can

be written [19] as Z = r + εs where r, s ∈ R and ε2 = 0,

where r is the real-part, s is the dual part, and ε is called the

dual operator. The dual conjugate is similar to the complex

conjugate of R+ iR. It is given by Ẑ := r − εs.
Extending this concept to quaternions, we can define

dual quaternions.

Definition 2

A dual quaternion Q ∈ DH is an ordered set of quaternions

Q = r + εs = (q1, q2, q3, q4, q5, q6, q7, q8)
T
, (7)

where r, s ∈ H, (q1, q2, q3, q4, q5, q6, q7, q8)
T
∈ R

8 and

ε2 = 0, εi = iε, εj = jε, εk = kε. (8)

The Clifford algebra of dual quaternions contains the real

numbers R, the complex numbers C, the dual numbers D,

and the quaternions H as sub-algebras. With the conjugate

Q̄ of the dual quaternion Q = r + εs

Q̄ := r̄ + εs̄, (9)

we can study the constraints given for unit unit dual

quaternions Q ∈ DH1. If we demand unit length, it holds

1
!
= ‖Q‖ := Q · Q̄ = rr̄ + ε (rs̄ + sr̄) , (10)

which gives the two distinct constraints

rr̄ = 1 and rs̄ + sr̄ = 0. (11)

Displacements with Dual Quaternions

The unit dual quaternions are isomorphic to the group of

rigid body displacement SE (3) [1] and the two constraints

(11) reduce the eight parameters of the dual quaternions to

the six degrees of freedom of a rigid motion in space with

its translation and rotation. If we write the translation as a

pure quaternion t (5) and the rotation as a unit quaternion r

(4), we can construct the unit dual quaternion

DH1 ∋ Q = r + ε
1

2
tr. (12)

Analogously to the quaternions, we formulate the dual pure

quaternion P for the point p = [0, u] as P = 1 + εu and

the spatial displacement becomes the sandwiching product

map on dual quaternions

P 7→Q · P · ˆ̄Q = 1 + ε (rur̄ + t) , (13)

where the conjugates for the dual quaternion and the dual

are calculated consecutively.

3.3. Riemannian Geometry

The spaces H1 and DH1 can also be considered as differen-

tiable Riemannian manifolds G [34]. A continuous collec-

tion of inner products on the tangent space of G at x ∈ G

defines a Riemannian metric. The shortest path on the mani-

fold defined by such a metric is called the geodesic.

With these concepts, we take a closer look to the geometry

of the (dual) quaternion space and calculate a specific map-

ping into the tangent space which we generalize with the

help of parallel transport. This will pave the way to sub-

sequently define different local geodesic regressors in pose

space.

3.3.1 Geometry of H1 and DH1

With constraint (3), the unit quaternions form the three di-

mensional hypersphere S3 ∈ R
4. Thus H1 is isomorphic

to the real projective space RP
3. Looking at the two con-

straints from (11), we can analyze the structure of the unit

dual quaternion space. The first equation ‖r‖ = 1 forces

the real part r of Q to be of unit length, hence r ∈ H1. This

gives the 7-dimensional hypersphere S7 ∈ R
8 and the iden-

tification of antipodal points forms the seven dimensional
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real projective space RP
7. The second equation reads as

rs̄ = −sr̄ and thus defines a quadric in RP
7. Thus DH1

is not a hypersphere. This need to be considered for any

operation on the manifold.

3.3.2 Lie Groups and Parallel Transport

From a differential geometry perspective, a Lie group can

be viewed as a differentiable Riemannian manifold. The Lie

algebra to the Lie group is the tangent space at the identity

of the group. Thus it gives a linearization of the Lie group

near the identity. The map from the tangent space TxG at x

to the Lie group G is called the exponential map

expx : TxG → G, (14)

which is locally defined and maps a vector in the tangent

space to a point on the manifold following the geodesic on

G through x. Its inverse is called the logarithm map

logx : G → TxG. (15)

The mapping expx at point x ∈ G can be computed by par-

allel transport [13] as illustrated in Figure 1. With the ex-

ponential map exp1 =: exp at the identity 1 ∈ G and the

logarithm map it holds

expx (s) = x exp
(

x−1s
)

, (16)

logx (q) = x log
(

x−1q
)

. (17)

As a next step, we want to use this to derive the exponential

and logarithm maps at the identity for the elements of the

groups SO (3) and SE (3) in quaternion notation. For ma-

trices these maps are well studied objects [35], [24]. We

study the exponential maps directly in (dual) quaternion

space using its definition as a Maclaurin series.

3.3.3 Exponential and Logarithm map in H

The identity in H1 is given by 1 = (1, 0, 0, 0)
T
. The tangent

space T1H1 is thus the hyperplane to the hypersphere S3 ∈
R

4 and parallel to the axes x2, x3, x4 passing through 1.

Any quaternion in T1H1 is of the form

H ∋ q = [0, φv] (18)

with v ∈ R
3, ‖v‖ = 1 and the series writes as

exp : T1H1 → H1 (19)

q 7→ 1 +

∞
∑

k=1

qk

k!
:=

∞
∑

k=0

qk

k!
(20)

= cos (φ) +
sin (φ)

φ
q (21)

= [cos (φ) , sin (φ) v] =: r. (22)

where the second last step is done by recognizing the Taylor

series for the sine and cosine function at 0. Note, that this

relationship directly aligns with the notation in (4) while

φ = θ/2 and the inverse function is given by

log : H1 → T1H1 (23)

r 7→ [0, φv] . (24)

3.3.4 Exponential and Logarithm map in DH

Let

DH ∋ Q = ωq + εψqε (25)

be a pure dual quaternion with the two pure quaternions

q, qε ∈ H1. Simplification [30] of the Maclaurin series

for the exponential map then yields

exp : T1DH1 → DH1 (26)

Q 7→

∞
∑

k=0

Qk

k!
(27)

=
1

2
(2 cos (ω) + ω sin (ω)) (28)

−
1

2ω
(ω cos (ω)− 3 sin (ω))Q (29)

+
1

2ω
(sin (ω))Q2 (30)

−
1

2ω3
(ω cos (ω)− sin (ω))Q3. (31)

Before we compute the inverse function, we make the ob-

servation that any unit dual quaternion

Q = [φ, v] + ε [φε, vε] =: [Φ,V] (32)

with the dual entities

Φ = φ+ φεε (33)

V = v + vεε. (34)

can be written [9] equivalently to (4). For this, we calculate

the dual trigonometric operators through a series expansion

which brings

sin (Φ) := sin (φ) + εφε cos (φ) (35)

cos (Φ) := cos (φ)− εφε sin (φ) . (36)

We proof the following lemma by explicit calculation of the

dual quaternion representation.

Lemma 1

Any unit dual quaternion Q ∈ DH1 can be written as

Q = [cos (Θ/2) , sin (Θ/2)V] , (37)

where V ∈ DH is a pure dual quaternion of form (25).
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Figure 1. Parallel transport for the calculation of expx and logx. The exponential and logarithm maps at the support point x are indirectly

calculated via the explicit maps at the identity.

θ

εθ

l

v

Q

Figure 2. Screw linear displacement of rigid body with dual quater-

nion Q along screw axis l with angle θ and pitch θε in the direction

of v.

Proof. Analogously to the quaternion rotation, the formula-

tion (37) can be understood as a parametrization of the rigid

body motion. According to Chasles’ Theorem [7], a dis-

placement can be modeled via a translation along a unique

axis with a simultaneous rotation about the same axis. This

is visualized in Figure 2. We construct the dual quaternion

displacement for this motion explicitly in the form (37).

Let a rigid body transformation be given by a translation

t ∈ R
3 and a rotation R ∈ R

3×3 around the axis v with

‖v‖ = 1 with angle θ. From (12) we know already the unit

dual quaternion for this displacement.

The parameters for the screw motion are angle θ, pitch θε,

screw axis l with moment vε (i.e. vε = p × v ∀ p ∈ l) and

direction v. The angle θ is directly given. We first compute

the pitch θε in the direction v of the axis as the projection of

the translation onto the axis. This is θε = tTv. In order to

recover the moment vε, we pick a point u on the axis. With

this we can describe t in terms of θε, v, R and u as

t = θεv + (I − R) u (38)

and with the Rodrigues formula it holds

Ru = u + sin (θ) v × u + (1− cos (θ)) v × (v × u) .
(39)

Thus substituting this into (38) gives with uTv = 0

u =
1

2

(

t −
(

tTv
)

v + cot

(

θ

2

)

v × t

)

, (40)

which brings for the moment vector

vε = u × v =
1

2

(

t × v + cot

(

θ

2

)

v × (t × v)

)

. (41)

Substituting the rotation quaternion r = [q0, q] and using

θε = tTv yields

sin

(

θ

2

)

vε +
θε
2
cos

(

θ

2

)

v =
1

2
(t × q + q0t) , (42)

which is the pure quaternion of the dual part in (12). Thus

Q =

[

cos

(

θ

2

)

, sin

(

θ

2

)

vε

]

(43)

+ ε

[

−
θε
2
sin

(

θ

2

)

, sin

(

θ

2

)

vε +
θε
2
cos

(

θ

2

)

v

]

(44)

which equals (37) if we apply the trigonometric operators

(35), (36) and the dual entity represantations (33), (34).

We note that this representation separates the line infor-

mation of the screw axis from the pitch and angle values in

an algebraical way where the dual vector V represents the

axis of a screw motion with its direction vector and the dual

angle Θ contains both the translation length and the angle

of rotation.

Since for the exponential of a dual quaternion of the form

Q = VΘ

2
it holds [16]

exp

(

V
Θ

2

)

=

[

cos

(

Θ

2

)

, sin

(

Θ

2

)

V

]

, (45)

the inverse function of exp for quaternions of the form (37)

is then given by

log : DH1 → T1DH1 (46)
[

cos

(

Θ

2

)

, sin

(

Θ

2

)

V

]

7→ V
Θ

2
. (47)

4. Pose Filter

With the ideas from Section 3 it is now possible to linearize

the pose spaces SO (3) and SE (3) locally with the loga-

rithm maps (24) and (47) using parallel transport (17) such
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Figure 3. Robust PC-regression on tangent space. The figure illus-

trates the conceptual idea in 3D, rather than 8D.

that Euclidean methods can be applied for investigations

and processing of pose data. A solution of an operation in

tangent space TxG can be mapped back thereafter with the

exponential maps (22), (27) and (16) without affecting the

Riemannian geometry of the manifold.

In the following, we develop a robust smoothing method in

(dual) quaternion space by using the aforementioned oper-

ations to filter the pose data with a linear approximation of

the rigid body movement in the tangent space.

4.1. Robust Motion Stabilization

A time-varying, sequential motion can be interpreted on the

pose space DH1 as a high dimensional trajectory. Gener-

ally, due to lack of constraints on physical motion or track-

ing errors, this trajectory is highly non-linear, non-Gaussian

and includes outliers. Moreover, it is non-uniformly sam-

pled because of velocity changes or sudden jumps. We take

this non-ideal setting into account and propose a parameter-

free path smoothing algorithm which is robust, flexible, in-

tuitive and could naturally benefit from the availability of

the uncertainties in the pose estimation. Locally, we treat

the trajectory as a linear one, and seek to find the linear as-

sociation of the data points X to the responses Y such that

Y = Xβ+ǫ. A common way to discover this local relation-

ship is using the Generalized Least Squares minimization

β∗ = argmin
β

(Y − Xβ)T W(Y − Xβ). (48)

with diagonal weight matrix W. The solution is given by

weighted least squares regression

β∗ = (XT WX)−1XT WY. (49)

Equivalently, when the data is rather unevenly distributed,

one likes to prevent distinguishing the predictor and re-

sponse, thereby rather looking for meaningful linear pro-

jections (e.g. maximum variance). Thus, such an hyper-

line can be obtained from the first principal component of

the data points X. Let X = USVT denote the singular

value decomposition (SVD) of X, with right singular vec-

tors V. Then, V∆VT gives the spectral decomposition of

Algorithm 1 irls wpca : IRLS for weighted PCA.

Require: Local set of poses X = {Xi}, # Iterations N , Prior

weights w0 = {wi}
Ensure: PCA line l with projections Xfit

w← w0

for i = 1 : N do

{Xproj , l} ← weighted pca(X,w)

Update w using (52)

w← w · w0/‖w · w0‖ ⊲ Dampen the estimates.

end for

Algorithm 2 Manifold PC-Local Regression.

Require: Set of poses X = {Xi}, Kernel size K, Prior weights

w0 = {wi} for local window

Ensure: Filtered poses Xf = {Xf
i }

Xf ← [ ]
for xi ∈ X do

XΩ ← {xk} ∈ Ωi

Xt
Ω ← logxi

(XΩ)

X
proj
Ω
← irls wpca(Xt

Ω,w0)
x
f
i ← expxi

(Xproj
Ω

(i))

Xf ← Xf ∪ x
f
i

end for

the covariance matrix XXT with the non-negative eigen-

values ∆ = diag(λ1 . . . λp). Weights are then transferred

directly to the covariance matrix by

C =
1

2‖diag(W)‖
(X − µ)W(X − µ)T . (50)

The columns of V give an orthonormal set of eigenvectors

and Xvj , the jth principal component. The data can then

be projected onto the first principal subspace resulting in the

principal covariates XVk := {Xv1 . . .Xvk}. To smooth

the trajectory, the central point c is projected onto the PC-

line as illustrated on the plane in Figure 3. Note that this

fit assumes a local Gaussian distribution, while the global

distribution can be arbitrary.

While such PCA scheme holds for the Euclidean spaces,

it does not generalize to arbitrary manifolds such as the dual

quaternion space, because these spaces are not necessarily

Euclidean. Buss and Fillmore [6] show that even regressing

a great arc on the quaternion hypersphere has ambiguities.

For the case of local regression, the central point of fitting is

known which enables us to map the immediate neighbour-

hood onto the tangent space TxG, thereby circumventing

the non-Euclidean nature of the dual quaternions. Thanks

to the manifold structure, the tangent space locally behaves

Euclidean and we can perform the fit. To smooth the curve,

the central point is projected onto the regressed 8D-line and

mapped back onto the manifold using the exponential map.

We refer to this method as plain PCA filtering. Naturally,

the 8D data points, which are closer to the center of the
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local model c are more relevant for the fit, as the linearity

assumption decreases with the distance. Therefore we mul-

tiply each data point by a Gaussian prior function to down-

weight the points based on their relative position:

w0
i = exp

(

−
1

2
(xi − c)T D(xi − c)

)

, (51)

where D is a positive semi-definite distance metric explain-

ing the region of influence. In the following experiments

this approach is named weigthed PCA (wPCA).

Oftentimes the pose space contains outliers, for which a

naive fit does not work. To care for this, we introduce a re-

weighted procedure, in which the residuals of the current fit

are used to update the weights for the next iteration. This

is commonly referred as iteratively reweighted least squares

(IRLS). We use a simple distance based weight update:

wi+1 = 1/max
(

δ,
1

K

K
∑

k=1

|rki |
)

, (52)

where δ is a small number, preventing division by zero and

{rki } are the residuals at iteration i.
Algorithm 2 summarizes our final implementation. As

this method is independent of the structure of the parame-

ter space, we can either use it individually on rotations and

translations or on the dual quaternion space.

5. Experiments

In the following, the pose filtering methods presented in

Section 4 are evaluated and compared to other approaches

in two different scenarios. A first synthetic experiment an-

alyzes the ability of the smoothing algorithms to recover a

noisy pose series with outliers while the second evaluation

is performed on a real dataset of natural hand movement in

a collaborative medical robotic environment where tracking

accuracy is crucial.

5.1. Synthetic Tests

Our first test evaluates the robustness and accuracy of the

tangent space regressors. In order to evaluate these prop-

erties we generate a synthetic dataset from a ground truth

rigid body movement.

A set of five points vi ∈ R
3 together with five values

θi ∈ [0, 2π] is chosen as query points representing the

rotation axis and angle of the rotations Ri. Five points

ti ∈ [0, 1]
3

represent the translational component of the

poses. A cubic spline interpolates both the axes and an-

gles and with (4) and (12) we get a pose representations in

H1 × R
3 and DH1. As the space R

3 is already Euclidean

we can perform a pose filtering for the 6-DoF pose both in

DH1 and H1 × R
3. For the latter, all methods are applied

twice on both spaces independently.
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Figure 4. Dual IRLS applied to synthetic rigid body movement

(black). On the left, the intersections of the rotation axis with S2

are illustrated for both the noisy input (black) and the filtered pose

(turquoise). The translation part is shown in the bottom. On the

right, the angular and axis errors of the rotation are shown. The

bottom plot shows the RMS error of the translational component.

To evaluate the performance of the local regression, we

sample the ground truth pose series densely and apply addi-

tional noise uniformly distributed in [−σ, σ] with σ = 0.02
to the angle and the axis of rotation as well as to the transla-

tion. On top, random outliers for 5 % of the data points are

created with an additional noise of σ = 0.2.

Then we run the methods PCA, wPCA, IRLS, Dual PCA,

Dual wPCA, Dual IRLS as well as a Linear Kalman Filter

on the data. We use a window size of 19 and the Kalman

implementation [36] of MATLAB [22] with a covariance

tuple of [0.5, 2] for the rotation and [0.2, 1] for the transla-

tion process noise and measurement noise covariance. The

resulting pose set is illustrated together with the results for

the Dual IRLS method in Figure 4. An error quantifica-

tion for the different methods is given in Figure 5. For the

Kalman filter, tradeoff values have been chosen which are

still able to recover the pose without over-smoothing. How-

ever, the method only evaluates the past points and thus in-

formation of half the window size for future poses is not

included which explains the performance difference. The

direct local PCA methods perform equally well in the same

error range while the weighting gain in the separate treat-

ment is slightly better with 0.010 ± 0.020 in translation

and 0.37 ± 0.55◦ rotation. The outlier aware IRLS method

performs best for the angle while the improvement for the

translation is with 2.1 · 10−3 only minimal for the non-dual

quaternions. It can be clearly seen that the treatment of out-

liers in the dual space DH1 helps to increase the accuracy to

4.3 · 10−3 and 0.26◦ in the median. This can be intuitively
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Figure 5. Box plots for performance tests of different pose filter-

ing methods on synthetic data with the given noise shown in Data

Noise. The illustrated Angle Error is the angular difference of the

rotation axis to the ground truth.

understood through the fact that the local neighbourhood of

the linear regression line in DH1 is much more restrictive

than the joint neighbourhoods in H1 × R
3 where the effect

of an outlier in the separate parameter spaces is higher.

It is also worth mentioning that the only parameter of the

presented methods is the window size which directly re-

flects the movement speed of the displacements while the

parameter adjustments for a filter method such as Kalman

are more elaborate.

For visual comparison of the different methods on a syn-

thetic pose stream with noise, please be referred to the sup-

plementary video.1

5.2. Tracking Stream Refinement

We compare our methods on the dataset of Busam et al. [5]

where a robotic arm is set to gravity compensation mode

with zero stiffness and a human operator performs a natu-

ral hand movement manipulating its end effector. The robot

is tracked via a marker based stereo vision system running

the tracking algorithm [4] and calibrated such that the for-

ward kinematics of the industrial robotic manipulator pro-

vide ground truth poses with a precision of 0.05 mm.

The 30 Hz pose stream is fed into our filter pipelines and

compared to the absolute poses of the dataset. Figure 6 il-

lustrates the results where we use the same naming and pa-

rameters as in Section 5.1.

It is noteworthy that in this scenario, the wPCA methods

perform best with 11.2 ± 3.9µm (median 11.4µm) and

0.7 ± 1.4◦ (median 0.5◦) for the non-dual one while the

IRLS methods give only mediocre results between PCA

and wPCA both for quaternions (13.0µm, 0.6◦ median) and

dual quaternions (14.1µm, 0.6◦ median). The Kalman filter

again gives acceptable results for which heuristical param-

eter fine-tuning did not show any significant improvements.

1http://campar.in.tum.de/Chair/

PublicationDetail?pub=busam2017_mvr3d
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Figure 6. Box plots for tracking stream refinements of natural hand

movement.

The advantage of the dual space robustification - which can

yield a significant improvement (see Section 5.1) in the case

of outliers - is not applicable as there are only few outliers in

the already quite accurate optical tracking data. The IRLS

methods suffer from this problem as the weights for equally

important data points are reduced. This results in case of

reliable pose data in the fact that the separate treatment of

translation and rotation is preferable as the non-dual regres-

sors perform better.

6. Conclusion

We presented a method for camera pose filtering to recover

smooth trajectories in pose space. The use of differential ge-

ometry helps to describe a local regression problem in the

tangent space of unit (dual) quaternions. Applying a robust

line fitting on the principal component of the pose measure-

ments allows to filter an ordered pose series in a way that

both the translation path as well as its orientation can be

recovered. Besides smoothing and outlier-awareness, the

method benefits from being non-parametric. In particular

no explicit noise model needs to be modeled. Our exper-

iments revealed that the dual space formulation robustifies

the smoothing. As the logarithm and exponential maps are

defined locally, the obvious downside of a local lineariza-

tion is its need for a dense sampling around the touch point

of the tangent space with the manifold. For an online appli-

cation of the filtering also the moving window has to be cut

to half or future points need to be extrapolated.

This work could be extended towards including an un-

certainty measure into the local weights. An intuitive vision

measure would be for example the backprojection error in

a feature point tracking algorithm or the registration RMS

of a 3D localization method. Moreover, the mentioned need

for dense samples could be explicitly modeled including the

timestamps in a tracking application. We believe that prob-

lems such as video stabilization or visual odometry could

also benefit from the robust regression.
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